1 /* 2 * linux/fs/locks.c 3 * 4 * Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls. 5 * Doug Evans (dje@spiff.uucp), August 07, 1992 6 * 7 * Deadlock detection added. 8 * FIXME: one thing isn't handled yet: 9 * - mandatory locks (requires lots of changes elsewhere) 10 * Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994. 11 * 12 * Miscellaneous edits, and a total rewrite of posix_lock_file() code. 13 * Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994 14 * 15 * Converted file_lock_table to a linked list from an array, which eliminates 16 * the limits on how many active file locks are open. 17 * Chad Page (pageone@netcom.com), November 27, 1994 18 * 19 * Removed dependency on file descriptors. dup()'ed file descriptors now 20 * get the same locks as the original file descriptors, and a close() on 21 * any file descriptor removes ALL the locks on the file for the current 22 * process. Since locks still depend on the process id, locks are inherited 23 * after an exec() but not after a fork(). This agrees with POSIX, and both 24 * BSD and SVR4 practice. 25 * Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995 26 * 27 * Scrapped free list which is redundant now that we allocate locks 28 * dynamically with kmalloc()/kfree(). 29 * Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995 30 * 31 * Implemented two lock personalities - FL_FLOCK and FL_POSIX. 32 * 33 * FL_POSIX locks are created with calls to fcntl() and lockf() through the 34 * fcntl() system call. They have the semantics described above. 35 * 36 * FL_FLOCK locks are created with calls to flock(), through the flock() 37 * system call, which is new. Old C libraries implement flock() via fcntl() 38 * and will continue to use the old, broken implementation. 39 * 40 * FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated 41 * with a file pointer (filp). As a result they can be shared by a parent 42 * process and its children after a fork(). They are removed when the last 43 * file descriptor referring to the file pointer is closed (unless explicitly 44 * unlocked). 45 * 46 * FL_FLOCK locks never deadlock, an existing lock is always removed before 47 * upgrading from shared to exclusive (or vice versa). When this happens 48 * any processes blocked by the current lock are woken up and allowed to 49 * run before the new lock is applied. 50 * Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995 51 * 52 * Removed some race conditions in flock_lock_file(), marked other possible 53 * races. Just grep for FIXME to see them. 54 * Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996. 55 * 56 * Addressed Dmitry's concerns. Deadlock checking no longer recursive. 57 * Lock allocation changed to GFP_ATOMIC as we can't afford to sleep 58 * once we've checked for blocking and deadlocking. 59 * Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996. 60 * 61 * Initial implementation of mandatory locks. SunOS turned out to be 62 * a rotten model, so I implemented the "obvious" semantics. 63 * See 'Documentation/filesystems/mandatory-locking.txt' for details. 64 * Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996. 65 * 66 * Don't allow mandatory locks on mmap()'ed files. Added simple functions to 67 * check if a file has mandatory locks, used by mmap(), open() and creat() to 68 * see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference 69 * Manual, Section 2. 70 * Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996. 71 * 72 * Tidied up block list handling. Added '/proc/locks' interface. 73 * Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996. 74 * 75 * Fixed deadlock condition for pathological code that mixes calls to 76 * flock() and fcntl(). 77 * Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996. 78 * 79 * Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use 80 * for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to 81 * guarantee sensible behaviour in the case where file system modules might 82 * be compiled with different options than the kernel itself. 83 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 84 * 85 * Added a couple of missing wake_up() calls. Thanks to Thomas Meckel 86 * (Thomas.Meckel@mni.fh-giessen.de) for spotting this. 87 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 88 * 89 * Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK 90 * locks. Changed process synchronisation to avoid dereferencing locks that 91 * have already been freed. 92 * Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996. 93 * 94 * Made the block list a circular list to minimise searching in the list. 95 * Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996. 96 * 97 * Made mandatory locking a mount option. Default is not to allow mandatory 98 * locking. 99 * Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996. 100 * 101 * Some adaptations for NFS support. 102 * Olaf Kirch (okir@monad.swb.de), Dec 1996, 103 * 104 * Fixed /proc/locks interface so that we can't overrun the buffer we are handed. 105 * Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997. 106 * 107 * Use slab allocator instead of kmalloc/kfree. 108 * Use generic list implementation from <linux/list.h>. 109 * Sped up posix_locks_deadlock by only considering blocked locks. 110 * Matthew Wilcox <willy@debian.org>, March, 2000. 111 * 112 * Leases and LOCK_MAND 113 * Matthew Wilcox <willy@debian.org>, June, 2000. 114 * Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000. 115 */ 116 117 #include <linux/capability.h> 118 #include <linux/file.h> 119 #include <linux/fdtable.h> 120 #include <linux/fs.h> 121 #include <linux/init.h> 122 #include <linux/module.h> 123 #include <linux/security.h> 124 #include <linux/slab.h> 125 #include <linux/syscalls.h> 126 #include <linux/time.h> 127 #include <linux/rcupdate.h> 128 #include <linux/pid_namespace.h> 129 130 #include <asm/uaccess.h> 131 132 #define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 133 #define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 134 #define IS_LEASE(fl) (fl->fl_flags & FL_LEASE) 135 136 static bool lease_breaking(struct file_lock *fl) 137 { 138 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 139 } 140 141 static int target_leasetype(struct file_lock *fl) 142 { 143 if (fl->fl_flags & FL_UNLOCK_PENDING) 144 return F_UNLCK; 145 if (fl->fl_flags & FL_DOWNGRADE_PENDING) 146 return F_RDLCK; 147 return fl->fl_type; 148 } 149 150 int leases_enable = 1; 151 int lease_break_time = 45; 152 153 #define for_each_lock(inode, lockp) \ 154 for (lockp = &inode->i_flock; *lockp != NULL; lockp = &(*lockp)->fl_next) 155 156 static LIST_HEAD(file_lock_list); 157 static LIST_HEAD(blocked_list); 158 static DEFINE_SPINLOCK(file_lock_lock); 159 160 /* 161 * Protects the two list heads above, plus the inode->i_flock list 162 */ 163 void lock_flocks(void) 164 { 165 spin_lock(&file_lock_lock); 166 } 167 EXPORT_SYMBOL_GPL(lock_flocks); 168 169 void unlock_flocks(void) 170 { 171 spin_unlock(&file_lock_lock); 172 } 173 EXPORT_SYMBOL_GPL(unlock_flocks); 174 175 static struct kmem_cache *filelock_cache __read_mostly; 176 177 static void locks_init_lock_heads(struct file_lock *fl) 178 { 179 INIT_LIST_HEAD(&fl->fl_link); 180 INIT_LIST_HEAD(&fl->fl_block); 181 init_waitqueue_head(&fl->fl_wait); 182 } 183 184 /* Allocate an empty lock structure. */ 185 struct file_lock *locks_alloc_lock(void) 186 { 187 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 188 189 if (fl) 190 locks_init_lock_heads(fl); 191 192 return fl; 193 } 194 EXPORT_SYMBOL_GPL(locks_alloc_lock); 195 196 void locks_release_private(struct file_lock *fl) 197 { 198 if (fl->fl_ops) { 199 if (fl->fl_ops->fl_release_private) 200 fl->fl_ops->fl_release_private(fl); 201 fl->fl_ops = NULL; 202 } 203 fl->fl_lmops = NULL; 204 205 } 206 EXPORT_SYMBOL_GPL(locks_release_private); 207 208 /* Free a lock which is not in use. */ 209 void locks_free_lock(struct file_lock *fl) 210 { 211 BUG_ON(waitqueue_active(&fl->fl_wait)); 212 BUG_ON(!list_empty(&fl->fl_block)); 213 BUG_ON(!list_empty(&fl->fl_link)); 214 215 locks_release_private(fl); 216 kmem_cache_free(filelock_cache, fl); 217 } 218 EXPORT_SYMBOL(locks_free_lock); 219 220 void locks_init_lock(struct file_lock *fl) 221 { 222 memset(fl, 0, sizeof(struct file_lock)); 223 locks_init_lock_heads(fl); 224 } 225 226 EXPORT_SYMBOL(locks_init_lock); 227 228 static void locks_copy_private(struct file_lock *new, struct file_lock *fl) 229 { 230 if (fl->fl_ops) { 231 if (fl->fl_ops->fl_copy_lock) 232 fl->fl_ops->fl_copy_lock(new, fl); 233 new->fl_ops = fl->fl_ops; 234 } 235 if (fl->fl_lmops) 236 new->fl_lmops = fl->fl_lmops; 237 } 238 239 /* 240 * Initialize a new lock from an existing file_lock structure. 241 */ 242 void __locks_copy_lock(struct file_lock *new, const struct file_lock *fl) 243 { 244 new->fl_owner = fl->fl_owner; 245 new->fl_pid = fl->fl_pid; 246 new->fl_file = NULL; 247 new->fl_flags = fl->fl_flags; 248 new->fl_type = fl->fl_type; 249 new->fl_start = fl->fl_start; 250 new->fl_end = fl->fl_end; 251 new->fl_ops = NULL; 252 new->fl_lmops = NULL; 253 } 254 EXPORT_SYMBOL(__locks_copy_lock); 255 256 void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 257 { 258 locks_release_private(new); 259 260 __locks_copy_lock(new, fl); 261 new->fl_file = fl->fl_file; 262 new->fl_ops = fl->fl_ops; 263 new->fl_lmops = fl->fl_lmops; 264 265 locks_copy_private(new, fl); 266 } 267 268 EXPORT_SYMBOL(locks_copy_lock); 269 270 static inline int flock_translate_cmd(int cmd) { 271 if (cmd & LOCK_MAND) 272 return cmd & (LOCK_MAND | LOCK_RW); 273 switch (cmd) { 274 case LOCK_SH: 275 return F_RDLCK; 276 case LOCK_EX: 277 return F_WRLCK; 278 case LOCK_UN: 279 return F_UNLCK; 280 } 281 return -EINVAL; 282 } 283 284 /* Fill in a file_lock structure with an appropriate FLOCK lock. */ 285 static int flock_make_lock(struct file *filp, struct file_lock **lock, 286 unsigned int cmd) 287 { 288 struct file_lock *fl; 289 int type = flock_translate_cmd(cmd); 290 if (type < 0) 291 return type; 292 293 fl = locks_alloc_lock(); 294 if (fl == NULL) 295 return -ENOMEM; 296 297 fl->fl_file = filp; 298 fl->fl_pid = current->tgid; 299 fl->fl_flags = FL_FLOCK; 300 fl->fl_type = type; 301 fl->fl_end = OFFSET_MAX; 302 303 *lock = fl; 304 return 0; 305 } 306 307 static int assign_type(struct file_lock *fl, long type) 308 { 309 switch (type) { 310 case F_RDLCK: 311 case F_WRLCK: 312 case F_UNLCK: 313 fl->fl_type = type; 314 break; 315 default: 316 return -EINVAL; 317 } 318 return 0; 319 } 320 321 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 322 * style lock. 323 */ 324 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 325 struct flock *l) 326 { 327 off_t start, end; 328 329 switch (l->l_whence) { 330 case SEEK_SET: 331 start = 0; 332 break; 333 case SEEK_CUR: 334 start = filp->f_pos; 335 break; 336 case SEEK_END: 337 start = i_size_read(filp->f_path.dentry->d_inode); 338 break; 339 default: 340 return -EINVAL; 341 } 342 343 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 344 POSIX-2001 defines it. */ 345 start += l->l_start; 346 if (start < 0) 347 return -EINVAL; 348 fl->fl_end = OFFSET_MAX; 349 if (l->l_len > 0) { 350 end = start + l->l_len - 1; 351 fl->fl_end = end; 352 } else if (l->l_len < 0) { 353 end = start - 1; 354 fl->fl_end = end; 355 start += l->l_len; 356 if (start < 0) 357 return -EINVAL; 358 } 359 fl->fl_start = start; /* we record the absolute position */ 360 if (fl->fl_end < fl->fl_start) 361 return -EOVERFLOW; 362 363 fl->fl_owner = current->files; 364 fl->fl_pid = current->tgid; 365 fl->fl_file = filp; 366 fl->fl_flags = FL_POSIX; 367 fl->fl_ops = NULL; 368 fl->fl_lmops = NULL; 369 370 return assign_type(fl, l->l_type); 371 } 372 373 #if BITS_PER_LONG == 32 374 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 375 struct flock64 *l) 376 { 377 loff_t start; 378 379 switch (l->l_whence) { 380 case SEEK_SET: 381 start = 0; 382 break; 383 case SEEK_CUR: 384 start = filp->f_pos; 385 break; 386 case SEEK_END: 387 start = i_size_read(filp->f_path.dentry->d_inode); 388 break; 389 default: 390 return -EINVAL; 391 } 392 393 start += l->l_start; 394 if (start < 0) 395 return -EINVAL; 396 fl->fl_end = OFFSET_MAX; 397 if (l->l_len > 0) { 398 fl->fl_end = start + l->l_len - 1; 399 } else if (l->l_len < 0) { 400 fl->fl_end = start - 1; 401 start += l->l_len; 402 if (start < 0) 403 return -EINVAL; 404 } 405 fl->fl_start = start; /* we record the absolute position */ 406 if (fl->fl_end < fl->fl_start) 407 return -EOVERFLOW; 408 409 fl->fl_owner = current->files; 410 fl->fl_pid = current->tgid; 411 fl->fl_file = filp; 412 fl->fl_flags = FL_POSIX; 413 fl->fl_ops = NULL; 414 fl->fl_lmops = NULL; 415 416 return assign_type(fl, l->l_type); 417 } 418 #endif 419 420 /* default lease lock manager operations */ 421 static void lease_break_callback(struct file_lock *fl) 422 { 423 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 424 } 425 426 static const struct lock_manager_operations lease_manager_ops = { 427 .lm_break = lease_break_callback, 428 .lm_change = lease_modify, 429 }; 430 431 /* 432 * Initialize a lease, use the default lock manager operations 433 */ 434 static int lease_init(struct file *filp, long type, struct file_lock *fl) 435 { 436 if (assign_type(fl, type) != 0) 437 return -EINVAL; 438 439 fl->fl_owner = current->files; 440 fl->fl_pid = current->tgid; 441 442 fl->fl_file = filp; 443 fl->fl_flags = FL_LEASE; 444 fl->fl_start = 0; 445 fl->fl_end = OFFSET_MAX; 446 fl->fl_ops = NULL; 447 fl->fl_lmops = &lease_manager_ops; 448 return 0; 449 } 450 451 /* Allocate a file_lock initialised to this type of lease */ 452 static struct file_lock *lease_alloc(struct file *filp, long type) 453 { 454 struct file_lock *fl = locks_alloc_lock(); 455 int error = -ENOMEM; 456 457 if (fl == NULL) 458 return ERR_PTR(error); 459 460 error = lease_init(filp, type, fl); 461 if (error) { 462 locks_free_lock(fl); 463 return ERR_PTR(error); 464 } 465 return fl; 466 } 467 468 /* Check if two locks overlap each other. 469 */ 470 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 471 { 472 return ((fl1->fl_end >= fl2->fl_start) && 473 (fl2->fl_end >= fl1->fl_start)); 474 } 475 476 /* 477 * Check whether two locks have the same owner. 478 */ 479 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 480 { 481 if (fl1->fl_lmops && fl1->fl_lmops->lm_compare_owner) 482 return fl2->fl_lmops == fl1->fl_lmops && 483 fl1->fl_lmops->lm_compare_owner(fl1, fl2); 484 return fl1->fl_owner == fl2->fl_owner; 485 } 486 487 /* Remove waiter from blocker's block list. 488 * When blocker ends up pointing to itself then the list is empty. 489 */ 490 static void __locks_delete_block(struct file_lock *waiter) 491 { 492 list_del_init(&waiter->fl_block); 493 list_del_init(&waiter->fl_link); 494 waiter->fl_next = NULL; 495 } 496 497 /* 498 */ 499 void locks_delete_block(struct file_lock *waiter) 500 { 501 lock_flocks(); 502 __locks_delete_block(waiter); 503 unlock_flocks(); 504 } 505 EXPORT_SYMBOL(locks_delete_block); 506 507 /* Insert waiter into blocker's block list. 508 * We use a circular list so that processes can be easily woken up in 509 * the order they blocked. The documentation doesn't require this but 510 * it seems like the reasonable thing to do. 511 */ 512 static void locks_insert_block(struct file_lock *blocker, 513 struct file_lock *waiter) 514 { 515 BUG_ON(!list_empty(&waiter->fl_block)); 516 list_add_tail(&waiter->fl_block, &blocker->fl_block); 517 waiter->fl_next = blocker; 518 if (IS_POSIX(blocker)) 519 list_add(&waiter->fl_link, &blocked_list); 520 } 521 522 /* Wake up processes blocked waiting for blocker. 523 * If told to wait then schedule the processes until the block list 524 * is empty, otherwise empty the block list ourselves. 525 */ 526 static void locks_wake_up_blocks(struct file_lock *blocker) 527 { 528 while (!list_empty(&blocker->fl_block)) { 529 struct file_lock *waiter; 530 531 waiter = list_first_entry(&blocker->fl_block, 532 struct file_lock, fl_block); 533 __locks_delete_block(waiter); 534 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify) 535 waiter->fl_lmops->lm_notify(waiter); 536 else 537 wake_up(&waiter->fl_wait); 538 } 539 } 540 541 /* Insert file lock fl into an inode's lock list at the position indicated 542 * by pos. At the same time add the lock to the global file lock list. 543 */ 544 static void locks_insert_lock(struct file_lock **pos, struct file_lock *fl) 545 { 546 list_add(&fl->fl_link, &file_lock_list); 547 548 fl->fl_nspid = get_pid(task_tgid(current)); 549 550 /* insert into file's list */ 551 fl->fl_next = *pos; 552 *pos = fl; 553 } 554 555 /* 556 * Delete a lock and then free it. 557 * Wake up processes that are blocked waiting for this lock, 558 * notify the FS that the lock has been cleared and 559 * finally free the lock. 560 */ 561 static void locks_delete_lock(struct file_lock **thisfl_p) 562 { 563 struct file_lock *fl = *thisfl_p; 564 565 *thisfl_p = fl->fl_next; 566 fl->fl_next = NULL; 567 list_del_init(&fl->fl_link); 568 569 if (fl->fl_nspid) { 570 put_pid(fl->fl_nspid); 571 fl->fl_nspid = NULL; 572 } 573 574 locks_wake_up_blocks(fl); 575 locks_free_lock(fl); 576 } 577 578 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality 579 * checks for shared/exclusive status of overlapping locks. 580 */ 581 static int locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 582 { 583 if (sys_fl->fl_type == F_WRLCK) 584 return 1; 585 if (caller_fl->fl_type == F_WRLCK) 586 return 1; 587 return 0; 588 } 589 590 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 591 * checking before calling the locks_conflict(). 592 */ 593 static int posix_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 594 { 595 /* POSIX locks owned by the same process do not conflict with 596 * each other. 597 */ 598 if (!IS_POSIX(sys_fl) || posix_same_owner(caller_fl, sys_fl)) 599 return (0); 600 601 /* Check whether they overlap */ 602 if (!locks_overlap(caller_fl, sys_fl)) 603 return 0; 604 605 return (locks_conflict(caller_fl, sys_fl)); 606 } 607 608 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 609 * checking before calling the locks_conflict(). 610 */ 611 static int flock_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 612 { 613 /* FLOCK locks referring to the same filp do not conflict with 614 * each other. 615 */ 616 if (!IS_FLOCK(sys_fl) || (caller_fl->fl_file == sys_fl->fl_file)) 617 return (0); 618 if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND)) 619 return 0; 620 621 return (locks_conflict(caller_fl, sys_fl)); 622 } 623 624 void 625 posix_test_lock(struct file *filp, struct file_lock *fl) 626 { 627 struct file_lock *cfl; 628 629 lock_flocks(); 630 for (cfl = filp->f_path.dentry->d_inode->i_flock; cfl; cfl = cfl->fl_next) { 631 if (!IS_POSIX(cfl)) 632 continue; 633 if (posix_locks_conflict(fl, cfl)) 634 break; 635 } 636 if (cfl) { 637 __locks_copy_lock(fl, cfl); 638 if (cfl->fl_nspid) 639 fl->fl_pid = pid_vnr(cfl->fl_nspid); 640 } else 641 fl->fl_type = F_UNLCK; 642 unlock_flocks(); 643 return; 644 } 645 EXPORT_SYMBOL(posix_test_lock); 646 647 /* 648 * Deadlock detection: 649 * 650 * We attempt to detect deadlocks that are due purely to posix file 651 * locks. 652 * 653 * We assume that a task can be waiting for at most one lock at a time. 654 * So for any acquired lock, the process holding that lock may be 655 * waiting on at most one other lock. That lock in turns may be held by 656 * someone waiting for at most one other lock. Given a requested lock 657 * caller_fl which is about to wait for a conflicting lock block_fl, we 658 * follow this chain of waiters to ensure we are not about to create a 659 * cycle. 660 * 661 * Since we do this before we ever put a process to sleep on a lock, we 662 * are ensured that there is never a cycle; that is what guarantees that 663 * the while() loop in posix_locks_deadlock() eventually completes. 664 * 665 * Note: the above assumption may not be true when handling lock 666 * requests from a broken NFS client. It may also fail in the presence 667 * of tasks (such as posix threads) sharing the same open file table. 668 * 669 * To handle those cases, we just bail out after a few iterations. 670 */ 671 672 #define MAX_DEADLK_ITERATIONS 10 673 674 /* Find a lock that the owner of the given block_fl is blocking on. */ 675 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 676 { 677 struct file_lock *fl; 678 679 list_for_each_entry(fl, &blocked_list, fl_link) { 680 if (posix_same_owner(fl, block_fl)) 681 return fl->fl_next; 682 } 683 return NULL; 684 } 685 686 static int posix_locks_deadlock(struct file_lock *caller_fl, 687 struct file_lock *block_fl) 688 { 689 int i = 0; 690 691 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 692 if (i++ > MAX_DEADLK_ITERATIONS) 693 return 0; 694 if (posix_same_owner(caller_fl, block_fl)) 695 return 1; 696 } 697 return 0; 698 } 699 700 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 701 * after any leases, but before any posix locks. 702 * 703 * Note that if called with an FL_EXISTS argument, the caller may determine 704 * whether or not a lock was successfully freed by testing the return 705 * value for -ENOENT. 706 */ 707 static int flock_lock_file(struct file *filp, struct file_lock *request) 708 { 709 struct file_lock *new_fl = NULL; 710 struct file_lock **before; 711 struct inode * inode = filp->f_path.dentry->d_inode; 712 int error = 0; 713 int found = 0; 714 715 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 716 new_fl = locks_alloc_lock(); 717 if (!new_fl) 718 return -ENOMEM; 719 } 720 721 lock_flocks(); 722 if (request->fl_flags & FL_ACCESS) 723 goto find_conflict; 724 725 for_each_lock(inode, before) { 726 struct file_lock *fl = *before; 727 if (IS_POSIX(fl)) 728 break; 729 if (IS_LEASE(fl)) 730 continue; 731 if (filp != fl->fl_file) 732 continue; 733 if (request->fl_type == fl->fl_type) 734 goto out; 735 found = 1; 736 locks_delete_lock(before); 737 break; 738 } 739 740 if (request->fl_type == F_UNLCK) { 741 if ((request->fl_flags & FL_EXISTS) && !found) 742 error = -ENOENT; 743 goto out; 744 } 745 746 /* 747 * If a higher-priority process was blocked on the old file lock, 748 * give it the opportunity to lock the file. 749 */ 750 if (found) { 751 unlock_flocks(); 752 cond_resched(); 753 lock_flocks(); 754 } 755 756 find_conflict: 757 for_each_lock(inode, before) { 758 struct file_lock *fl = *before; 759 if (IS_POSIX(fl)) 760 break; 761 if (IS_LEASE(fl)) 762 continue; 763 if (!flock_locks_conflict(request, fl)) 764 continue; 765 error = -EAGAIN; 766 if (!(request->fl_flags & FL_SLEEP)) 767 goto out; 768 error = FILE_LOCK_DEFERRED; 769 locks_insert_block(fl, request); 770 goto out; 771 } 772 if (request->fl_flags & FL_ACCESS) 773 goto out; 774 locks_copy_lock(new_fl, request); 775 locks_insert_lock(before, new_fl); 776 new_fl = NULL; 777 error = 0; 778 779 out: 780 unlock_flocks(); 781 if (new_fl) 782 locks_free_lock(new_fl); 783 return error; 784 } 785 786 static int __posix_lock_file(struct inode *inode, struct file_lock *request, struct file_lock *conflock) 787 { 788 struct file_lock *fl; 789 struct file_lock *new_fl = NULL; 790 struct file_lock *new_fl2 = NULL; 791 struct file_lock *left = NULL; 792 struct file_lock *right = NULL; 793 struct file_lock **before; 794 int error, added = 0; 795 796 /* 797 * We may need two file_lock structures for this operation, 798 * so we get them in advance to avoid races. 799 * 800 * In some cases we can be sure, that no new locks will be needed 801 */ 802 if (!(request->fl_flags & FL_ACCESS) && 803 (request->fl_type != F_UNLCK || 804 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 805 new_fl = locks_alloc_lock(); 806 new_fl2 = locks_alloc_lock(); 807 } 808 809 lock_flocks(); 810 if (request->fl_type != F_UNLCK) { 811 for_each_lock(inode, before) { 812 fl = *before; 813 if (!IS_POSIX(fl)) 814 continue; 815 if (!posix_locks_conflict(request, fl)) 816 continue; 817 if (conflock) 818 __locks_copy_lock(conflock, fl); 819 error = -EAGAIN; 820 if (!(request->fl_flags & FL_SLEEP)) 821 goto out; 822 error = -EDEADLK; 823 if (posix_locks_deadlock(request, fl)) 824 goto out; 825 error = FILE_LOCK_DEFERRED; 826 locks_insert_block(fl, request); 827 goto out; 828 } 829 } 830 831 /* If we're just looking for a conflict, we're done. */ 832 error = 0; 833 if (request->fl_flags & FL_ACCESS) 834 goto out; 835 836 /* 837 * Find the first old lock with the same owner as the new lock. 838 */ 839 840 before = &inode->i_flock; 841 842 /* First skip locks owned by other processes. */ 843 while ((fl = *before) && (!IS_POSIX(fl) || 844 !posix_same_owner(request, fl))) { 845 before = &fl->fl_next; 846 } 847 848 /* Process locks with this owner. */ 849 while ((fl = *before) && posix_same_owner(request, fl)) { 850 /* Detect adjacent or overlapping regions (if same lock type) 851 */ 852 if (request->fl_type == fl->fl_type) { 853 /* In all comparisons of start vs end, use 854 * "start - 1" rather than "end + 1". If end 855 * is OFFSET_MAX, end + 1 will become negative. 856 */ 857 if (fl->fl_end < request->fl_start - 1) 858 goto next_lock; 859 /* If the next lock in the list has entirely bigger 860 * addresses than the new one, insert the lock here. 861 */ 862 if (fl->fl_start - 1 > request->fl_end) 863 break; 864 865 /* If we come here, the new and old lock are of the 866 * same type and adjacent or overlapping. Make one 867 * lock yielding from the lower start address of both 868 * locks to the higher end address. 869 */ 870 if (fl->fl_start > request->fl_start) 871 fl->fl_start = request->fl_start; 872 else 873 request->fl_start = fl->fl_start; 874 if (fl->fl_end < request->fl_end) 875 fl->fl_end = request->fl_end; 876 else 877 request->fl_end = fl->fl_end; 878 if (added) { 879 locks_delete_lock(before); 880 continue; 881 } 882 request = fl; 883 added = 1; 884 } 885 else { 886 /* Processing for different lock types is a bit 887 * more complex. 888 */ 889 if (fl->fl_end < request->fl_start) 890 goto next_lock; 891 if (fl->fl_start > request->fl_end) 892 break; 893 if (request->fl_type == F_UNLCK) 894 added = 1; 895 if (fl->fl_start < request->fl_start) 896 left = fl; 897 /* If the next lock in the list has a higher end 898 * address than the new one, insert the new one here. 899 */ 900 if (fl->fl_end > request->fl_end) { 901 right = fl; 902 break; 903 } 904 if (fl->fl_start >= request->fl_start) { 905 /* The new lock completely replaces an old 906 * one (This may happen several times). 907 */ 908 if (added) { 909 locks_delete_lock(before); 910 continue; 911 } 912 /* Replace the old lock with the new one. 913 * Wake up anybody waiting for the old one, 914 * as the change in lock type might satisfy 915 * their needs. 916 */ 917 locks_wake_up_blocks(fl); 918 fl->fl_start = request->fl_start; 919 fl->fl_end = request->fl_end; 920 fl->fl_type = request->fl_type; 921 locks_release_private(fl); 922 locks_copy_private(fl, request); 923 request = fl; 924 added = 1; 925 } 926 } 927 /* Go on to next lock. 928 */ 929 next_lock: 930 before = &fl->fl_next; 931 } 932 933 /* 934 * The above code only modifies existing locks in case of 935 * merging or replacing. If new lock(s) need to be inserted 936 * all modifications are done bellow this, so it's safe yet to 937 * bail out. 938 */ 939 error = -ENOLCK; /* "no luck" */ 940 if (right && left == right && !new_fl2) 941 goto out; 942 943 error = 0; 944 if (!added) { 945 if (request->fl_type == F_UNLCK) { 946 if (request->fl_flags & FL_EXISTS) 947 error = -ENOENT; 948 goto out; 949 } 950 951 if (!new_fl) { 952 error = -ENOLCK; 953 goto out; 954 } 955 locks_copy_lock(new_fl, request); 956 locks_insert_lock(before, new_fl); 957 new_fl = NULL; 958 } 959 if (right) { 960 if (left == right) { 961 /* The new lock breaks the old one in two pieces, 962 * so we have to use the second new lock. 963 */ 964 left = new_fl2; 965 new_fl2 = NULL; 966 locks_copy_lock(left, right); 967 locks_insert_lock(before, left); 968 } 969 right->fl_start = request->fl_end + 1; 970 locks_wake_up_blocks(right); 971 } 972 if (left) { 973 left->fl_end = request->fl_start - 1; 974 locks_wake_up_blocks(left); 975 } 976 out: 977 unlock_flocks(); 978 /* 979 * Free any unused locks. 980 */ 981 if (new_fl) 982 locks_free_lock(new_fl); 983 if (new_fl2) 984 locks_free_lock(new_fl2); 985 return error; 986 } 987 988 /** 989 * posix_lock_file - Apply a POSIX-style lock to a file 990 * @filp: The file to apply the lock to 991 * @fl: The lock to be applied 992 * @conflock: Place to return a copy of the conflicting lock, if found. 993 * 994 * Add a POSIX style lock to a file. 995 * We merge adjacent & overlapping locks whenever possible. 996 * POSIX locks are sorted by owner task, then by starting address 997 * 998 * Note that if called with an FL_EXISTS argument, the caller may determine 999 * whether or not a lock was successfully freed by testing the return 1000 * value for -ENOENT. 1001 */ 1002 int posix_lock_file(struct file *filp, struct file_lock *fl, 1003 struct file_lock *conflock) 1004 { 1005 return __posix_lock_file(filp->f_path.dentry->d_inode, fl, conflock); 1006 } 1007 EXPORT_SYMBOL(posix_lock_file); 1008 1009 /** 1010 * posix_lock_file_wait - Apply a POSIX-style lock to a file 1011 * @filp: The file to apply the lock to 1012 * @fl: The lock to be applied 1013 * 1014 * Add a POSIX style lock to a file. 1015 * We merge adjacent & overlapping locks whenever possible. 1016 * POSIX locks are sorted by owner task, then by starting address 1017 */ 1018 int posix_lock_file_wait(struct file *filp, struct file_lock *fl) 1019 { 1020 int error; 1021 might_sleep (); 1022 for (;;) { 1023 error = posix_lock_file(filp, fl, NULL); 1024 if (error != FILE_LOCK_DEFERRED) 1025 break; 1026 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1027 if (!error) 1028 continue; 1029 1030 locks_delete_block(fl); 1031 break; 1032 } 1033 return error; 1034 } 1035 EXPORT_SYMBOL(posix_lock_file_wait); 1036 1037 /** 1038 * locks_mandatory_locked - Check for an active lock 1039 * @inode: the file to check 1040 * 1041 * Searches the inode's list of locks to find any POSIX locks which conflict. 1042 * This function is called from locks_verify_locked() only. 1043 */ 1044 int locks_mandatory_locked(struct inode *inode) 1045 { 1046 fl_owner_t owner = current->files; 1047 struct file_lock *fl; 1048 1049 /* 1050 * Search the lock list for this inode for any POSIX locks. 1051 */ 1052 lock_flocks(); 1053 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 1054 if (!IS_POSIX(fl)) 1055 continue; 1056 if (fl->fl_owner != owner) 1057 break; 1058 } 1059 unlock_flocks(); 1060 return fl ? -EAGAIN : 0; 1061 } 1062 1063 /** 1064 * locks_mandatory_area - Check for a conflicting lock 1065 * @read_write: %FLOCK_VERIFY_WRITE for exclusive access, %FLOCK_VERIFY_READ 1066 * for shared 1067 * @inode: the file to check 1068 * @filp: how the file was opened (if it was) 1069 * @offset: start of area to check 1070 * @count: length of area to check 1071 * 1072 * Searches the inode's list of locks to find any POSIX locks which conflict. 1073 * This function is called from rw_verify_area() and 1074 * locks_verify_truncate(). 1075 */ 1076 int locks_mandatory_area(int read_write, struct inode *inode, 1077 struct file *filp, loff_t offset, 1078 size_t count) 1079 { 1080 struct file_lock fl; 1081 int error; 1082 1083 locks_init_lock(&fl); 1084 fl.fl_owner = current->files; 1085 fl.fl_pid = current->tgid; 1086 fl.fl_file = filp; 1087 fl.fl_flags = FL_POSIX | FL_ACCESS; 1088 if (filp && !(filp->f_flags & O_NONBLOCK)) 1089 fl.fl_flags |= FL_SLEEP; 1090 fl.fl_type = (read_write == FLOCK_VERIFY_WRITE) ? F_WRLCK : F_RDLCK; 1091 fl.fl_start = offset; 1092 fl.fl_end = offset + count - 1; 1093 1094 for (;;) { 1095 error = __posix_lock_file(inode, &fl, NULL); 1096 if (error != FILE_LOCK_DEFERRED) 1097 break; 1098 error = wait_event_interruptible(fl.fl_wait, !fl.fl_next); 1099 if (!error) { 1100 /* 1101 * If we've been sleeping someone might have 1102 * changed the permissions behind our back. 1103 */ 1104 if (__mandatory_lock(inode)) 1105 continue; 1106 } 1107 1108 locks_delete_block(&fl); 1109 break; 1110 } 1111 1112 return error; 1113 } 1114 1115 EXPORT_SYMBOL(locks_mandatory_area); 1116 1117 static void lease_clear_pending(struct file_lock *fl, int arg) 1118 { 1119 switch (arg) { 1120 case F_UNLCK: 1121 fl->fl_flags &= ~FL_UNLOCK_PENDING; 1122 /* fall through: */ 1123 case F_RDLCK: 1124 fl->fl_flags &= ~FL_DOWNGRADE_PENDING; 1125 } 1126 } 1127 1128 /* We already had a lease on this file; just change its type */ 1129 int lease_modify(struct file_lock **before, int arg) 1130 { 1131 struct file_lock *fl = *before; 1132 int error = assign_type(fl, arg); 1133 1134 if (error) 1135 return error; 1136 lease_clear_pending(fl, arg); 1137 locks_wake_up_blocks(fl); 1138 if (arg == F_UNLCK) { 1139 struct file *filp = fl->fl_file; 1140 1141 f_delown(filp); 1142 filp->f_owner.signum = 0; 1143 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 1144 if (fl->fl_fasync != NULL) { 1145 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 1146 fl->fl_fasync = NULL; 1147 } 1148 locks_delete_lock(before); 1149 } 1150 return 0; 1151 } 1152 1153 EXPORT_SYMBOL(lease_modify); 1154 1155 static bool past_time(unsigned long then) 1156 { 1157 if (!then) 1158 /* 0 is a special value meaning "this never expires": */ 1159 return false; 1160 return time_after(jiffies, then); 1161 } 1162 1163 static void time_out_leases(struct inode *inode) 1164 { 1165 struct file_lock **before; 1166 struct file_lock *fl; 1167 1168 before = &inode->i_flock; 1169 while ((fl = *before) && IS_LEASE(fl) && lease_breaking(fl)) { 1170 if (past_time(fl->fl_downgrade_time)) 1171 lease_modify(before, F_RDLCK); 1172 if (past_time(fl->fl_break_time)) 1173 lease_modify(before, F_UNLCK); 1174 if (fl == *before) /* lease_modify may have freed fl */ 1175 before = &fl->fl_next; 1176 } 1177 } 1178 1179 /** 1180 * __break_lease - revoke all outstanding leases on file 1181 * @inode: the inode of the file to return 1182 * @mode: the open mode (read or write) 1183 * 1184 * break_lease (inlined for speed) has checked there already is at least 1185 * some kind of lock (maybe a lease) on this file. Leases are broken on 1186 * a call to open() or truncate(). This function can sleep unless you 1187 * specified %O_NONBLOCK to your open(). 1188 */ 1189 int __break_lease(struct inode *inode, unsigned int mode) 1190 { 1191 int error = 0; 1192 struct file_lock *new_fl, *flock; 1193 struct file_lock *fl; 1194 unsigned long break_time; 1195 int i_have_this_lease = 0; 1196 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1197 1198 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1199 if (IS_ERR(new_fl)) 1200 return PTR_ERR(new_fl); 1201 1202 lock_flocks(); 1203 1204 time_out_leases(inode); 1205 1206 flock = inode->i_flock; 1207 if ((flock == NULL) || !IS_LEASE(flock)) 1208 goto out; 1209 1210 if (!locks_conflict(flock, new_fl)) 1211 goto out; 1212 1213 for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next) 1214 if (fl->fl_owner == current->files) 1215 i_have_this_lease = 1; 1216 1217 break_time = 0; 1218 if (lease_break_time > 0) { 1219 break_time = jiffies + lease_break_time * HZ; 1220 if (break_time == 0) 1221 break_time++; /* so that 0 means no break time */ 1222 } 1223 1224 for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next) { 1225 if (want_write) { 1226 if (fl->fl_flags & FL_UNLOCK_PENDING) 1227 continue; 1228 fl->fl_flags |= FL_UNLOCK_PENDING; 1229 fl->fl_break_time = break_time; 1230 } else { 1231 if (lease_breaking(flock)) 1232 continue; 1233 fl->fl_flags |= FL_DOWNGRADE_PENDING; 1234 fl->fl_downgrade_time = break_time; 1235 } 1236 fl->fl_lmops->lm_break(fl); 1237 } 1238 1239 if (i_have_this_lease || (mode & O_NONBLOCK)) { 1240 error = -EWOULDBLOCK; 1241 goto out; 1242 } 1243 1244 restart: 1245 break_time = flock->fl_break_time; 1246 if (break_time != 0) { 1247 break_time -= jiffies; 1248 if (break_time == 0) 1249 break_time++; 1250 } 1251 locks_insert_block(flock, new_fl); 1252 unlock_flocks(); 1253 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1254 !new_fl->fl_next, break_time); 1255 lock_flocks(); 1256 __locks_delete_block(new_fl); 1257 if (error >= 0) { 1258 if (error == 0) 1259 time_out_leases(inode); 1260 /* 1261 * Wait for the next conflicting lease that has not been 1262 * broken yet 1263 */ 1264 for (flock = inode->i_flock; flock && IS_LEASE(flock); 1265 flock = flock->fl_next) { 1266 if (locks_conflict(new_fl, flock)) 1267 goto restart; 1268 } 1269 error = 0; 1270 } 1271 1272 out: 1273 unlock_flocks(); 1274 locks_free_lock(new_fl); 1275 return error; 1276 } 1277 1278 EXPORT_SYMBOL(__break_lease); 1279 1280 /** 1281 * lease_get_mtime - get the last modified time of an inode 1282 * @inode: the inode 1283 * @time: pointer to a timespec which will contain the last modified time 1284 * 1285 * This is to force NFS clients to flush their caches for files with 1286 * exclusive leases. The justification is that if someone has an 1287 * exclusive lease, then they could be modifying it. 1288 */ 1289 void lease_get_mtime(struct inode *inode, struct timespec *time) 1290 { 1291 struct file_lock *flock = inode->i_flock; 1292 if (flock && IS_LEASE(flock) && (flock->fl_type == F_WRLCK)) 1293 *time = current_fs_time(inode->i_sb); 1294 else 1295 *time = inode->i_mtime; 1296 } 1297 1298 EXPORT_SYMBOL(lease_get_mtime); 1299 1300 /** 1301 * fcntl_getlease - Enquire what lease is currently active 1302 * @filp: the file 1303 * 1304 * The value returned by this function will be one of 1305 * (if no lease break is pending): 1306 * 1307 * %F_RDLCK to indicate a shared lease is held. 1308 * 1309 * %F_WRLCK to indicate an exclusive lease is held. 1310 * 1311 * %F_UNLCK to indicate no lease is held. 1312 * 1313 * (if a lease break is pending): 1314 * 1315 * %F_RDLCK to indicate an exclusive lease needs to be 1316 * changed to a shared lease (or removed). 1317 * 1318 * %F_UNLCK to indicate the lease needs to be removed. 1319 * 1320 * XXX: sfr & willy disagree over whether F_INPROGRESS 1321 * should be returned to userspace. 1322 */ 1323 int fcntl_getlease(struct file *filp) 1324 { 1325 struct file_lock *fl; 1326 int type = F_UNLCK; 1327 1328 lock_flocks(); 1329 time_out_leases(filp->f_path.dentry->d_inode); 1330 for (fl = filp->f_path.dentry->d_inode->i_flock; fl && IS_LEASE(fl); 1331 fl = fl->fl_next) { 1332 if (fl->fl_file == filp) { 1333 type = target_leasetype(fl); 1334 break; 1335 } 1336 } 1337 unlock_flocks(); 1338 return type; 1339 } 1340 1341 int generic_add_lease(struct file *filp, long arg, struct file_lock **flp) 1342 { 1343 struct file_lock *fl, **before, **my_before = NULL, *lease; 1344 struct dentry *dentry = filp->f_path.dentry; 1345 struct inode *inode = dentry->d_inode; 1346 int error; 1347 1348 lease = *flp; 1349 1350 error = -EAGAIN; 1351 if ((arg == F_RDLCK) && (atomic_read(&inode->i_writecount) > 0)) 1352 goto out; 1353 if ((arg == F_WRLCK) 1354 && ((dentry->d_count > 1) 1355 || (atomic_read(&inode->i_count) > 1))) 1356 goto out; 1357 1358 /* 1359 * At this point, we know that if there is an exclusive 1360 * lease on this file, then we hold it on this filp 1361 * (otherwise our open of this file would have blocked). 1362 * And if we are trying to acquire an exclusive lease, 1363 * then the file is not open by anyone (including us) 1364 * except for this filp. 1365 */ 1366 error = -EAGAIN; 1367 for (before = &inode->i_flock; 1368 ((fl = *before) != NULL) && IS_LEASE(fl); 1369 before = &fl->fl_next) { 1370 if (fl->fl_file == filp) { 1371 my_before = before; 1372 continue; 1373 } 1374 /* 1375 * No exclusive leases if someone else has a lease on 1376 * this file: 1377 */ 1378 if (arg == F_WRLCK) 1379 goto out; 1380 /* 1381 * Modifying our existing lease is OK, but no getting a 1382 * new lease if someone else is opening for write: 1383 */ 1384 if (fl->fl_flags & FL_UNLOCK_PENDING) 1385 goto out; 1386 } 1387 1388 if (my_before != NULL) { 1389 error = lease->fl_lmops->lm_change(my_before, arg); 1390 if (!error) 1391 *flp = *my_before; 1392 goto out; 1393 } 1394 1395 error = -EINVAL; 1396 if (!leases_enable) 1397 goto out; 1398 1399 locks_insert_lock(before, lease); 1400 return 0; 1401 1402 out: 1403 return error; 1404 } 1405 1406 int generic_delete_lease(struct file *filp, struct file_lock **flp) 1407 { 1408 struct file_lock *fl, **before; 1409 struct dentry *dentry = filp->f_path.dentry; 1410 struct inode *inode = dentry->d_inode; 1411 1412 for (before = &inode->i_flock; 1413 ((fl = *before) != NULL) && IS_LEASE(fl); 1414 before = &fl->fl_next) { 1415 if (fl->fl_file != filp) 1416 continue; 1417 return (*flp)->fl_lmops->lm_change(before, F_UNLCK); 1418 } 1419 return -EAGAIN; 1420 } 1421 1422 /** 1423 * generic_setlease - sets a lease on an open file 1424 * @filp: file pointer 1425 * @arg: type of lease to obtain 1426 * @flp: input - file_lock to use, output - file_lock inserted 1427 * 1428 * The (input) flp->fl_lmops->lm_break function is required 1429 * by break_lease(). 1430 * 1431 * Called with file_lock_lock held. 1432 */ 1433 int generic_setlease(struct file *filp, long arg, struct file_lock **flp) 1434 { 1435 struct dentry *dentry = filp->f_path.dentry; 1436 struct inode *inode = dentry->d_inode; 1437 int error; 1438 1439 if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE)) 1440 return -EACCES; 1441 if (!S_ISREG(inode->i_mode)) 1442 return -EINVAL; 1443 error = security_file_lock(filp, arg); 1444 if (error) 1445 return error; 1446 1447 time_out_leases(inode); 1448 1449 BUG_ON(!(*flp)->fl_lmops->lm_break); 1450 1451 switch (arg) { 1452 case F_UNLCK: 1453 return generic_delete_lease(filp, flp); 1454 case F_RDLCK: 1455 case F_WRLCK: 1456 return generic_add_lease(filp, arg, flp); 1457 default: 1458 return -EINVAL; 1459 } 1460 } 1461 EXPORT_SYMBOL(generic_setlease); 1462 1463 static int __vfs_setlease(struct file *filp, long arg, struct file_lock **lease) 1464 { 1465 if (filp->f_op && filp->f_op->setlease) 1466 return filp->f_op->setlease(filp, arg, lease); 1467 else 1468 return generic_setlease(filp, arg, lease); 1469 } 1470 1471 /** 1472 * vfs_setlease - sets a lease on an open file 1473 * @filp: file pointer 1474 * @arg: type of lease to obtain 1475 * @lease: file_lock to use 1476 * 1477 * Call this to establish a lease on the file. 1478 * The (*lease)->fl_lmops->lm_break operation must be set; if not, 1479 * break_lease will oops! 1480 * 1481 * This will call the filesystem's setlease file method, if 1482 * defined. Note that there is no getlease method; instead, the 1483 * filesystem setlease method should call back to setlease() to 1484 * add a lease to the inode's lease list, where fcntl_getlease() can 1485 * find it. Since fcntl_getlease() only reports whether the current 1486 * task holds a lease, a cluster filesystem need only do this for 1487 * leases held by processes on this node. 1488 * 1489 * There is also no break_lease method; filesystems that 1490 * handle their own leases should break leases themselves from the 1491 * filesystem's open, create, and (on truncate) setattr methods. 1492 * 1493 * Warning: the only current setlease methods exist only to disable 1494 * leases in certain cases. More vfs changes may be required to 1495 * allow a full filesystem lease implementation. 1496 */ 1497 1498 int vfs_setlease(struct file *filp, long arg, struct file_lock **lease) 1499 { 1500 int error; 1501 1502 lock_flocks(); 1503 error = __vfs_setlease(filp, arg, lease); 1504 unlock_flocks(); 1505 1506 return error; 1507 } 1508 EXPORT_SYMBOL_GPL(vfs_setlease); 1509 1510 static int do_fcntl_delete_lease(struct file *filp) 1511 { 1512 struct file_lock fl, *flp = &fl; 1513 1514 lease_init(filp, F_UNLCK, flp); 1515 1516 return vfs_setlease(filp, F_UNLCK, &flp); 1517 } 1518 1519 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg) 1520 { 1521 struct file_lock *fl, *ret; 1522 struct fasync_struct *new; 1523 int error; 1524 1525 fl = lease_alloc(filp, arg); 1526 if (IS_ERR(fl)) 1527 return PTR_ERR(fl); 1528 1529 new = fasync_alloc(); 1530 if (!new) { 1531 locks_free_lock(fl); 1532 return -ENOMEM; 1533 } 1534 ret = fl; 1535 lock_flocks(); 1536 error = __vfs_setlease(filp, arg, &ret); 1537 if (error) { 1538 unlock_flocks(); 1539 locks_free_lock(fl); 1540 goto out_free_fasync; 1541 } 1542 if (ret != fl) 1543 locks_free_lock(fl); 1544 1545 /* 1546 * fasync_insert_entry() returns the old entry if any. 1547 * If there was no old entry, then it used 'new' and 1548 * inserted it into the fasync list. Clear new so that 1549 * we don't release it here. 1550 */ 1551 if (!fasync_insert_entry(fd, filp, &ret->fl_fasync, new)) 1552 new = NULL; 1553 1554 error = __f_setown(filp, task_pid(current), PIDTYPE_PID, 0); 1555 unlock_flocks(); 1556 1557 out_free_fasync: 1558 if (new) 1559 fasync_free(new); 1560 return error; 1561 } 1562 1563 /** 1564 * fcntl_setlease - sets a lease on an open file 1565 * @fd: open file descriptor 1566 * @filp: file pointer 1567 * @arg: type of lease to obtain 1568 * 1569 * Call this fcntl to establish a lease on the file. 1570 * Note that you also need to call %F_SETSIG to 1571 * receive a signal when the lease is broken. 1572 */ 1573 int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 1574 { 1575 if (arg == F_UNLCK) 1576 return do_fcntl_delete_lease(filp); 1577 return do_fcntl_add_lease(fd, filp, arg); 1578 } 1579 1580 /** 1581 * flock_lock_file_wait - Apply a FLOCK-style lock to a file 1582 * @filp: The file to apply the lock to 1583 * @fl: The lock to be applied 1584 * 1585 * Add a FLOCK style lock to a file. 1586 */ 1587 int flock_lock_file_wait(struct file *filp, struct file_lock *fl) 1588 { 1589 int error; 1590 might_sleep(); 1591 for (;;) { 1592 error = flock_lock_file(filp, fl); 1593 if (error != FILE_LOCK_DEFERRED) 1594 break; 1595 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1596 if (!error) 1597 continue; 1598 1599 locks_delete_block(fl); 1600 break; 1601 } 1602 return error; 1603 } 1604 1605 EXPORT_SYMBOL(flock_lock_file_wait); 1606 1607 /** 1608 * sys_flock: - flock() system call. 1609 * @fd: the file descriptor to lock. 1610 * @cmd: the type of lock to apply. 1611 * 1612 * Apply a %FL_FLOCK style lock to an open file descriptor. 1613 * The @cmd can be one of 1614 * 1615 * %LOCK_SH -- a shared lock. 1616 * 1617 * %LOCK_EX -- an exclusive lock. 1618 * 1619 * %LOCK_UN -- remove an existing lock. 1620 * 1621 * %LOCK_MAND -- a `mandatory' flock. This exists to emulate Windows Share Modes. 1622 * 1623 * %LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other 1624 * processes read and write access respectively. 1625 */ 1626 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 1627 { 1628 struct fd f = fdget(fd); 1629 struct file_lock *lock; 1630 int can_sleep, unlock; 1631 int error; 1632 1633 error = -EBADF; 1634 if (!f.file) 1635 goto out; 1636 1637 can_sleep = !(cmd & LOCK_NB); 1638 cmd &= ~LOCK_NB; 1639 unlock = (cmd == LOCK_UN); 1640 1641 if (!unlock && !(cmd & LOCK_MAND) && 1642 !(f.file->f_mode & (FMODE_READ|FMODE_WRITE))) 1643 goto out_putf; 1644 1645 error = flock_make_lock(f.file, &lock, cmd); 1646 if (error) 1647 goto out_putf; 1648 if (can_sleep) 1649 lock->fl_flags |= FL_SLEEP; 1650 1651 error = security_file_lock(f.file, lock->fl_type); 1652 if (error) 1653 goto out_free; 1654 1655 if (f.file->f_op && f.file->f_op->flock) 1656 error = f.file->f_op->flock(f.file, 1657 (can_sleep) ? F_SETLKW : F_SETLK, 1658 lock); 1659 else 1660 error = flock_lock_file_wait(f.file, lock); 1661 1662 out_free: 1663 locks_free_lock(lock); 1664 1665 out_putf: 1666 fdput(f); 1667 out: 1668 return error; 1669 } 1670 1671 /** 1672 * vfs_test_lock - test file byte range lock 1673 * @filp: The file to test lock for 1674 * @fl: The lock to test; also used to hold result 1675 * 1676 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 1677 * setting conf->fl_type to something other than F_UNLCK. 1678 */ 1679 int vfs_test_lock(struct file *filp, struct file_lock *fl) 1680 { 1681 if (filp->f_op && filp->f_op->lock) 1682 return filp->f_op->lock(filp, F_GETLK, fl); 1683 posix_test_lock(filp, fl); 1684 return 0; 1685 } 1686 EXPORT_SYMBOL_GPL(vfs_test_lock); 1687 1688 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 1689 { 1690 flock->l_pid = fl->fl_pid; 1691 #if BITS_PER_LONG == 32 1692 /* 1693 * Make sure we can represent the posix lock via 1694 * legacy 32bit flock. 1695 */ 1696 if (fl->fl_start > OFFT_OFFSET_MAX) 1697 return -EOVERFLOW; 1698 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 1699 return -EOVERFLOW; 1700 #endif 1701 flock->l_start = fl->fl_start; 1702 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 1703 fl->fl_end - fl->fl_start + 1; 1704 flock->l_whence = 0; 1705 flock->l_type = fl->fl_type; 1706 return 0; 1707 } 1708 1709 #if BITS_PER_LONG == 32 1710 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 1711 { 1712 flock->l_pid = fl->fl_pid; 1713 flock->l_start = fl->fl_start; 1714 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 1715 fl->fl_end - fl->fl_start + 1; 1716 flock->l_whence = 0; 1717 flock->l_type = fl->fl_type; 1718 } 1719 #endif 1720 1721 /* Report the first existing lock that would conflict with l. 1722 * This implements the F_GETLK command of fcntl(). 1723 */ 1724 int fcntl_getlk(struct file *filp, struct flock __user *l) 1725 { 1726 struct file_lock file_lock; 1727 struct flock flock; 1728 int error; 1729 1730 error = -EFAULT; 1731 if (copy_from_user(&flock, l, sizeof(flock))) 1732 goto out; 1733 error = -EINVAL; 1734 if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK)) 1735 goto out; 1736 1737 error = flock_to_posix_lock(filp, &file_lock, &flock); 1738 if (error) 1739 goto out; 1740 1741 error = vfs_test_lock(filp, &file_lock); 1742 if (error) 1743 goto out; 1744 1745 flock.l_type = file_lock.fl_type; 1746 if (file_lock.fl_type != F_UNLCK) { 1747 error = posix_lock_to_flock(&flock, &file_lock); 1748 if (error) 1749 goto out; 1750 } 1751 error = -EFAULT; 1752 if (!copy_to_user(l, &flock, sizeof(flock))) 1753 error = 0; 1754 out: 1755 return error; 1756 } 1757 1758 /** 1759 * vfs_lock_file - file byte range lock 1760 * @filp: The file to apply the lock to 1761 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 1762 * @fl: The lock to be applied 1763 * @conf: Place to return a copy of the conflicting lock, if found. 1764 * 1765 * A caller that doesn't care about the conflicting lock may pass NULL 1766 * as the final argument. 1767 * 1768 * If the filesystem defines a private ->lock() method, then @conf will 1769 * be left unchanged; so a caller that cares should initialize it to 1770 * some acceptable default. 1771 * 1772 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 1773 * locks, the ->lock() interface may return asynchronously, before the lock has 1774 * been granted or denied by the underlying filesystem, if (and only if) 1775 * lm_grant is set. Callers expecting ->lock() to return asynchronously 1776 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 1777 * the request is for a blocking lock. When ->lock() does return asynchronously, 1778 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock 1779 * request completes. 1780 * If the request is for non-blocking lock the file system should return 1781 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 1782 * with the result. If the request timed out the callback routine will return a 1783 * nonzero return code and the file system should release the lock. The file 1784 * system is also responsible to keep a corresponding posix lock when it 1785 * grants a lock so the VFS can find out which locks are locally held and do 1786 * the correct lock cleanup when required. 1787 * The underlying filesystem must not drop the kernel lock or call 1788 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 1789 * return code. 1790 */ 1791 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 1792 { 1793 if (filp->f_op && filp->f_op->lock) 1794 return filp->f_op->lock(filp, cmd, fl); 1795 else 1796 return posix_lock_file(filp, fl, conf); 1797 } 1798 EXPORT_SYMBOL_GPL(vfs_lock_file); 1799 1800 static int do_lock_file_wait(struct file *filp, unsigned int cmd, 1801 struct file_lock *fl) 1802 { 1803 int error; 1804 1805 error = security_file_lock(filp, fl->fl_type); 1806 if (error) 1807 return error; 1808 1809 for (;;) { 1810 error = vfs_lock_file(filp, cmd, fl, NULL); 1811 if (error != FILE_LOCK_DEFERRED) 1812 break; 1813 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1814 if (!error) 1815 continue; 1816 1817 locks_delete_block(fl); 1818 break; 1819 } 1820 1821 return error; 1822 } 1823 1824 /* Apply the lock described by l to an open file descriptor. 1825 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 1826 */ 1827 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 1828 struct flock __user *l) 1829 { 1830 struct file_lock *file_lock = locks_alloc_lock(); 1831 struct flock flock; 1832 struct inode *inode; 1833 struct file *f; 1834 int error; 1835 1836 if (file_lock == NULL) 1837 return -ENOLCK; 1838 1839 /* 1840 * This might block, so we do it before checking the inode. 1841 */ 1842 error = -EFAULT; 1843 if (copy_from_user(&flock, l, sizeof(flock))) 1844 goto out; 1845 1846 inode = filp->f_path.dentry->d_inode; 1847 1848 /* Don't allow mandatory locks on files that may be memory mapped 1849 * and shared. 1850 */ 1851 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 1852 error = -EAGAIN; 1853 goto out; 1854 } 1855 1856 again: 1857 error = flock_to_posix_lock(filp, file_lock, &flock); 1858 if (error) 1859 goto out; 1860 if (cmd == F_SETLKW) { 1861 file_lock->fl_flags |= FL_SLEEP; 1862 } 1863 1864 error = -EBADF; 1865 switch (flock.l_type) { 1866 case F_RDLCK: 1867 if (!(filp->f_mode & FMODE_READ)) 1868 goto out; 1869 break; 1870 case F_WRLCK: 1871 if (!(filp->f_mode & FMODE_WRITE)) 1872 goto out; 1873 break; 1874 case F_UNLCK: 1875 break; 1876 default: 1877 error = -EINVAL; 1878 goto out; 1879 } 1880 1881 error = do_lock_file_wait(filp, cmd, file_lock); 1882 1883 /* 1884 * Attempt to detect a close/fcntl race and recover by 1885 * releasing the lock that was just acquired. 1886 */ 1887 /* 1888 * we need that spin_lock here - it prevents reordering between 1889 * update of inode->i_flock and check for it done in close(). 1890 * rcu_read_lock() wouldn't do. 1891 */ 1892 spin_lock(¤t->files->file_lock); 1893 f = fcheck(fd); 1894 spin_unlock(¤t->files->file_lock); 1895 if (!error && f != filp && flock.l_type != F_UNLCK) { 1896 flock.l_type = F_UNLCK; 1897 goto again; 1898 } 1899 1900 out: 1901 locks_free_lock(file_lock); 1902 return error; 1903 } 1904 1905 #if BITS_PER_LONG == 32 1906 /* Report the first existing lock that would conflict with l. 1907 * This implements the F_GETLK command of fcntl(). 1908 */ 1909 int fcntl_getlk64(struct file *filp, struct flock64 __user *l) 1910 { 1911 struct file_lock file_lock; 1912 struct flock64 flock; 1913 int error; 1914 1915 error = -EFAULT; 1916 if (copy_from_user(&flock, l, sizeof(flock))) 1917 goto out; 1918 error = -EINVAL; 1919 if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK)) 1920 goto out; 1921 1922 error = flock64_to_posix_lock(filp, &file_lock, &flock); 1923 if (error) 1924 goto out; 1925 1926 error = vfs_test_lock(filp, &file_lock); 1927 if (error) 1928 goto out; 1929 1930 flock.l_type = file_lock.fl_type; 1931 if (file_lock.fl_type != F_UNLCK) 1932 posix_lock_to_flock64(&flock, &file_lock); 1933 1934 error = -EFAULT; 1935 if (!copy_to_user(l, &flock, sizeof(flock))) 1936 error = 0; 1937 1938 out: 1939 return error; 1940 } 1941 1942 /* Apply the lock described by l to an open file descriptor. 1943 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 1944 */ 1945 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 1946 struct flock64 __user *l) 1947 { 1948 struct file_lock *file_lock = locks_alloc_lock(); 1949 struct flock64 flock; 1950 struct inode *inode; 1951 struct file *f; 1952 int error; 1953 1954 if (file_lock == NULL) 1955 return -ENOLCK; 1956 1957 /* 1958 * This might block, so we do it before checking the inode. 1959 */ 1960 error = -EFAULT; 1961 if (copy_from_user(&flock, l, sizeof(flock))) 1962 goto out; 1963 1964 inode = filp->f_path.dentry->d_inode; 1965 1966 /* Don't allow mandatory locks on files that may be memory mapped 1967 * and shared. 1968 */ 1969 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 1970 error = -EAGAIN; 1971 goto out; 1972 } 1973 1974 again: 1975 error = flock64_to_posix_lock(filp, file_lock, &flock); 1976 if (error) 1977 goto out; 1978 if (cmd == F_SETLKW64) { 1979 file_lock->fl_flags |= FL_SLEEP; 1980 } 1981 1982 error = -EBADF; 1983 switch (flock.l_type) { 1984 case F_RDLCK: 1985 if (!(filp->f_mode & FMODE_READ)) 1986 goto out; 1987 break; 1988 case F_WRLCK: 1989 if (!(filp->f_mode & FMODE_WRITE)) 1990 goto out; 1991 break; 1992 case F_UNLCK: 1993 break; 1994 default: 1995 error = -EINVAL; 1996 goto out; 1997 } 1998 1999 error = do_lock_file_wait(filp, cmd, file_lock); 2000 2001 /* 2002 * Attempt to detect a close/fcntl race and recover by 2003 * releasing the lock that was just acquired. 2004 */ 2005 spin_lock(¤t->files->file_lock); 2006 f = fcheck(fd); 2007 spin_unlock(¤t->files->file_lock); 2008 if (!error && f != filp && flock.l_type != F_UNLCK) { 2009 flock.l_type = F_UNLCK; 2010 goto again; 2011 } 2012 2013 out: 2014 locks_free_lock(file_lock); 2015 return error; 2016 } 2017 #endif /* BITS_PER_LONG == 32 */ 2018 2019 /* 2020 * This function is called when the file is being removed 2021 * from the task's fd array. POSIX locks belonging to this task 2022 * are deleted at this time. 2023 */ 2024 void locks_remove_posix(struct file *filp, fl_owner_t owner) 2025 { 2026 struct file_lock lock; 2027 2028 /* 2029 * If there are no locks held on this file, we don't need to call 2030 * posix_lock_file(). Another process could be setting a lock on this 2031 * file at the same time, but we wouldn't remove that lock anyway. 2032 */ 2033 if (!filp->f_path.dentry->d_inode->i_flock) 2034 return; 2035 2036 lock.fl_type = F_UNLCK; 2037 lock.fl_flags = FL_POSIX | FL_CLOSE; 2038 lock.fl_start = 0; 2039 lock.fl_end = OFFSET_MAX; 2040 lock.fl_owner = owner; 2041 lock.fl_pid = current->tgid; 2042 lock.fl_file = filp; 2043 lock.fl_ops = NULL; 2044 lock.fl_lmops = NULL; 2045 2046 vfs_lock_file(filp, F_SETLK, &lock, NULL); 2047 2048 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2049 lock.fl_ops->fl_release_private(&lock); 2050 } 2051 2052 EXPORT_SYMBOL(locks_remove_posix); 2053 2054 /* 2055 * This function is called on the last close of an open file. 2056 */ 2057 void locks_remove_flock(struct file *filp) 2058 { 2059 struct inode * inode = filp->f_path.dentry->d_inode; 2060 struct file_lock *fl; 2061 struct file_lock **before; 2062 2063 if (!inode->i_flock) 2064 return; 2065 2066 if (filp->f_op && filp->f_op->flock) { 2067 struct file_lock fl = { 2068 .fl_pid = current->tgid, 2069 .fl_file = filp, 2070 .fl_flags = FL_FLOCK, 2071 .fl_type = F_UNLCK, 2072 .fl_end = OFFSET_MAX, 2073 }; 2074 filp->f_op->flock(filp, F_SETLKW, &fl); 2075 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2076 fl.fl_ops->fl_release_private(&fl); 2077 } 2078 2079 lock_flocks(); 2080 before = &inode->i_flock; 2081 2082 while ((fl = *before) != NULL) { 2083 if (fl->fl_file == filp) { 2084 if (IS_FLOCK(fl)) { 2085 locks_delete_lock(before); 2086 continue; 2087 } 2088 if (IS_LEASE(fl)) { 2089 lease_modify(before, F_UNLCK); 2090 continue; 2091 } 2092 /* What? */ 2093 BUG(); 2094 } 2095 before = &fl->fl_next; 2096 } 2097 unlock_flocks(); 2098 } 2099 2100 /** 2101 * posix_unblock_lock - stop waiting for a file lock 2102 * @filp: how the file was opened 2103 * @waiter: the lock which was waiting 2104 * 2105 * lockd needs to block waiting for locks. 2106 */ 2107 int 2108 posix_unblock_lock(struct file *filp, struct file_lock *waiter) 2109 { 2110 int status = 0; 2111 2112 lock_flocks(); 2113 if (waiter->fl_next) 2114 __locks_delete_block(waiter); 2115 else 2116 status = -ENOENT; 2117 unlock_flocks(); 2118 return status; 2119 } 2120 2121 EXPORT_SYMBOL(posix_unblock_lock); 2122 2123 /** 2124 * vfs_cancel_lock - file byte range unblock lock 2125 * @filp: The file to apply the unblock to 2126 * @fl: The lock to be unblocked 2127 * 2128 * Used by lock managers to cancel blocked requests 2129 */ 2130 int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2131 { 2132 if (filp->f_op && filp->f_op->lock) 2133 return filp->f_op->lock(filp, F_CANCELLK, fl); 2134 return 0; 2135 } 2136 2137 EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2138 2139 #ifdef CONFIG_PROC_FS 2140 #include <linux/proc_fs.h> 2141 #include <linux/seq_file.h> 2142 2143 static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2144 loff_t id, char *pfx) 2145 { 2146 struct inode *inode = NULL; 2147 unsigned int fl_pid; 2148 2149 if (fl->fl_nspid) 2150 fl_pid = pid_vnr(fl->fl_nspid); 2151 else 2152 fl_pid = fl->fl_pid; 2153 2154 if (fl->fl_file != NULL) 2155 inode = fl->fl_file->f_path.dentry->d_inode; 2156 2157 seq_printf(f, "%lld:%s ", id, pfx); 2158 if (IS_POSIX(fl)) { 2159 seq_printf(f, "%6s %s ", 2160 (fl->fl_flags & FL_ACCESS) ? "ACCESS" : "POSIX ", 2161 (inode == NULL) ? "*NOINODE*" : 2162 mandatory_lock(inode) ? "MANDATORY" : "ADVISORY "); 2163 } else if (IS_FLOCK(fl)) { 2164 if (fl->fl_type & LOCK_MAND) { 2165 seq_printf(f, "FLOCK MSNFS "); 2166 } else { 2167 seq_printf(f, "FLOCK ADVISORY "); 2168 } 2169 } else if (IS_LEASE(fl)) { 2170 seq_printf(f, "LEASE "); 2171 if (lease_breaking(fl)) 2172 seq_printf(f, "BREAKING "); 2173 else if (fl->fl_file) 2174 seq_printf(f, "ACTIVE "); 2175 else 2176 seq_printf(f, "BREAKER "); 2177 } else { 2178 seq_printf(f, "UNKNOWN UNKNOWN "); 2179 } 2180 if (fl->fl_type & LOCK_MAND) { 2181 seq_printf(f, "%s ", 2182 (fl->fl_type & LOCK_READ) 2183 ? (fl->fl_type & LOCK_WRITE) ? "RW " : "READ " 2184 : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE "); 2185 } else { 2186 seq_printf(f, "%s ", 2187 (lease_breaking(fl)) 2188 ? (fl->fl_type == F_UNLCK) ? "UNLCK" : "READ " 2189 : (fl->fl_type == F_WRLCK) ? "WRITE" : "READ "); 2190 } 2191 if (inode) { 2192 #ifdef WE_CAN_BREAK_LSLK_NOW 2193 seq_printf(f, "%d %s:%ld ", fl_pid, 2194 inode->i_sb->s_id, inode->i_ino); 2195 #else 2196 /* userspace relies on this representation of dev_t ;-( */ 2197 seq_printf(f, "%d %02x:%02x:%ld ", fl_pid, 2198 MAJOR(inode->i_sb->s_dev), 2199 MINOR(inode->i_sb->s_dev), inode->i_ino); 2200 #endif 2201 } else { 2202 seq_printf(f, "%d <none>:0 ", fl_pid); 2203 } 2204 if (IS_POSIX(fl)) { 2205 if (fl->fl_end == OFFSET_MAX) 2206 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2207 else 2208 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2209 } else { 2210 seq_printf(f, "0 EOF\n"); 2211 } 2212 } 2213 2214 static int locks_show(struct seq_file *f, void *v) 2215 { 2216 struct file_lock *fl, *bfl; 2217 2218 fl = list_entry(v, struct file_lock, fl_link); 2219 2220 lock_get_status(f, fl, *((loff_t *)f->private), ""); 2221 2222 list_for_each_entry(bfl, &fl->fl_block, fl_block) 2223 lock_get_status(f, bfl, *((loff_t *)f->private), " ->"); 2224 2225 return 0; 2226 } 2227 2228 static void *locks_start(struct seq_file *f, loff_t *pos) 2229 { 2230 loff_t *p = f->private; 2231 2232 lock_flocks(); 2233 *p = (*pos + 1); 2234 return seq_list_start(&file_lock_list, *pos); 2235 } 2236 2237 static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2238 { 2239 loff_t *p = f->private; 2240 ++*p; 2241 return seq_list_next(v, &file_lock_list, pos); 2242 } 2243 2244 static void locks_stop(struct seq_file *f, void *v) 2245 { 2246 unlock_flocks(); 2247 } 2248 2249 static const struct seq_operations locks_seq_operations = { 2250 .start = locks_start, 2251 .next = locks_next, 2252 .stop = locks_stop, 2253 .show = locks_show, 2254 }; 2255 2256 static int locks_open(struct inode *inode, struct file *filp) 2257 { 2258 return seq_open_private(filp, &locks_seq_operations, sizeof(loff_t)); 2259 } 2260 2261 static const struct file_operations proc_locks_operations = { 2262 .open = locks_open, 2263 .read = seq_read, 2264 .llseek = seq_lseek, 2265 .release = seq_release_private, 2266 }; 2267 2268 static int __init proc_locks_init(void) 2269 { 2270 proc_create("locks", 0, NULL, &proc_locks_operations); 2271 return 0; 2272 } 2273 module_init(proc_locks_init); 2274 #endif 2275 2276 /** 2277 * lock_may_read - checks that the region is free of locks 2278 * @inode: the inode that is being read 2279 * @start: the first byte to read 2280 * @len: the number of bytes to read 2281 * 2282 * Emulates Windows locking requirements. Whole-file 2283 * mandatory locks (share modes) can prohibit a read and 2284 * byte-range POSIX locks can prohibit a read if they overlap. 2285 * 2286 * N.B. this function is only ever called 2287 * from knfsd and ownership of locks is never checked. 2288 */ 2289 int lock_may_read(struct inode *inode, loff_t start, unsigned long len) 2290 { 2291 struct file_lock *fl; 2292 int result = 1; 2293 lock_flocks(); 2294 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 2295 if (IS_POSIX(fl)) { 2296 if (fl->fl_type == F_RDLCK) 2297 continue; 2298 if ((fl->fl_end < start) || (fl->fl_start > (start + len))) 2299 continue; 2300 } else if (IS_FLOCK(fl)) { 2301 if (!(fl->fl_type & LOCK_MAND)) 2302 continue; 2303 if (fl->fl_type & LOCK_READ) 2304 continue; 2305 } else 2306 continue; 2307 result = 0; 2308 break; 2309 } 2310 unlock_flocks(); 2311 return result; 2312 } 2313 2314 EXPORT_SYMBOL(lock_may_read); 2315 2316 /** 2317 * lock_may_write - checks that the region is free of locks 2318 * @inode: the inode that is being written 2319 * @start: the first byte to write 2320 * @len: the number of bytes to write 2321 * 2322 * Emulates Windows locking requirements. Whole-file 2323 * mandatory locks (share modes) can prohibit a write and 2324 * byte-range POSIX locks can prohibit a write if they overlap. 2325 * 2326 * N.B. this function is only ever called 2327 * from knfsd and ownership of locks is never checked. 2328 */ 2329 int lock_may_write(struct inode *inode, loff_t start, unsigned long len) 2330 { 2331 struct file_lock *fl; 2332 int result = 1; 2333 lock_flocks(); 2334 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 2335 if (IS_POSIX(fl)) { 2336 if ((fl->fl_end < start) || (fl->fl_start > (start + len))) 2337 continue; 2338 } else if (IS_FLOCK(fl)) { 2339 if (!(fl->fl_type & LOCK_MAND)) 2340 continue; 2341 if (fl->fl_type & LOCK_WRITE) 2342 continue; 2343 } else 2344 continue; 2345 result = 0; 2346 break; 2347 } 2348 unlock_flocks(); 2349 return result; 2350 } 2351 2352 EXPORT_SYMBOL(lock_may_write); 2353 2354 static int __init filelock_init(void) 2355 { 2356 filelock_cache = kmem_cache_create("file_lock_cache", 2357 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 2358 2359 return 0; 2360 } 2361 2362 core_initcall(filelock_init); 2363