xref: /linux/fs/locks.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/locks.c
4  *
5  * We implement four types of file locks: BSD locks, posix locks, open
6  * file description locks, and leases.  For details about BSD locks,
7  * see the flock(2) man page; for details about the other three, see
8  * fcntl(2).
9  *
10  *
11  * Locking conflicts and dependencies:
12  * If multiple threads attempt to lock the same byte (or flock the same file)
13  * only one can be granted the lock, and other must wait their turn.
14  * The first lock has been "applied" or "granted", the others are "waiting"
15  * and are "blocked" by the "applied" lock..
16  *
17  * Waiting and applied locks are all kept in trees whose properties are:
18  *
19  *	- the root of a tree may be an applied or waiting lock.
20  *	- every other node in the tree is a waiting lock that
21  *	  conflicts with every ancestor of that node.
22  *
23  * Every such tree begins life as a waiting singleton which obviously
24  * satisfies the above properties.
25  *
26  * The only ways we modify trees preserve these properties:
27  *
28  *	1. We may add a new leaf node, but only after first verifying that it
29  *	   conflicts with all of its ancestors.
30  *	2. We may remove the root of a tree, creating a new singleton
31  *	   tree from the root and N new trees rooted in the immediate
32  *	   children.
33  *	3. If the root of a tree is not currently an applied lock, we may
34  *	   apply it (if possible).
35  *	4. We may upgrade the root of the tree (either extend its range,
36  *	   or upgrade its entire range from read to write).
37  *
38  * When an applied lock is modified in a way that reduces or downgrades any
39  * part of its range, we remove all its children (2 above).  This particularly
40  * happens when a lock is unlocked.
41  *
42  * For each of those child trees we "wake up" the thread which is
43  * waiting for the lock so it can continue handling as follows: if the
44  * root of the tree applies, we do so (3).  If it doesn't, it must
45  * conflict with some applied lock.  We remove (wake up) all of its children
46  * (2), and add it is a new leaf to the tree rooted in the applied
47  * lock (1).  We then repeat the process recursively with those
48  * children.
49  *
50  */
51 
52 #include <linux/capability.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/fs.h>
56 #include <linux/init.h>
57 #include <linux/security.h>
58 #include <linux/slab.h>
59 #include <linux/syscalls.h>
60 #include <linux/time.h>
61 #include <linux/rcupdate.h>
62 #include <linux/pid_namespace.h>
63 #include <linux/hashtable.h>
64 #include <linux/percpu.h>
65 
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/filelock.h>
68 
69 #include <linux/uaccess.h>
70 
71 #define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
72 #define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
73 #define IS_LEASE(fl)	(fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
74 #define IS_OFDLCK(fl)	(fl->fl_flags & FL_OFDLCK)
75 #define IS_REMOTELCK(fl)	(fl->fl_pid <= 0)
76 
77 static bool lease_breaking(struct file_lock *fl)
78 {
79 	return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
80 }
81 
82 static int target_leasetype(struct file_lock *fl)
83 {
84 	if (fl->fl_flags & FL_UNLOCK_PENDING)
85 		return F_UNLCK;
86 	if (fl->fl_flags & FL_DOWNGRADE_PENDING)
87 		return F_RDLCK;
88 	return fl->fl_type;
89 }
90 
91 int leases_enable = 1;
92 int lease_break_time = 45;
93 
94 /*
95  * The global file_lock_list is only used for displaying /proc/locks, so we
96  * keep a list on each CPU, with each list protected by its own spinlock.
97  * Global serialization is done using file_rwsem.
98  *
99  * Note that alterations to the list also require that the relevant flc_lock is
100  * held.
101  */
102 struct file_lock_list_struct {
103 	spinlock_t		lock;
104 	struct hlist_head	hlist;
105 };
106 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
107 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
108 
109 
110 /*
111  * The blocked_hash is used to find POSIX lock loops for deadlock detection.
112  * It is protected by blocked_lock_lock.
113  *
114  * We hash locks by lockowner in order to optimize searching for the lock a
115  * particular lockowner is waiting on.
116  *
117  * FIXME: make this value scale via some heuristic? We generally will want more
118  * buckets when we have more lockowners holding locks, but that's a little
119  * difficult to determine without knowing what the workload will look like.
120  */
121 #define BLOCKED_HASH_BITS	7
122 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
123 
124 /*
125  * This lock protects the blocked_hash. Generally, if you're accessing it, you
126  * want to be holding this lock.
127  *
128  * In addition, it also protects the fl->fl_blocked_requests list, and the
129  * fl->fl_blocker pointer for file_lock structures that are acting as lock
130  * requests (in contrast to those that are acting as records of acquired locks).
131  *
132  * Note that when we acquire this lock in order to change the above fields,
133  * we often hold the flc_lock as well. In certain cases, when reading the fields
134  * protected by this lock, we can skip acquiring it iff we already hold the
135  * flc_lock.
136  */
137 static DEFINE_SPINLOCK(blocked_lock_lock);
138 
139 static struct kmem_cache *flctx_cache __read_mostly;
140 static struct kmem_cache *filelock_cache __read_mostly;
141 
142 static struct file_lock_context *
143 locks_get_lock_context(struct inode *inode, int type)
144 {
145 	struct file_lock_context *ctx;
146 
147 	/* paired with cmpxchg() below */
148 	ctx = smp_load_acquire(&inode->i_flctx);
149 	if (likely(ctx) || type == F_UNLCK)
150 		goto out;
151 
152 	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
153 	if (!ctx)
154 		goto out;
155 
156 	spin_lock_init(&ctx->flc_lock);
157 	INIT_LIST_HEAD(&ctx->flc_flock);
158 	INIT_LIST_HEAD(&ctx->flc_posix);
159 	INIT_LIST_HEAD(&ctx->flc_lease);
160 
161 	/*
162 	 * Assign the pointer if it's not already assigned. If it is, then
163 	 * free the context we just allocated.
164 	 */
165 	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
166 		kmem_cache_free(flctx_cache, ctx);
167 		ctx = smp_load_acquire(&inode->i_flctx);
168 	}
169 out:
170 	trace_locks_get_lock_context(inode, type, ctx);
171 	return ctx;
172 }
173 
174 static void
175 locks_dump_ctx_list(struct list_head *list, char *list_type)
176 {
177 	struct file_lock *fl;
178 
179 	list_for_each_entry(fl, list, fl_list) {
180 		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
181 	}
182 }
183 
184 static void
185 locks_check_ctx_lists(struct inode *inode)
186 {
187 	struct file_lock_context *ctx = inode->i_flctx;
188 
189 	if (unlikely(!list_empty(&ctx->flc_flock) ||
190 		     !list_empty(&ctx->flc_posix) ||
191 		     !list_empty(&ctx->flc_lease))) {
192 		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
193 			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
194 			inode->i_ino);
195 		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
196 		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
197 		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
198 	}
199 }
200 
201 static void
202 locks_check_ctx_file_list(struct file *filp, struct list_head *list,
203 				char *list_type)
204 {
205 	struct file_lock *fl;
206 	struct inode *inode = locks_inode(filp);
207 
208 	list_for_each_entry(fl, list, fl_list)
209 		if (fl->fl_file == filp)
210 			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
211 				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
212 				list_type, MAJOR(inode->i_sb->s_dev),
213 				MINOR(inode->i_sb->s_dev), inode->i_ino,
214 				fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
215 }
216 
217 void
218 locks_free_lock_context(struct inode *inode)
219 {
220 	struct file_lock_context *ctx = inode->i_flctx;
221 
222 	if (unlikely(ctx)) {
223 		locks_check_ctx_lists(inode);
224 		kmem_cache_free(flctx_cache, ctx);
225 	}
226 }
227 
228 static void locks_init_lock_heads(struct file_lock *fl)
229 {
230 	INIT_HLIST_NODE(&fl->fl_link);
231 	INIT_LIST_HEAD(&fl->fl_list);
232 	INIT_LIST_HEAD(&fl->fl_blocked_requests);
233 	INIT_LIST_HEAD(&fl->fl_blocked_member);
234 	init_waitqueue_head(&fl->fl_wait);
235 }
236 
237 /* Allocate an empty lock structure. */
238 struct file_lock *locks_alloc_lock(void)
239 {
240 	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
241 
242 	if (fl)
243 		locks_init_lock_heads(fl);
244 
245 	return fl;
246 }
247 EXPORT_SYMBOL_GPL(locks_alloc_lock);
248 
249 void locks_release_private(struct file_lock *fl)
250 {
251 	BUG_ON(waitqueue_active(&fl->fl_wait));
252 	BUG_ON(!list_empty(&fl->fl_list));
253 	BUG_ON(!list_empty(&fl->fl_blocked_requests));
254 	BUG_ON(!list_empty(&fl->fl_blocked_member));
255 	BUG_ON(!hlist_unhashed(&fl->fl_link));
256 
257 	if (fl->fl_ops) {
258 		if (fl->fl_ops->fl_release_private)
259 			fl->fl_ops->fl_release_private(fl);
260 		fl->fl_ops = NULL;
261 	}
262 
263 	if (fl->fl_lmops) {
264 		if (fl->fl_lmops->lm_put_owner) {
265 			fl->fl_lmops->lm_put_owner(fl->fl_owner);
266 			fl->fl_owner = NULL;
267 		}
268 		fl->fl_lmops = NULL;
269 	}
270 }
271 EXPORT_SYMBOL_GPL(locks_release_private);
272 
273 /* Free a lock which is not in use. */
274 void locks_free_lock(struct file_lock *fl)
275 {
276 	locks_release_private(fl);
277 	kmem_cache_free(filelock_cache, fl);
278 }
279 EXPORT_SYMBOL(locks_free_lock);
280 
281 static void
282 locks_dispose_list(struct list_head *dispose)
283 {
284 	struct file_lock *fl;
285 
286 	while (!list_empty(dispose)) {
287 		fl = list_first_entry(dispose, struct file_lock, fl_list);
288 		list_del_init(&fl->fl_list);
289 		locks_free_lock(fl);
290 	}
291 }
292 
293 void locks_init_lock(struct file_lock *fl)
294 {
295 	memset(fl, 0, sizeof(struct file_lock));
296 	locks_init_lock_heads(fl);
297 }
298 EXPORT_SYMBOL(locks_init_lock);
299 
300 /*
301  * Initialize a new lock from an existing file_lock structure.
302  */
303 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
304 {
305 	new->fl_owner = fl->fl_owner;
306 	new->fl_pid = fl->fl_pid;
307 	new->fl_file = NULL;
308 	new->fl_flags = fl->fl_flags;
309 	new->fl_type = fl->fl_type;
310 	new->fl_start = fl->fl_start;
311 	new->fl_end = fl->fl_end;
312 	new->fl_lmops = fl->fl_lmops;
313 	new->fl_ops = NULL;
314 
315 	if (fl->fl_lmops) {
316 		if (fl->fl_lmops->lm_get_owner)
317 			fl->fl_lmops->lm_get_owner(fl->fl_owner);
318 	}
319 }
320 EXPORT_SYMBOL(locks_copy_conflock);
321 
322 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
323 {
324 	/* "new" must be a freshly-initialized lock */
325 	WARN_ON_ONCE(new->fl_ops);
326 
327 	locks_copy_conflock(new, fl);
328 
329 	new->fl_file = fl->fl_file;
330 	new->fl_ops = fl->fl_ops;
331 
332 	if (fl->fl_ops) {
333 		if (fl->fl_ops->fl_copy_lock)
334 			fl->fl_ops->fl_copy_lock(new, fl);
335 	}
336 }
337 EXPORT_SYMBOL(locks_copy_lock);
338 
339 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
340 {
341 	struct file_lock *f;
342 
343 	/*
344 	 * As ctx->flc_lock is held, new requests cannot be added to
345 	 * ->fl_blocked_requests, so we don't need a lock to check if it
346 	 * is empty.
347 	 */
348 	if (list_empty(&fl->fl_blocked_requests))
349 		return;
350 	spin_lock(&blocked_lock_lock);
351 	list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
352 	list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
353 		f->fl_blocker = new;
354 	spin_unlock(&blocked_lock_lock);
355 }
356 
357 static inline int flock_translate_cmd(int cmd) {
358 	switch (cmd) {
359 	case LOCK_SH:
360 		return F_RDLCK;
361 	case LOCK_EX:
362 		return F_WRLCK;
363 	case LOCK_UN:
364 		return F_UNLCK;
365 	}
366 	return -EINVAL;
367 }
368 
369 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
370 static struct file_lock *
371 flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl)
372 {
373 	int type = flock_translate_cmd(cmd);
374 
375 	if (type < 0)
376 		return ERR_PTR(type);
377 
378 	if (fl == NULL) {
379 		fl = locks_alloc_lock();
380 		if (fl == NULL)
381 			return ERR_PTR(-ENOMEM);
382 	} else {
383 		locks_init_lock(fl);
384 	}
385 
386 	fl->fl_file = filp;
387 	fl->fl_owner = filp;
388 	fl->fl_pid = current->tgid;
389 	fl->fl_flags = FL_FLOCK;
390 	fl->fl_type = type;
391 	fl->fl_end = OFFSET_MAX;
392 
393 	return fl;
394 }
395 
396 static int assign_type(struct file_lock *fl, long type)
397 {
398 	switch (type) {
399 	case F_RDLCK:
400 	case F_WRLCK:
401 	case F_UNLCK:
402 		fl->fl_type = type;
403 		break;
404 	default:
405 		return -EINVAL;
406 	}
407 	return 0;
408 }
409 
410 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
411 				 struct flock64 *l)
412 {
413 	switch (l->l_whence) {
414 	case SEEK_SET:
415 		fl->fl_start = 0;
416 		break;
417 	case SEEK_CUR:
418 		fl->fl_start = filp->f_pos;
419 		break;
420 	case SEEK_END:
421 		fl->fl_start = i_size_read(file_inode(filp));
422 		break;
423 	default:
424 		return -EINVAL;
425 	}
426 	if (l->l_start > OFFSET_MAX - fl->fl_start)
427 		return -EOVERFLOW;
428 	fl->fl_start += l->l_start;
429 	if (fl->fl_start < 0)
430 		return -EINVAL;
431 
432 	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
433 	   POSIX-2001 defines it. */
434 	if (l->l_len > 0) {
435 		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
436 			return -EOVERFLOW;
437 		fl->fl_end = fl->fl_start + (l->l_len - 1);
438 
439 	} else if (l->l_len < 0) {
440 		if (fl->fl_start + l->l_len < 0)
441 			return -EINVAL;
442 		fl->fl_end = fl->fl_start - 1;
443 		fl->fl_start += l->l_len;
444 	} else
445 		fl->fl_end = OFFSET_MAX;
446 
447 	fl->fl_owner = current->files;
448 	fl->fl_pid = current->tgid;
449 	fl->fl_file = filp;
450 	fl->fl_flags = FL_POSIX;
451 	fl->fl_ops = NULL;
452 	fl->fl_lmops = NULL;
453 
454 	return assign_type(fl, l->l_type);
455 }
456 
457 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
458  * style lock.
459  */
460 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
461 			       struct flock *l)
462 {
463 	struct flock64 ll = {
464 		.l_type = l->l_type,
465 		.l_whence = l->l_whence,
466 		.l_start = l->l_start,
467 		.l_len = l->l_len,
468 	};
469 
470 	return flock64_to_posix_lock(filp, fl, &ll);
471 }
472 
473 /* default lease lock manager operations */
474 static bool
475 lease_break_callback(struct file_lock *fl)
476 {
477 	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
478 	return false;
479 }
480 
481 static void
482 lease_setup(struct file_lock *fl, void **priv)
483 {
484 	struct file *filp = fl->fl_file;
485 	struct fasync_struct *fa = *priv;
486 
487 	/*
488 	 * fasync_insert_entry() returns the old entry if any. If there was no
489 	 * old entry, then it used "priv" and inserted it into the fasync list.
490 	 * Clear the pointer to indicate that it shouldn't be freed.
491 	 */
492 	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
493 		*priv = NULL;
494 
495 	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
496 }
497 
498 static const struct lock_manager_operations lease_manager_ops = {
499 	.lm_break = lease_break_callback,
500 	.lm_change = lease_modify,
501 	.lm_setup = lease_setup,
502 };
503 
504 /*
505  * Initialize a lease, use the default lock manager operations
506  */
507 static int lease_init(struct file *filp, long type, struct file_lock *fl)
508 {
509 	if (assign_type(fl, type) != 0)
510 		return -EINVAL;
511 
512 	fl->fl_owner = filp;
513 	fl->fl_pid = current->tgid;
514 
515 	fl->fl_file = filp;
516 	fl->fl_flags = FL_LEASE;
517 	fl->fl_start = 0;
518 	fl->fl_end = OFFSET_MAX;
519 	fl->fl_ops = NULL;
520 	fl->fl_lmops = &lease_manager_ops;
521 	return 0;
522 }
523 
524 /* Allocate a file_lock initialised to this type of lease */
525 static struct file_lock *lease_alloc(struct file *filp, long type)
526 {
527 	struct file_lock *fl = locks_alloc_lock();
528 	int error = -ENOMEM;
529 
530 	if (fl == NULL)
531 		return ERR_PTR(error);
532 
533 	error = lease_init(filp, type, fl);
534 	if (error) {
535 		locks_free_lock(fl);
536 		return ERR_PTR(error);
537 	}
538 	return fl;
539 }
540 
541 /* Check if two locks overlap each other.
542  */
543 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
544 {
545 	return ((fl1->fl_end >= fl2->fl_start) &&
546 		(fl2->fl_end >= fl1->fl_start));
547 }
548 
549 /*
550  * Check whether two locks have the same owner.
551  */
552 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
553 {
554 	return fl1->fl_owner == fl2->fl_owner;
555 }
556 
557 /* Must be called with the flc_lock held! */
558 static void locks_insert_global_locks(struct file_lock *fl)
559 {
560 	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
561 
562 	percpu_rwsem_assert_held(&file_rwsem);
563 
564 	spin_lock(&fll->lock);
565 	fl->fl_link_cpu = smp_processor_id();
566 	hlist_add_head(&fl->fl_link, &fll->hlist);
567 	spin_unlock(&fll->lock);
568 }
569 
570 /* Must be called with the flc_lock held! */
571 static void locks_delete_global_locks(struct file_lock *fl)
572 {
573 	struct file_lock_list_struct *fll;
574 
575 	percpu_rwsem_assert_held(&file_rwsem);
576 
577 	/*
578 	 * Avoid taking lock if already unhashed. This is safe since this check
579 	 * is done while holding the flc_lock, and new insertions into the list
580 	 * also require that it be held.
581 	 */
582 	if (hlist_unhashed(&fl->fl_link))
583 		return;
584 
585 	fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
586 	spin_lock(&fll->lock);
587 	hlist_del_init(&fl->fl_link);
588 	spin_unlock(&fll->lock);
589 }
590 
591 static unsigned long
592 posix_owner_key(struct file_lock *fl)
593 {
594 	return (unsigned long)fl->fl_owner;
595 }
596 
597 static void locks_insert_global_blocked(struct file_lock *waiter)
598 {
599 	lockdep_assert_held(&blocked_lock_lock);
600 
601 	hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
602 }
603 
604 static void locks_delete_global_blocked(struct file_lock *waiter)
605 {
606 	lockdep_assert_held(&blocked_lock_lock);
607 
608 	hash_del(&waiter->fl_link);
609 }
610 
611 /* Remove waiter from blocker's block list.
612  * When blocker ends up pointing to itself then the list is empty.
613  *
614  * Must be called with blocked_lock_lock held.
615  */
616 static void __locks_delete_block(struct file_lock *waiter)
617 {
618 	locks_delete_global_blocked(waiter);
619 	list_del_init(&waiter->fl_blocked_member);
620 }
621 
622 static void __locks_wake_up_blocks(struct file_lock *blocker)
623 {
624 	while (!list_empty(&blocker->fl_blocked_requests)) {
625 		struct file_lock *waiter;
626 
627 		waiter = list_first_entry(&blocker->fl_blocked_requests,
628 					  struct file_lock, fl_blocked_member);
629 		__locks_delete_block(waiter);
630 		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
631 			waiter->fl_lmops->lm_notify(waiter);
632 		else
633 			wake_up(&waiter->fl_wait);
634 
635 		/*
636 		 * The setting of fl_blocker to NULL marks the "done"
637 		 * point in deleting a block. Paired with acquire at the top
638 		 * of locks_delete_block().
639 		 */
640 		smp_store_release(&waiter->fl_blocker, NULL);
641 	}
642 }
643 
644 /**
645  *	locks_delete_block - stop waiting for a file lock
646  *	@waiter: the lock which was waiting
647  *
648  *	lockd/nfsd need to disconnect the lock while working on it.
649  */
650 int locks_delete_block(struct file_lock *waiter)
651 {
652 	int status = -ENOENT;
653 
654 	/*
655 	 * If fl_blocker is NULL, it won't be set again as this thread "owns"
656 	 * the lock and is the only one that might try to claim the lock.
657 	 *
658 	 * We use acquire/release to manage fl_blocker so that we can
659 	 * optimize away taking the blocked_lock_lock in many cases.
660 	 *
661 	 * The smp_load_acquire guarantees two things:
662 	 *
663 	 * 1/ that fl_blocked_requests can be tested locklessly. If something
664 	 * was recently added to that list it must have been in a locked region
665 	 * *before* the locked region when fl_blocker was set to NULL.
666 	 *
667 	 * 2/ that no other thread is accessing 'waiter', so it is safe to free
668 	 * it.  __locks_wake_up_blocks is careful not to touch waiter after
669 	 * fl_blocker is released.
670 	 *
671 	 * If a lockless check of fl_blocker shows it to be NULL, we know that
672 	 * no new locks can be inserted into its fl_blocked_requests list, and
673 	 * can avoid doing anything further if the list is empty.
674 	 */
675 	if (!smp_load_acquire(&waiter->fl_blocker) &&
676 	    list_empty(&waiter->fl_blocked_requests))
677 		return status;
678 
679 	spin_lock(&blocked_lock_lock);
680 	if (waiter->fl_blocker)
681 		status = 0;
682 	__locks_wake_up_blocks(waiter);
683 	__locks_delete_block(waiter);
684 
685 	/*
686 	 * The setting of fl_blocker to NULL marks the "done" point in deleting
687 	 * a block. Paired with acquire at the top of this function.
688 	 */
689 	smp_store_release(&waiter->fl_blocker, NULL);
690 	spin_unlock(&blocked_lock_lock);
691 	return status;
692 }
693 EXPORT_SYMBOL(locks_delete_block);
694 
695 /* Insert waiter into blocker's block list.
696  * We use a circular list so that processes can be easily woken up in
697  * the order they blocked. The documentation doesn't require this but
698  * it seems like the reasonable thing to do.
699  *
700  * Must be called with both the flc_lock and blocked_lock_lock held. The
701  * fl_blocked_requests list itself is protected by the blocked_lock_lock,
702  * but by ensuring that the flc_lock is also held on insertions we can avoid
703  * taking the blocked_lock_lock in some cases when we see that the
704  * fl_blocked_requests list is empty.
705  *
706  * Rather than just adding to the list, we check for conflicts with any existing
707  * waiters, and add beneath any waiter that blocks the new waiter.
708  * Thus wakeups don't happen until needed.
709  */
710 static void __locks_insert_block(struct file_lock *blocker,
711 				 struct file_lock *waiter,
712 				 bool conflict(struct file_lock *,
713 					       struct file_lock *))
714 {
715 	struct file_lock *fl;
716 	BUG_ON(!list_empty(&waiter->fl_blocked_member));
717 
718 new_blocker:
719 	list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
720 		if (conflict(fl, waiter)) {
721 			blocker =  fl;
722 			goto new_blocker;
723 		}
724 	waiter->fl_blocker = blocker;
725 	list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
726 	if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
727 		locks_insert_global_blocked(waiter);
728 
729 	/* The requests in waiter->fl_blocked are known to conflict with
730 	 * waiter, but might not conflict with blocker, or the requests
731 	 * and lock which block it.  So they all need to be woken.
732 	 */
733 	__locks_wake_up_blocks(waiter);
734 }
735 
736 /* Must be called with flc_lock held. */
737 static void locks_insert_block(struct file_lock *blocker,
738 			       struct file_lock *waiter,
739 			       bool conflict(struct file_lock *,
740 					     struct file_lock *))
741 {
742 	spin_lock(&blocked_lock_lock);
743 	__locks_insert_block(blocker, waiter, conflict);
744 	spin_unlock(&blocked_lock_lock);
745 }
746 
747 /*
748  * Wake up processes blocked waiting for blocker.
749  *
750  * Must be called with the inode->flc_lock held!
751  */
752 static void locks_wake_up_blocks(struct file_lock *blocker)
753 {
754 	/*
755 	 * Avoid taking global lock if list is empty. This is safe since new
756 	 * blocked requests are only added to the list under the flc_lock, and
757 	 * the flc_lock is always held here. Note that removal from the
758 	 * fl_blocked_requests list does not require the flc_lock, so we must
759 	 * recheck list_empty() after acquiring the blocked_lock_lock.
760 	 */
761 	if (list_empty(&blocker->fl_blocked_requests))
762 		return;
763 
764 	spin_lock(&blocked_lock_lock);
765 	__locks_wake_up_blocks(blocker);
766 	spin_unlock(&blocked_lock_lock);
767 }
768 
769 static void
770 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
771 {
772 	list_add_tail(&fl->fl_list, before);
773 	locks_insert_global_locks(fl);
774 }
775 
776 static void
777 locks_unlink_lock_ctx(struct file_lock *fl)
778 {
779 	locks_delete_global_locks(fl);
780 	list_del_init(&fl->fl_list);
781 	locks_wake_up_blocks(fl);
782 }
783 
784 static void
785 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
786 {
787 	locks_unlink_lock_ctx(fl);
788 	if (dispose)
789 		list_add(&fl->fl_list, dispose);
790 	else
791 		locks_free_lock(fl);
792 }
793 
794 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
795  * checks for shared/exclusive status of overlapping locks.
796  */
797 static bool locks_conflict(struct file_lock *caller_fl,
798 			   struct file_lock *sys_fl)
799 {
800 	if (sys_fl->fl_type == F_WRLCK)
801 		return true;
802 	if (caller_fl->fl_type == F_WRLCK)
803 		return true;
804 	return false;
805 }
806 
807 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
808  * checking before calling the locks_conflict().
809  */
810 static bool posix_locks_conflict(struct file_lock *caller_fl,
811 				 struct file_lock *sys_fl)
812 {
813 	/* POSIX locks owned by the same process do not conflict with
814 	 * each other.
815 	 */
816 	if (posix_same_owner(caller_fl, sys_fl))
817 		return false;
818 
819 	/* Check whether they overlap */
820 	if (!locks_overlap(caller_fl, sys_fl))
821 		return false;
822 
823 	return locks_conflict(caller_fl, sys_fl);
824 }
825 
826 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
827  * checking before calling the locks_conflict().
828  */
829 static bool flock_locks_conflict(struct file_lock *caller_fl,
830 				 struct file_lock *sys_fl)
831 {
832 	/* FLOCK locks referring to the same filp do not conflict with
833 	 * each other.
834 	 */
835 	if (caller_fl->fl_file == sys_fl->fl_file)
836 		return false;
837 
838 	return locks_conflict(caller_fl, sys_fl);
839 }
840 
841 void
842 posix_test_lock(struct file *filp, struct file_lock *fl)
843 {
844 	struct file_lock *cfl;
845 	struct file_lock_context *ctx;
846 	struct inode *inode = locks_inode(filp);
847 
848 	ctx = smp_load_acquire(&inode->i_flctx);
849 	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
850 		fl->fl_type = F_UNLCK;
851 		return;
852 	}
853 
854 	spin_lock(&ctx->flc_lock);
855 	list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
856 		if (posix_locks_conflict(fl, cfl)) {
857 			locks_copy_conflock(fl, cfl);
858 			goto out;
859 		}
860 	}
861 	fl->fl_type = F_UNLCK;
862 out:
863 	spin_unlock(&ctx->flc_lock);
864 	return;
865 }
866 EXPORT_SYMBOL(posix_test_lock);
867 
868 /*
869  * Deadlock detection:
870  *
871  * We attempt to detect deadlocks that are due purely to posix file
872  * locks.
873  *
874  * We assume that a task can be waiting for at most one lock at a time.
875  * So for any acquired lock, the process holding that lock may be
876  * waiting on at most one other lock.  That lock in turns may be held by
877  * someone waiting for at most one other lock.  Given a requested lock
878  * caller_fl which is about to wait for a conflicting lock block_fl, we
879  * follow this chain of waiters to ensure we are not about to create a
880  * cycle.
881  *
882  * Since we do this before we ever put a process to sleep on a lock, we
883  * are ensured that there is never a cycle; that is what guarantees that
884  * the while() loop in posix_locks_deadlock() eventually completes.
885  *
886  * Note: the above assumption may not be true when handling lock
887  * requests from a broken NFS client. It may also fail in the presence
888  * of tasks (such as posix threads) sharing the same open file table.
889  * To handle those cases, we just bail out after a few iterations.
890  *
891  * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
892  * Because the owner is not even nominally tied to a thread of
893  * execution, the deadlock detection below can't reasonably work well. Just
894  * skip it for those.
895  *
896  * In principle, we could do a more limited deadlock detection on FL_OFDLCK
897  * locks that just checks for the case where two tasks are attempting to
898  * upgrade from read to write locks on the same inode.
899  */
900 
901 #define MAX_DEADLK_ITERATIONS 10
902 
903 /* Find a lock that the owner of the given block_fl is blocking on. */
904 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
905 {
906 	struct file_lock *fl;
907 
908 	hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
909 		if (posix_same_owner(fl, block_fl)) {
910 			while (fl->fl_blocker)
911 				fl = fl->fl_blocker;
912 			return fl;
913 		}
914 	}
915 	return NULL;
916 }
917 
918 /* Must be called with the blocked_lock_lock held! */
919 static int posix_locks_deadlock(struct file_lock *caller_fl,
920 				struct file_lock *block_fl)
921 {
922 	int i = 0;
923 
924 	lockdep_assert_held(&blocked_lock_lock);
925 
926 	/*
927 	 * This deadlock detector can't reasonably detect deadlocks with
928 	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
929 	 */
930 	if (IS_OFDLCK(caller_fl))
931 		return 0;
932 
933 	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
934 		if (i++ > MAX_DEADLK_ITERATIONS)
935 			return 0;
936 		if (posix_same_owner(caller_fl, block_fl))
937 			return 1;
938 	}
939 	return 0;
940 }
941 
942 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
943  * after any leases, but before any posix locks.
944  *
945  * Note that if called with an FL_EXISTS argument, the caller may determine
946  * whether or not a lock was successfully freed by testing the return
947  * value for -ENOENT.
948  */
949 static int flock_lock_inode(struct inode *inode, struct file_lock *request)
950 {
951 	struct file_lock *new_fl = NULL;
952 	struct file_lock *fl;
953 	struct file_lock_context *ctx;
954 	int error = 0;
955 	bool found = false;
956 	LIST_HEAD(dispose);
957 
958 	ctx = locks_get_lock_context(inode, request->fl_type);
959 	if (!ctx) {
960 		if (request->fl_type != F_UNLCK)
961 			return -ENOMEM;
962 		return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
963 	}
964 
965 	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
966 		new_fl = locks_alloc_lock();
967 		if (!new_fl)
968 			return -ENOMEM;
969 	}
970 
971 	percpu_down_read(&file_rwsem);
972 	spin_lock(&ctx->flc_lock);
973 	if (request->fl_flags & FL_ACCESS)
974 		goto find_conflict;
975 
976 	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
977 		if (request->fl_file != fl->fl_file)
978 			continue;
979 		if (request->fl_type == fl->fl_type)
980 			goto out;
981 		found = true;
982 		locks_delete_lock_ctx(fl, &dispose);
983 		break;
984 	}
985 
986 	if (request->fl_type == F_UNLCK) {
987 		if ((request->fl_flags & FL_EXISTS) && !found)
988 			error = -ENOENT;
989 		goto out;
990 	}
991 
992 find_conflict:
993 	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
994 		if (!flock_locks_conflict(request, fl))
995 			continue;
996 		error = -EAGAIN;
997 		if (!(request->fl_flags & FL_SLEEP))
998 			goto out;
999 		error = FILE_LOCK_DEFERRED;
1000 		locks_insert_block(fl, request, flock_locks_conflict);
1001 		goto out;
1002 	}
1003 	if (request->fl_flags & FL_ACCESS)
1004 		goto out;
1005 	locks_copy_lock(new_fl, request);
1006 	locks_move_blocks(new_fl, request);
1007 	locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1008 	new_fl = NULL;
1009 	error = 0;
1010 
1011 out:
1012 	spin_unlock(&ctx->flc_lock);
1013 	percpu_up_read(&file_rwsem);
1014 	if (new_fl)
1015 		locks_free_lock(new_fl);
1016 	locks_dispose_list(&dispose);
1017 	trace_flock_lock_inode(inode, request, error);
1018 	return error;
1019 }
1020 
1021 static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1022 			    struct file_lock *conflock)
1023 {
1024 	struct file_lock *fl, *tmp;
1025 	struct file_lock *new_fl = NULL;
1026 	struct file_lock *new_fl2 = NULL;
1027 	struct file_lock *left = NULL;
1028 	struct file_lock *right = NULL;
1029 	struct file_lock_context *ctx;
1030 	int error;
1031 	bool added = false;
1032 	LIST_HEAD(dispose);
1033 
1034 	ctx = locks_get_lock_context(inode, request->fl_type);
1035 	if (!ctx)
1036 		return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1037 
1038 	/*
1039 	 * We may need two file_lock structures for this operation,
1040 	 * so we get them in advance to avoid races.
1041 	 *
1042 	 * In some cases we can be sure, that no new locks will be needed
1043 	 */
1044 	if (!(request->fl_flags & FL_ACCESS) &&
1045 	    (request->fl_type != F_UNLCK ||
1046 	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1047 		new_fl = locks_alloc_lock();
1048 		new_fl2 = locks_alloc_lock();
1049 	}
1050 
1051 	percpu_down_read(&file_rwsem);
1052 	spin_lock(&ctx->flc_lock);
1053 	/*
1054 	 * New lock request. Walk all POSIX locks and look for conflicts. If
1055 	 * there are any, either return error or put the request on the
1056 	 * blocker's list of waiters and the global blocked_hash.
1057 	 */
1058 	if (request->fl_type != F_UNLCK) {
1059 		list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1060 			if (!posix_locks_conflict(request, fl))
1061 				continue;
1062 			if (conflock)
1063 				locks_copy_conflock(conflock, fl);
1064 			error = -EAGAIN;
1065 			if (!(request->fl_flags & FL_SLEEP))
1066 				goto out;
1067 			/*
1068 			 * Deadlock detection and insertion into the blocked
1069 			 * locks list must be done while holding the same lock!
1070 			 */
1071 			error = -EDEADLK;
1072 			spin_lock(&blocked_lock_lock);
1073 			/*
1074 			 * Ensure that we don't find any locks blocked on this
1075 			 * request during deadlock detection.
1076 			 */
1077 			__locks_wake_up_blocks(request);
1078 			if (likely(!posix_locks_deadlock(request, fl))) {
1079 				error = FILE_LOCK_DEFERRED;
1080 				__locks_insert_block(fl, request,
1081 						     posix_locks_conflict);
1082 			}
1083 			spin_unlock(&blocked_lock_lock);
1084 			goto out;
1085 		}
1086 	}
1087 
1088 	/* If we're just looking for a conflict, we're done. */
1089 	error = 0;
1090 	if (request->fl_flags & FL_ACCESS)
1091 		goto out;
1092 
1093 	/* Find the first old lock with the same owner as the new lock */
1094 	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1095 		if (posix_same_owner(request, fl))
1096 			break;
1097 	}
1098 
1099 	/* Process locks with this owner. */
1100 	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1101 		if (!posix_same_owner(request, fl))
1102 			break;
1103 
1104 		/* Detect adjacent or overlapping regions (if same lock type) */
1105 		if (request->fl_type == fl->fl_type) {
1106 			/* In all comparisons of start vs end, use
1107 			 * "start - 1" rather than "end + 1". If end
1108 			 * is OFFSET_MAX, end + 1 will become negative.
1109 			 */
1110 			if (fl->fl_end < request->fl_start - 1)
1111 				continue;
1112 			/* If the next lock in the list has entirely bigger
1113 			 * addresses than the new one, insert the lock here.
1114 			 */
1115 			if (fl->fl_start - 1 > request->fl_end)
1116 				break;
1117 
1118 			/* If we come here, the new and old lock are of the
1119 			 * same type and adjacent or overlapping. Make one
1120 			 * lock yielding from the lower start address of both
1121 			 * locks to the higher end address.
1122 			 */
1123 			if (fl->fl_start > request->fl_start)
1124 				fl->fl_start = request->fl_start;
1125 			else
1126 				request->fl_start = fl->fl_start;
1127 			if (fl->fl_end < request->fl_end)
1128 				fl->fl_end = request->fl_end;
1129 			else
1130 				request->fl_end = fl->fl_end;
1131 			if (added) {
1132 				locks_delete_lock_ctx(fl, &dispose);
1133 				continue;
1134 			}
1135 			request = fl;
1136 			added = true;
1137 		} else {
1138 			/* Processing for different lock types is a bit
1139 			 * more complex.
1140 			 */
1141 			if (fl->fl_end < request->fl_start)
1142 				continue;
1143 			if (fl->fl_start > request->fl_end)
1144 				break;
1145 			if (request->fl_type == F_UNLCK)
1146 				added = true;
1147 			if (fl->fl_start < request->fl_start)
1148 				left = fl;
1149 			/* If the next lock in the list has a higher end
1150 			 * address than the new one, insert the new one here.
1151 			 */
1152 			if (fl->fl_end > request->fl_end) {
1153 				right = fl;
1154 				break;
1155 			}
1156 			if (fl->fl_start >= request->fl_start) {
1157 				/* The new lock completely replaces an old
1158 				 * one (This may happen several times).
1159 				 */
1160 				if (added) {
1161 					locks_delete_lock_ctx(fl, &dispose);
1162 					continue;
1163 				}
1164 				/*
1165 				 * Replace the old lock with new_fl, and
1166 				 * remove the old one. It's safe to do the
1167 				 * insert here since we know that we won't be
1168 				 * using new_fl later, and that the lock is
1169 				 * just replacing an existing lock.
1170 				 */
1171 				error = -ENOLCK;
1172 				if (!new_fl)
1173 					goto out;
1174 				locks_copy_lock(new_fl, request);
1175 				locks_move_blocks(new_fl, request);
1176 				request = new_fl;
1177 				new_fl = NULL;
1178 				locks_insert_lock_ctx(request, &fl->fl_list);
1179 				locks_delete_lock_ctx(fl, &dispose);
1180 				added = true;
1181 			}
1182 		}
1183 	}
1184 
1185 	/*
1186 	 * The above code only modifies existing locks in case of merging or
1187 	 * replacing. If new lock(s) need to be inserted all modifications are
1188 	 * done below this, so it's safe yet to bail out.
1189 	 */
1190 	error = -ENOLCK; /* "no luck" */
1191 	if (right && left == right && !new_fl2)
1192 		goto out;
1193 
1194 	error = 0;
1195 	if (!added) {
1196 		if (request->fl_type == F_UNLCK) {
1197 			if (request->fl_flags & FL_EXISTS)
1198 				error = -ENOENT;
1199 			goto out;
1200 		}
1201 
1202 		if (!new_fl) {
1203 			error = -ENOLCK;
1204 			goto out;
1205 		}
1206 		locks_copy_lock(new_fl, request);
1207 		locks_move_blocks(new_fl, request);
1208 		locks_insert_lock_ctx(new_fl, &fl->fl_list);
1209 		fl = new_fl;
1210 		new_fl = NULL;
1211 	}
1212 	if (right) {
1213 		if (left == right) {
1214 			/* The new lock breaks the old one in two pieces,
1215 			 * so we have to use the second new lock.
1216 			 */
1217 			left = new_fl2;
1218 			new_fl2 = NULL;
1219 			locks_copy_lock(left, right);
1220 			locks_insert_lock_ctx(left, &fl->fl_list);
1221 		}
1222 		right->fl_start = request->fl_end + 1;
1223 		locks_wake_up_blocks(right);
1224 	}
1225 	if (left) {
1226 		left->fl_end = request->fl_start - 1;
1227 		locks_wake_up_blocks(left);
1228 	}
1229  out:
1230 	spin_unlock(&ctx->flc_lock);
1231 	percpu_up_read(&file_rwsem);
1232 	/*
1233 	 * Free any unused locks.
1234 	 */
1235 	if (new_fl)
1236 		locks_free_lock(new_fl);
1237 	if (new_fl2)
1238 		locks_free_lock(new_fl2);
1239 	locks_dispose_list(&dispose);
1240 	trace_posix_lock_inode(inode, request, error);
1241 
1242 	return error;
1243 }
1244 
1245 /**
1246  * posix_lock_file - Apply a POSIX-style lock to a file
1247  * @filp: The file to apply the lock to
1248  * @fl: The lock to be applied
1249  * @conflock: Place to return a copy of the conflicting lock, if found.
1250  *
1251  * Add a POSIX style lock to a file.
1252  * We merge adjacent & overlapping locks whenever possible.
1253  * POSIX locks are sorted by owner task, then by starting address
1254  *
1255  * Note that if called with an FL_EXISTS argument, the caller may determine
1256  * whether or not a lock was successfully freed by testing the return
1257  * value for -ENOENT.
1258  */
1259 int posix_lock_file(struct file *filp, struct file_lock *fl,
1260 			struct file_lock *conflock)
1261 {
1262 	return posix_lock_inode(locks_inode(filp), fl, conflock);
1263 }
1264 EXPORT_SYMBOL(posix_lock_file);
1265 
1266 /**
1267  * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1268  * @inode: inode of file to which lock request should be applied
1269  * @fl: The lock to be applied
1270  *
1271  * Apply a POSIX style lock request to an inode.
1272  */
1273 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1274 {
1275 	int error;
1276 	might_sleep ();
1277 	for (;;) {
1278 		error = posix_lock_inode(inode, fl, NULL);
1279 		if (error != FILE_LOCK_DEFERRED)
1280 			break;
1281 		error = wait_event_interruptible(fl->fl_wait,
1282 					list_empty(&fl->fl_blocked_member));
1283 		if (error)
1284 			break;
1285 	}
1286 	locks_delete_block(fl);
1287 	return error;
1288 }
1289 
1290 static void lease_clear_pending(struct file_lock *fl, int arg)
1291 {
1292 	switch (arg) {
1293 	case F_UNLCK:
1294 		fl->fl_flags &= ~FL_UNLOCK_PENDING;
1295 		fallthrough;
1296 	case F_RDLCK:
1297 		fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1298 	}
1299 }
1300 
1301 /* We already had a lease on this file; just change its type */
1302 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1303 {
1304 	int error = assign_type(fl, arg);
1305 
1306 	if (error)
1307 		return error;
1308 	lease_clear_pending(fl, arg);
1309 	locks_wake_up_blocks(fl);
1310 	if (arg == F_UNLCK) {
1311 		struct file *filp = fl->fl_file;
1312 
1313 		f_delown(filp);
1314 		filp->f_owner.signum = 0;
1315 		fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1316 		if (fl->fl_fasync != NULL) {
1317 			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1318 			fl->fl_fasync = NULL;
1319 		}
1320 		locks_delete_lock_ctx(fl, dispose);
1321 	}
1322 	return 0;
1323 }
1324 EXPORT_SYMBOL(lease_modify);
1325 
1326 static bool past_time(unsigned long then)
1327 {
1328 	if (!then)
1329 		/* 0 is a special value meaning "this never expires": */
1330 		return false;
1331 	return time_after(jiffies, then);
1332 }
1333 
1334 static void time_out_leases(struct inode *inode, struct list_head *dispose)
1335 {
1336 	struct file_lock_context *ctx = inode->i_flctx;
1337 	struct file_lock *fl, *tmp;
1338 
1339 	lockdep_assert_held(&ctx->flc_lock);
1340 
1341 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1342 		trace_time_out_leases(inode, fl);
1343 		if (past_time(fl->fl_downgrade_time))
1344 			lease_modify(fl, F_RDLCK, dispose);
1345 		if (past_time(fl->fl_break_time))
1346 			lease_modify(fl, F_UNLCK, dispose);
1347 	}
1348 }
1349 
1350 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1351 {
1352 	bool rc;
1353 
1354 	if (lease->fl_lmops->lm_breaker_owns_lease
1355 			&& lease->fl_lmops->lm_breaker_owns_lease(lease))
1356 		return false;
1357 	if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) {
1358 		rc = false;
1359 		goto trace;
1360 	}
1361 	if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) {
1362 		rc = false;
1363 		goto trace;
1364 	}
1365 
1366 	rc = locks_conflict(breaker, lease);
1367 trace:
1368 	trace_leases_conflict(rc, lease, breaker);
1369 	return rc;
1370 }
1371 
1372 static bool
1373 any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1374 {
1375 	struct file_lock_context *ctx = inode->i_flctx;
1376 	struct file_lock *fl;
1377 
1378 	lockdep_assert_held(&ctx->flc_lock);
1379 
1380 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1381 		if (leases_conflict(fl, breaker))
1382 			return true;
1383 	}
1384 	return false;
1385 }
1386 
1387 /**
1388  *	__break_lease	-	revoke all outstanding leases on file
1389  *	@inode: the inode of the file to return
1390  *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1391  *	    break all leases
1392  *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1393  *	    only delegations
1394  *
1395  *	break_lease (inlined for speed) has checked there already is at least
1396  *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1397  *	a call to open() or truncate().  This function can sleep unless you
1398  *	specified %O_NONBLOCK to your open().
1399  */
1400 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1401 {
1402 	int error = 0;
1403 	struct file_lock_context *ctx;
1404 	struct file_lock *new_fl, *fl, *tmp;
1405 	unsigned long break_time;
1406 	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1407 	LIST_HEAD(dispose);
1408 
1409 	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1410 	if (IS_ERR(new_fl))
1411 		return PTR_ERR(new_fl);
1412 	new_fl->fl_flags = type;
1413 
1414 	/* typically we will check that ctx is non-NULL before calling */
1415 	ctx = smp_load_acquire(&inode->i_flctx);
1416 	if (!ctx) {
1417 		WARN_ON_ONCE(1);
1418 		goto free_lock;
1419 	}
1420 
1421 	percpu_down_read(&file_rwsem);
1422 	spin_lock(&ctx->flc_lock);
1423 
1424 	time_out_leases(inode, &dispose);
1425 
1426 	if (!any_leases_conflict(inode, new_fl))
1427 		goto out;
1428 
1429 	break_time = 0;
1430 	if (lease_break_time > 0) {
1431 		break_time = jiffies + lease_break_time * HZ;
1432 		if (break_time == 0)
1433 			break_time++;	/* so that 0 means no break time */
1434 	}
1435 
1436 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1437 		if (!leases_conflict(fl, new_fl))
1438 			continue;
1439 		if (want_write) {
1440 			if (fl->fl_flags & FL_UNLOCK_PENDING)
1441 				continue;
1442 			fl->fl_flags |= FL_UNLOCK_PENDING;
1443 			fl->fl_break_time = break_time;
1444 		} else {
1445 			if (lease_breaking(fl))
1446 				continue;
1447 			fl->fl_flags |= FL_DOWNGRADE_PENDING;
1448 			fl->fl_downgrade_time = break_time;
1449 		}
1450 		if (fl->fl_lmops->lm_break(fl))
1451 			locks_delete_lock_ctx(fl, &dispose);
1452 	}
1453 
1454 	if (list_empty(&ctx->flc_lease))
1455 		goto out;
1456 
1457 	if (mode & O_NONBLOCK) {
1458 		trace_break_lease_noblock(inode, new_fl);
1459 		error = -EWOULDBLOCK;
1460 		goto out;
1461 	}
1462 
1463 restart:
1464 	fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1465 	break_time = fl->fl_break_time;
1466 	if (break_time != 0)
1467 		break_time -= jiffies;
1468 	if (break_time == 0)
1469 		break_time++;
1470 	locks_insert_block(fl, new_fl, leases_conflict);
1471 	trace_break_lease_block(inode, new_fl);
1472 	spin_unlock(&ctx->flc_lock);
1473 	percpu_up_read(&file_rwsem);
1474 
1475 	locks_dispose_list(&dispose);
1476 	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1477 					list_empty(&new_fl->fl_blocked_member),
1478 					break_time);
1479 
1480 	percpu_down_read(&file_rwsem);
1481 	spin_lock(&ctx->flc_lock);
1482 	trace_break_lease_unblock(inode, new_fl);
1483 	locks_delete_block(new_fl);
1484 	if (error >= 0) {
1485 		/*
1486 		 * Wait for the next conflicting lease that has not been
1487 		 * broken yet
1488 		 */
1489 		if (error == 0)
1490 			time_out_leases(inode, &dispose);
1491 		if (any_leases_conflict(inode, new_fl))
1492 			goto restart;
1493 		error = 0;
1494 	}
1495 out:
1496 	spin_unlock(&ctx->flc_lock);
1497 	percpu_up_read(&file_rwsem);
1498 	locks_dispose_list(&dispose);
1499 free_lock:
1500 	locks_free_lock(new_fl);
1501 	return error;
1502 }
1503 EXPORT_SYMBOL(__break_lease);
1504 
1505 /**
1506  *	lease_get_mtime - update modified time of an inode with exclusive lease
1507  *	@inode: the inode
1508  *      @time:  pointer to a timespec which contains the last modified time
1509  *
1510  * This is to force NFS clients to flush their caches for files with
1511  * exclusive leases.  The justification is that if someone has an
1512  * exclusive lease, then they could be modifying it.
1513  */
1514 void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1515 {
1516 	bool has_lease = false;
1517 	struct file_lock_context *ctx;
1518 	struct file_lock *fl;
1519 
1520 	ctx = smp_load_acquire(&inode->i_flctx);
1521 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1522 		spin_lock(&ctx->flc_lock);
1523 		fl = list_first_entry_or_null(&ctx->flc_lease,
1524 					      struct file_lock, fl_list);
1525 		if (fl && (fl->fl_type == F_WRLCK))
1526 			has_lease = true;
1527 		spin_unlock(&ctx->flc_lock);
1528 	}
1529 
1530 	if (has_lease)
1531 		*time = current_time(inode);
1532 }
1533 EXPORT_SYMBOL(lease_get_mtime);
1534 
1535 /**
1536  *	fcntl_getlease - Enquire what lease is currently active
1537  *	@filp: the file
1538  *
1539  *	The value returned by this function will be one of
1540  *	(if no lease break is pending):
1541  *
1542  *	%F_RDLCK to indicate a shared lease is held.
1543  *
1544  *	%F_WRLCK to indicate an exclusive lease is held.
1545  *
1546  *	%F_UNLCK to indicate no lease is held.
1547  *
1548  *	(if a lease break is pending):
1549  *
1550  *	%F_RDLCK to indicate an exclusive lease needs to be
1551  *		changed to a shared lease (or removed).
1552  *
1553  *	%F_UNLCK to indicate the lease needs to be removed.
1554  *
1555  *	XXX: sfr & willy disagree over whether F_INPROGRESS
1556  *	should be returned to userspace.
1557  */
1558 int fcntl_getlease(struct file *filp)
1559 {
1560 	struct file_lock *fl;
1561 	struct inode *inode = locks_inode(filp);
1562 	struct file_lock_context *ctx;
1563 	int type = F_UNLCK;
1564 	LIST_HEAD(dispose);
1565 
1566 	ctx = smp_load_acquire(&inode->i_flctx);
1567 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1568 		percpu_down_read(&file_rwsem);
1569 		spin_lock(&ctx->flc_lock);
1570 		time_out_leases(inode, &dispose);
1571 		list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1572 			if (fl->fl_file != filp)
1573 				continue;
1574 			type = target_leasetype(fl);
1575 			break;
1576 		}
1577 		spin_unlock(&ctx->flc_lock);
1578 		percpu_up_read(&file_rwsem);
1579 
1580 		locks_dispose_list(&dispose);
1581 	}
1582 	return type;
1583 }
1584 
1585 /**
1586  * check_conflicting_open - see if the given file points to an inode that has
1587  *			    an existing open that would conflict with the
1588  *			    desired lease.
1589  * @filp:	file to check
1590  * @arg:	type of lease that we're trying to acquire
1591  * @flags:	current lock flags
1592  *
1593  * Check to see if there's an existing open fd on this file that would
1594  * conflict with the lease we're trying to set.
1595  */
1596 static int
1597 check_conflicting_open(struct file *filp, const long arg, int flags)
1598 {
1599 	struct inode *inode = locks_inode(filp);
1600 	int self_wcount = 0, self_rcount = 0;
1601 
1602 	if (flags & FL_LAYOUT)
1603 		return 0;
1604 	if (flags & FL_DELEG)
1605 		/* We leave these checks to the caller */
1606 		return 0;
1607 
1608 	if (arg == F_RDLCK)
1609 		return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1610 	else if (arg != F_WRLCK)
1611 		return 0;
1612 
1613 	/*
1614 	 * Make sure that only read/write count is from lease requestor.
1615 	 * Note that this will result in denying write leases when i_writecount
1616 	 * is negative, which is what we want.  (We shouldn't grant write leases
1617 	 * on files open for execution.)
1618 	 */
1619 	if (filp->f_mode & FMODE_WRITE)
1620 		self_wcount = 1;
1621 	else if (filp->f_mode & FMODE_READ)
1622 		self_rcount = 1;
1623 
1624 	if (atomic_read(&inode->i_writecount) != self_wcount ||
1625 	    atomic_read(&inode->i_readcount) != self_rcount)
1626 		return -EAGAIN;
1627 
1628 	return 0;
1629 }
1630 
1631 static int
1632 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv)
1633 {
1634 	struct file_lock *fl, *my_fl = NULL, *lease;
1635 	struct inode *inode = locks_inode(filp);
1636 	struct file_lock_context *ctx;
1637 	bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1638 	int error;
1639 	LIST_HEAD(dispose);
1640 
1641 	lease = *flp;
1642 	trace_generic_add_lease(inode, lease);
1643 
1644 	/* Note that arg is never F_UNLCK here */
1645 	ctx = locks_get_lock_context(inode, arg);
1646 	if (!ctx)
1647 		return -ENOMEM;
1648 
1649 	/*
1650 	 * In the delegation case we need mutual exclusion with
1651 	 * a number of operations that take the i_mutex.  We trylock
1652 	 * because delegations are an optional optimization, and if
1653 	 * there's some chance of a conflict--we'd rather not
1654 	 * bother, maybe that's a sign this just isn't a good file to
1655 	 * hand out a delegation on.
1656 	 */
1657 	if (is_deleg && !inode_trylock(inode))
1658 		return -EAGAIN;
1659 
1660 	if (is_deleg && arg == F_WRLCK) {
1661 		/* Write delegations are not currently supported: */
1662 		inode_unlock(inode);
1663 		WARN_ON_ONCE(1);
1664 		return -EINVAL;
1665 	}
1666 
1667 	percpu_down_read(&file_rwsem);
1668 	spin_lock(&ctx->flc_lock);
1669 	time_out_leases(inode, &dispose);
1670 	error = check_conflicting_open(filp, arg, lease->fl_flags);
1671 	if (error)
1672 		goto out;
1673 
1674 	/*
1675 	 * At this point, we know that if there is an exclusive
1676 	 * lease on this file, then we hold it on this filp
1677 	 * (otherwise our open of this file would have blocked).
1678 	 * And if we are trying to acquire an exclusive lease,
1679 	 * then the file is not open by anyone (including us)
1680 	 * except for this filp.
1681 	 */
1682 	error = -EAGAIN;
1683 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1684 		if (fl->fl_file == filp &&
1685 		    fl->fl_owner == lease->fl_owner) {
1686 			my_fl = fl;
1687 			continue;
1688 		}
1689 
1690 		/*
1691 		 * No exclusive leases if someone else has a lease on
1692 		 * this file:
1693 		 */
1694 		if (arg == F_WRLCK)
1695 			goto out;
1696 		/*
1697 		 * Modifying our existing lease is OK, but no getting a
1698 		 * new lease if someone else is opening for write:
1699 		 */
1700 		if (fl->fl_flags & FL_UNLOCK_PENDING)
1701 			goto out;
1702 	}
1703 
1704 	if (my_fl != NULL) {
1705 		lease = my_fl;
1706 		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1707 		if (error)
1708 			goto out;
1709 		goto out_setup;
1710 	}
1711 
1712 	error = -EINVAL;
1713 	if (!leases_enable)
1714 		goto out;
1715 
1716 	locks_insert_lock_ctx(lease, &ctx->flc_lease);
1717 	/*
1718 	 * The check in break_lease() is lockless. It's possible for another
1719 	 * open to race in after we did the earlier check for a conflicting
1720 	 * open but before the lease was inserted. Check again for a
1721 	 * conflicting open and cancel the lease if there is one.
1722 	 *
1723 	 * We also add a barrier here to ensure that the insertion of the lock
1724 	 * precedes these checks.
1725 	 */
1726 	smp_mb();
1727 	error = check_conflicting_open(filp, arg, lease->fl_flags);
1728 	if (error) {
1729 		locks_unlink_lock_ctx(lease);
1730 		goto out;
1731 	}
1732 
1733 out_setup:
1734 	if (lease->fl_lmops->lm_setup)
1735 		lease->fl_lmops->lm_setup(lease, priv);
1736 out:
1737 	spin_unlock(&ctx->flc_lock);
1738 	percpu_up_read(&file_rwsem);
1739 	locks_dispose_list(&dispose);
1740 	if (is_deleg)
1741 		inode_unlock(inode);
1742 	if (!error && !my_fl)
1743 		*flp = NULL;
1744 	return error;
1745 }
1746 
1747 static int generic_delete_lease(struct file *filp, void *owner)
1748 {
1749 	int error = -EAGAIN;
1750 	struct file_lock *fl, *victim = NULL;
1751 	struct inode *inode = locks_inode(filp);
1752 	struct file_lock_context *ctx;
1753 	LIST_HEAD(dispose);
1754 
1755 	ctx = smp_load_acquire(&inode->i_flctx);
1756 	if (!ctx) {
1757 		trace_generic_delete_lease(inode, NULL);
1758 		return error;
1759 	}
1760 
1761 	percpu_down_read(&file_rwsem);
1762 	spin_lock(&ctx->flc_lock);
1763 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1764 		if (fl->fl_file == filp &&
1765 		    fl->fl_owner == owner) {
1766 			victim = fl;
1767 			break;
1768 		}
1769 	}
1770 	trace_generic_delete_lease(inode, victim);
1771 	if (victim)
1772 		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1773 	spin_unlock(&ctx->flc_lock);
1774 	percpu_up_read(&file_rwsem);
1775 	locks_dispose_list(&dispose);
1776 	return error;
1777 }
1778 
1779 /**
1780  *	generic_setlease	-	sets a lease on an open file
1781  *	@filp:	file pointer
1782  *	@arg:	type of lease to obtain
1783  *	@flp:	input - file_lock to use, output - file_lock inserted
1784  *	@priv:	private data for lm_setup (may be NULL if lm_setup
1785  *		doesn't require it)
1786  *
1787  *	The (input) flp->fl_lmops->lm_break function is required
1788  *	by break_lease().
1789  */
1790 int generic_setlease(struct file *filp, long arg, struct file_lock **flp,
1791 			void **priv)
1792 {
1793 	struct inode *inode = locks_inode(filp);
1794 	int error;
1795 
1796 	if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE))
1797 		return -EACCES;
1798 	if (!S_ISREG(inode->i_mode))
1799 		return -EINVAL;
1800 	error = security_file_lock(filp, arg);
1801 	if (error)
1802 		return error;
1803 
1804 	switch (arg) {
1805 	case F_UNLCK:
1806 		return generic_delete_lease(filp, *priv);
1807 	case F_RDLCK:
1808 	case F_WRLCK:
1809 		if (!(*flp)->fl_lmops->lm_break) {
1810 			WARN_ON_ONCE(1);
1811 			return -ENOLCK;
1812 		}
1813 
1814 		return generic_add_lease(filp, arg, flp, priv);
1815 	default:
1816 		return -EINVAL;
1817 	}
1818 }
1819 EXPORT_SYMBOL(generic_setlease);
1820 
1821 #if IS_ENABLED(CONFIG_SRCU)
1822 /*
1823  * Kernel subsystems can register to be notified on any attempt to set
1824  * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
1825  * to close files that it may have cached when there is an attempt to set a
1826  * conflicting lease.
1827  */
1828 static struct srcu_notifier_head lease_notifier_chain;
1829 
1830 static inline void
1831 lease_notifier_chain_init(void)
1832 {
1833 	srcu_init_notifier_head(&lease_notifier_chain);
1834 }
1835 
1836 static inline void
1837 setlease_notifier(long arg, struct file_lock *lease)
1838 {
1839 	if (arg != F_UNLCK)
1840 		srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
1841 }
1842 
1843 int lease_register_notifier(struct notifier_block *nb)
1844 {
1845 	return srcu_notifier_chain_register(&lease_notifier_chain, nb);
1846 }
1847 EXPORT_SYMBOL_GPL(lease_register_notifier);
1848 
1849 void lease_unregister_notifier(struct notifier_block *nb)
1850 {
1851 	srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
1852 }
1853 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
1854 
1855 #else /* !IS_ENABLED(CONFIG_SRCU) */
1856 static inline void
1857 lease_notifier_chain_init(void)
1858 {
1859 }
1860 
1861 static inline void
1862 setlease_notifier(long arg, struct file_lock *lease)
1863 {
1864 }
1865 
1866 int lease_register_notifier(struct notifier_block *nb)
1867 {
1868 	return 0;
1869 }
1870 EXPORT_SYMBOL_GPL(lease_register_notifier);
1871 
1872 void lease_unregister_notifier(struct notifier_block *nb)
1873 {
1874 }
1875 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
1876 
1877 #endif /* IS_ENABLED(CONFIG_SRCU) */
1878 
1879 /**
1880  * vfs_setlease        -       sets a lease on an open file
1881  * @filp:	file pointer
1882  * @arg:	type of lease to obtain
1883  * @lease:	file_lock to use when adding a lease
1884  * @priv:	private info for lm_setup when adding a lease (may be
1885  *		NULL if lm_setup doesn't require it)
1886  *
1887  * Call this to establish a lease on the file. The "lease" argument is not
1888  * used for F_UNLCK requests and may be NULL. For commands that set or alter
1889  * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
1890  * set; if not, this function will return -ENOLCK (and generate a scary-looking
1891  * stack trace).
1892  *
1893  * The "priv" pointer is passed directly to the lm_setup function as-is. It
1894  * may be NULL if the lm_setup operation doesn't require it.
1895  */
1896 int
1897 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv)
1898 {
1899 	if (lease)
1900 		setlease_notifier(arg, *lease);
1901 	if (filp->f_op->setlease)
1902 		return filp->f_op->setlease(filp, arg, lease, priv);
1903 	else
1904 		return generic_setlease(filp, arg, lease, priv);
1905 }
1906 EXPORT_SYMBOL_GPL(vfs_setlease);
1907 
1908 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
1909 {
1910 	struct file_lock *fl;
1911 	struct fasync_struct *new;
1912 	int error;
1913 
1914 	fl = lease_alloc(filp, arg);
1915 	if (IS_ERR(fl))
1916 		return PTR_ERR(fl);
1917 
1918 	new = fasync_alloc();
1919 	if (!new) {
1920 		locks_free_lock(fl);
1921 		return -ENOMEM;
1922 	}
1923 	new->fa_fd = fd;
1924 
1925 	error = vfs_setlease(filp, arg, &fl, (void **)&new);
1926 	if (fl)
1927 		locks_free_lock(fl);
1928 	if (new)
1929 		fasync_free(new);
1930 	return error;
1931 }
1932 
1933 /**
1934  *	fcntl_setlease	-	sets a lease on an open file
1935  *	@fd: open file descriptor
1936  *	@filp: file pointer
1937  *	@arg: type of lease to obtain
1938  *
1939  *	Call this fcntl to establish a lease on the file.
1940  *	Note that you also need to call %F_SETSIG to
1941  *	receive a signal when the lease is broken.
1942  */
1943 int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
1944 {
1945 	if (arg == F_UNLCK)
1946 		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
1947 	return do_fcntl_add_lease(fd, filp, arg);
1948 }
1949 
1950 /**
1951  * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
1952  * @inode: inode of the file to apply to
1953  * @fl: The lock to be applied
1954  *
1955  * Apply a FLOCK style lock request to an inode.
1956  */
1957 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1958 {
1959 	int error;
1960 	might_sleep();
1961 	for (;;) {
1962 		error = flock_lock_inode(inode, fl);
1963 		if (error != FILE_LOCK_DEFERRED)
1964 			break;
1965 		error = wait_event_interruptible(fl->fl_wait,
1966 				list_empty(&fl->fl_blocked_member));
1967 		if (error)
1968 			break;
1969 	}
1970 	locks_delete_block(fl);
1971 	return error;
1972 }
1973 
1974 /**
1975  * locks_lock_inode_wait - Apply a lock to an inode
1976  * @inode: inode of the file to apply to
1977  * @fl: The lock to be applied
1978  *
1979  * Apply a POSIX or FLOCK style lock request to an inode.
1980  */
1981 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1982 {
1983 	int res = 0;
1984 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
1985 		case FL_POSIX:
1986 			res = posix_lock_inode_wait(inode, fl);
1987 			break;
1988 		case FL_FLOCK:
1989 			res = flock_lock_inode_wait(inode, fl);
1990 			break;
1991 		default:
1992 			BUG();
1993 	}
1994 	return res;
1995 }
1996 EXPORT_SYMBOL(locks_lock_inode_wait);
1997 
1998 /**
1999  *	sys_flock: - flock() system call.
2000  *	@fd: the file descriptor to lock.
2001  *	@cmd: the type of lock to apply.
2002  *
2003  *	Apply a %FL_FLOCK style lock to an open file descriptor.
2004  *	The @cmd can be one of:
2005  *
2006  *	- %LOCK_SH -- a shared lock.
2007  *	- %LOCK_EX -- an exclusive lock.
2008  *	- %LOCK_UN -- remove an existing lock.
2009  *	- %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED)
2010  *
2011  *	%LOCK_MAND support has been removed from the kernel.
2012  */
2013 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2014 {
2015 	struct fd f = fdget(fd);
2016 	struct file_lock *lock;
2017 	int can_sleep, unlock;
2018 	int error;
2019 
2020 	error = -EBADF;
2021 	if (!f.file)
2022 		goto out;
2023 
2024 	can_sleep = !(cmd & LOCK_NB);
2025 	cmd &= ~LOCK_NB;
2026 	unlock = (cmd == LOCK_UN);
2027 
2028 	if (!unlock && !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
2029 		goto out_putf;
2030 
2031 	/*
2032 	 * LOCK_MAND locks were broken for a long time in that they never
2033 	 * conflicted with one another and didn't prevent any sort of open,
2034 	 * read or write activity.
2035 	 *
2036 	 * Just ignore these requests now, to preserve legacy behavior, but
2037 	 * throw a warning to let people know that they don't actually work.
2038 	 */
2039 	if (cmd & LOCK_MAND) {
2040 		pr_warn_once("Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n");
2041 		error = 0;
2042 		goto out_putf;
2043 	}
2044 
2045 	lock = flock_make_lock(f.file, cmd, NULL);
2046 	if (IS_ERR(lock)) {
2047 		error = PTR_ERR(lock);
2048 		goto out_putf;
2049 	}
2050 
2051 	if (can_sleep)
2052 		lock->fl_flags |= FL_SLEEP;
2053 
2054 	error = security_file_lock(f.file, lock->fl_type);
2055 	if (error)
2056 		goto out_free;
2057 
2058 	if (f.file->f_op->flock)
2059 		error = f.file->f_op->flock(f.file,
2060 					  (can_sleep) ? F_SETLKW : F_SETLK,
2061 					  lock);
2062 	else
2063 		error = locks_lock_file_wait(f.file, lock);
2064 
2065  out_free:
2066 	locks_free_lock(lock);
2067 
2068  out_putf:
2069 	fdput(f);
2070  out:
2071 	return error;
2072 }
2073 
2074 /**
2075  * vfs_test_lock - test file byte range lock
2076  * @filp: The file to test lock for
2077  * @fl: The lock to test; also used to hold result
2078  *
2079  * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2080  * setting conf->fl_type to something other than F_UNLCK.
2081  */
2082 int vfs_test_lock(struct file *filp, struct file_lock *fl)
2083 {
2084 	if (filp->f_op->lock)
2085 		return filp->f_op->lock(filp, F_GETLK, fl);
2086 	posix_test_lock(filp, fl);
2087 	return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(vfs_test_lock);
2090 
2091 /**
2092  * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2093  * @fl: The file_lock who's fl_pid should be translated
2094  * @ns: The namespace into which the pid should be translated
2095  *
2096  * Used to tranlate a fl_pid into a namespace virtual pid number
2097  */
2098 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2099 {
2100 	pid_t vnr;
2101 	struct pid *pid;
2102 
2103 	if (IS_OFDLCK(fl))
2104 		return -1;
2105 	if (IS_REMOTELCK(fl))
2106 		return fl->fl_pid;
2107 	/*
2108 	 * If the flock owner process is dead and its pid has been already
2109 	 * freed, the translation below won't work, but we still want to show
2110 	 * flock owner pid number in init pidns.
2111 	 */
2112 	if (ns == &init_pid_ns)
2113 		return (pid_t)fl->fl_pid;
2114 
2115 	rcu_read_lock();
2116 	pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2117 	vnr = pid_nr_ns(pid, ns);
2118 	rcu_read_unlock();
2119 	return vnr;
2120 }
2121 
2122 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2123 {
2124 	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2125 #if BITS_PER_LONG == 32
2126 	/*
2127 	 * Make sure we can represent the posix lock via
2128 	 * legacy 32bit flock.
2129 	 */
2130 	if (fl->fl_start > OFFT_OFFSET_MAX)
2131 		return -EOVERFLOW;
2132 	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2133 		return -EOVERFLOW;
2134 #endif
2135 	flock->l_start = fl->fl_start;
2136 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2137 		fl->fl_end - fl->fl_start + 1;
2138 	flock->l_whence = 0;
2139 	flock->l_type = fl->fl_type;
2140 	return 0;
2141 }
2142 
2143 #if BITS_PER_LONG == 32
2144 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2145 {
2146 	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2147 	flock->l_start = fl->fl_start;
2148 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2149 		fl->fl_end - fl->fl_start + 1;
2150 	flock->l_whence = 0;
2151 	flock->l_type = fl->fl_type;
2152 }
2153 #endif
2154 
2155 /* Report the first existing lock that would conflict with l.
2156  * This implements the F_GETLK command of fcntl().
2157  */
2158 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2159 {
2160 	struct file_lock *fl;
2161 	int error;
2162 
2163 	fl = locks_alloc_lock();
2164 	if (fl == NULL)
2165 		return -ENOMEM;
2166 	error = -EINVAL;
2167 	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2168 		goto out;
2169 
2170 	error = flock_to_posix_lock(filp, fl, flock);
2171 	if (error)
2172 		goto out;
2173 
2174 	if (cmd == F_OFD_GETLK) {
2175 		error = -EINVAL;
2176 		if (flock->l_pid != 0)
2177 			goto out;
2178 
2179 		fl->fl_flags |= FL_OFDLCK;
2180 		fl->fl_owner = filp;
2181 	}
2182 
2183 	error = vfs_test_lock(filp, fl);
2184 	if (error)
2185 		goto out;
2186 
2187 	flock->l_type = fl->fl_type;
2188 	if (fl->fl_type != F_UNLCK) {
2189 		error = posix_lock_to_flock(flock, fl);
2190 		if (error)
2191 			goto out;
2192 	}
2193 out:
2194 	locks_free_lock(fl);
2195 	return error;
2196 }
2197 
2198 /**
2199  * vfs_lock_file - file byte range lock
2200  * @filp: The file to apply the lock to
2201  * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2202  * @fl: The lock to be applied
2203  * @conf: Place to return a copy of the conflicting lock, if found.
2204  *
2205  * A caller that doesn't care about the conflicting lock may pass NULL
2206  * as the final argument.
2207  *
2208  * If the filesystem defines a private ->lock() method, then @conf will
2209  * be left unchanged; so a caller that cares should initialize it to
2210  * some acceptable default.
2211  *
2212  * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2213  * locks, the ->lock() interface may return asynchronously, before the lock has
2214  * been granted or denied by the underlying filesystem, if (and only if)
2215  * lm_grant is set. Callers expecting ->lock() to return asynchronously
2216  * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
2217  * the request is for a blocking lock. When ->lock() does return asynchronously,
2218  * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
2219  * request completes.
2220  * If the request is for non-blocking lock the file system should return
2221  * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2222  * with the result. If the request timed out the callback routine will return a
2223  * nonzero return code and the file system should release the lock. The file
2224  * system is also responsible to keep a corresponding posix lock when it
2225  * grants a lock so the VFS can find out which locks are locally held and do
2226  * the correct lock cleanup when required.
2227  * The underlying filesystem must not drop the kernel lock or call
2228  * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2229  * return code.
2230  */
2231 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2232 {
2233 	if (filp->f_op->lock)
2234 		return filp->f_op->lock(filp, cmd, fl);
2235 	else
2236 		return posix_lock_file(filp, fl, conf);
2237 }
2238 EXPORT_SYMBOL_GPL(vfs_lock_file);
2239 
2240 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2241 			     struct file_lock *fl)
2242 {
2243 	int error;
2244 
2245 	error = security_file_lock(filp, fl->fl_type);
2246 	if (error)
2247 		return error;
2248 
2249 	for (;;) {
2250 		error = vfs_lock_file(filp, cmd, fl, NULL);
2251 		if (error != FILE_LOCK_DEFERRED)
2252 			break;
2253 		error = wait_event_interruptible(fl->fl_wait,
2254 					list_empty(&fl->fl_blocked_member));
2255 		if (error)
2256 			break;
2257 	}
2258 	locks_delete_block(fl);
2259 
2260 	return error;
2261 }
2262 
2263 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2264 static int
2265 check_fmode_for_setlk(struct file_lock *fl)
2266 {
2267 	switch (fl->fl_type) {
2268 	case F_RDLCK:
2269 		if (!(fl->fl_file->f_mode & FMODE_READ))
2270 			return -EBADF;
2271 		break;
2272 	case F_WRLCK:
2273 		if (!(fl->fl_file->f_mode & FMODE_WRITE))
2274 			return -EBADF;
2275 	}
2276 	return 0;
2277 }
2278 
2279 /* Apply the lock described by l to an open file descriptor.
2280  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2281  */
2282 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2283 		struct flock *flock)
2284 {
2285 	struct file_lock *file_lock = locks_alloc_lock();
2286 	struct inode *inode = locks_inode(filp);
2287 	struct file *f;
2288 	int error;
2289 
2290 	if (file_lock == NULL)
2291 		return -ENOLCK;
2292 
2293 	error = flock_to_posix_lock(filp, file_lock, flock);
2294 	if (error)
2295 		goto out;
2296 
2297 	error = check_fmode_for_setlk(file_lock);
2298 	if (error)
2299 		goto out;
2300 
2301 	/*
2302 	 * If the cmd is requesting file-private locks, then set the
2303 	 * FL_OFDLCK flag and override the owner.
2304 	 */
2305 	switch (cmd) {
2306 	case F_OFD_SETLK:
2307 		error = -EINVAL;
2308 		if (flock->l_pid != 0)
2309 			goto out;
2310 
2311 		cmd = F_SETLK;
2312 		file_lock->fl_flags |= FL_OFDLCK;
2313 		file_lock->fl_owner = filp;
2314 		break;
2315 	case F_OFD_SETLKW:
2316 		error = -EINVAL;
2317 		if (flock->l_pid != 0)
2318 			goto out;
2319 
2320 		cmd = F_SETLKW;
2321 		file_lock->fl_flags |= FL_OFDLCK;
2322 		file_lock->fl_owner = filp;
2323 		fallthrough;
2324 	case F_SETLKW:
2325 		file_lock->fl_flags |= FL_SLEEP;
2326 	}
2327 
2328 	error = do_lock_file_wait(filp, cmd, file_lock);
2329 
2330 	/*
2331 	 * Attempt to detect a close/fcntl race and recover by releasing the
2332 	 * lock that was just acquired. There is no need to do that when we're
2333 	 * unlocking though, or for OFD locks.
2334 	 */
2335 	if (!error && file_lock->fl_type != F_UNLCK &&
2336 	    !(file_lock->fl_flags & FL_OFDLCK)) {
2337 		struct files_struct *files = current->files;
2338 		/*
2339 		 * We need that spin_lock here - it prevents reordering between
2340 		 * update of i_flctx->flc_posix and check for it done in
2341 		 * close(). rcu_read_lock() wouldn't do.
2342 		 */
2343 		spin_lock(&files->file_lock);
2344 		f = files_lookup_fd_locked(files, fd);
2345 		spin_unlock(&files->file_lock);
2346 		if (f != filp) {
2347 			file_lock->fl_type = F_UNLCK;
2348 			error = do_lock_file_wait(filp, cmd, file_lock);
2349 			WARN_ON_ONCE(error);
2350 			error = -EBADF;
2351 		}
2352 	}
2353 out:
2354 	trace_fcntl_setlk(inode, file_lock, error);
2355 	locks_free_lock(file_lock);
2356 	return error;
2357 }
2358 
2359 #if BITS_PER_LONG == 32
2360 /* Report the first existing lock that would conflict with l.
2361  * This implements the F_GETLK command of fcntl().
2362  */
2363 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2364 {
2365 	struct file_lock *fl;
2366 	int error;
2367 
2368 	fl = locks_alloc_lock();
2369 	if (fl == NULL)
2370 		return -ENOMEM;
2371 
2372 	error = -EINVAL;
2373 	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2374 		goto out;
2375 
2376 	error = flock64_to_posix_lock(filp, fl, flock);
2377 	if (error)
2378 		goto out;
2379 
2380 	if (cmd == F_OFD_GETLK) {
2381 		error = -EINVAL;
2382 		if (flock->l_pid != 0)
2383 			goto out;
2384 
2385 		cmd = F_GETLK64;
2386 		fl->fl_flags |= FL_OFDLCK;
2387 		fl->fl_owner = filp;
2388 	}
2389 
2390 	error = vfs_test_lock(filp, fl);
2391 	if (error)
2392 		goto out;
2393 
2394 	flock->l_type = fl->fl_type;
2395 	if (fl->fl_type != F_UNLCK)
2396 		posix_lock_to_flock64(flock, fl);
2397 
2398 out:
2399 	locks_free_lock(fl);
2400 	return error;
2401 }
2402 
2403 /* Apply the lock described by l to an open file descriptor.
2404  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2405  */
2406 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2407 		struct flock64 *flock)
2408 {
2409 	struct file_lock *file_lock = locks_alloc_lock();
2410 	struct file *f;
2411 	int error;
2412 
2413 	if (file_lock == NULL)
2414 		return -ENOLCK;
2415 
2416 	error = flock64_to_posix_lock(filp, file_lock, flock);
2417 	if (error)
2418 		goto out;
2419 
2420 	error = check_fmode_for_setlk(file_lock);
2421 	if (error)
2422 		goto out;
2423 
2424 	/*
2425 	 * If the cmd is requesting file-private locks, then set the
2426 	 * FL_OFDLCK flag and override the owner.
2427 	 */
2428 	switch (cmd) {
2429 	case F_OFD_SETLK:
2430 		error = -EINVAL;
2431 		if (flock->l_pid != 0)
2432 			goto out;
2433 
2434 		cmd = F_SETLK64;
2435 		file_lock->fl_flags |= FL_OFDLCK;
2436 		file_lock->fl_owner = filp;
2437 		break;
2438 	case F_OFD_SETLKW:
2439 		error = -EINVAL;
2440 		if (flock->l_pid != 0)
2441 			goto out;
2442 
2443 		cmd = F_SETLKW64;
2444 		file_lock->fl_flags |= FL_OFDLCK;
2445 		file_lock->fl_owner = filp;
2446 		fallthrough;
2447 	case F_SETLKW64:
2448 		file_lock->fl_flags |= FL_SLEEP;
2449 	}
2450 
2451 	error = do_lock_file_wait(filp, cmd, file_lock);
2452 
2453 	/*
2454 	 * Attempt to detect a close/fcntl race and recover by releasing the
2455 	 * lock that was just acquired. There is no need to do that when we're
2456 	 * unlocking though, or for OFD locks.
2457 	 */
2458 	if (!error && file_lock->fl_type != F_UNLCK &&
2459 	    !(file_lock->fl_flags & FL_OFDLCK)) {
2460 		struct files_struct *files = current->files;
2461 		/*
2462 		 * We need that spin_lock here - it prevents reordering between
2463 		 * update of i_flctx->flc_posix and check for it done in
2464 		 * close(). rcu_read_lock() wouldn't do.
2465 		 */
2466 		spin_lock(&files->file_lock);
2467 		f = files_lookup_fd_locked(files, fd);
2468 		spin_unlock(&files->file_lock);
2469 		if (f != filp) {
2470 			file_lock->fl_type = F_UNLCK;
2471 			error = do_lock_file_wait(filp, cmd, file_lock);
2472 			WARN_ON_ONCE(error);
2473 			error = -EBADF;
2474 		}
2475 	}
2476 out:
2477 	locks_free_lock(file_lock);
2478 	return error;
2479 }
2480 #endif /* BITS_PER_LONG == 32 */
2481 
2482 /*
2483  * This function is called when the file is being removed
2484  * from the task's fd array.  POSIX locks belonging to this task
2485  * are deleted at this time.
2486  */
2487 void locks_remove_posix(struct file *filp, fl_owner_t owner)
2488 {
2489 	int error;
2490 	struct inode *inode = locks_inode(filp);
2491 	struct file_lock lock;
2492 	struct file_lock_context *ctx;
2493 
2494 	/*
2495 	 * If there are no locks held on this file, we don't need to call
2496 	 * posix_lock_file().  Another process could be setting a lock on this
2497 	 * file at the same time, but we wouldn't remove that lock anyway.
2498 	 */
2499 	ctx =  smp_load_acquire(&inode->i_flctx);
2500 	if (!ctx || list_empty(&ctx->flc_posix))
2501 		return;
2502 
2503 	locks_init_lock(&lock);
2504 	lock.fl_type = F_UNLCK;
2505 	lock.fl_flags = FL_POSIX | FL_CLOSE;
2506 	lock.fl_start = 0;
2507 	lock.fl_end = OFFSET_MAX;
2508 	lock.fl_owner = owner;
2509 	lock.fl_pid = current->tgid;
2510 	lock.fl_file = filp;
2511 	lock.fl_ops = NULL;
2512 	lock.fl_lmops = NULL;
2513 
2514 	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2515 
2516 	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2517 		lock.fl_ops->fl_release_private(&lock);
2518 	trace_locks_remove_posix(inode, &lock, error);
2519 }
2520 EXPORT_SYMBOL(locks_remove_posix);
2521 
2522 /* The i_flctx must be valid when calling into here */
2523 static void
2524 locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2525 {
2526 	struct file_lock fl;
2527 	struct inode *inode = locks_inode(filp);
2528 
2529 	if (list_empty(&flctx->flc_flock))
2530 		return;
2531 
2532 	flock_make_lock(filp, LOCK_UN, &fl);
2533 	fl.fl_flags |= FL_CLOSE;
2534 
2535 	if (filp->f_op->flock)
2536 		filp->f_op->flock(filp, F_SETLKW, &fl);
2537 	else
2538 		flock_lock_inode(inode, &fl);
2539 
2540 	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2541 		fl.fl_ops->fl_release_private(&fl);
2542 }
2543 
2544 /* The i_flctx must be valid when calling into here */
2545 static void
2546 locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2547 {
2548 	struct file_lock *fl, *tmp;
2549 	LIST_HEAD(dispose);
2550 
2551 	if (list_empty(&ctx->flc_lease))
2552 		return;
2553 
2554 	percpu_down_read(&file_rwsem);
2555 	spin_lock(&ctx->flc_lock);
2556 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2557 		if (filp == fl->fl_file)
2558 			lease_modify(fl, F_UNLCK, &dispose);
2559 	spin_unlock(&ctx->flc_lock);
2560 	percpu_up_read(&file_rwsem);
2561 
2562 	locks_dispose_list(&dispose);
2563 }
2564 
2565 /*
2566  * This function is called on the last close of an open file.
2567  */
2568 void locks_remove_file(struct file *filp)
2569 {
2570 	struct file_lock_context *ctx;
2571 
2572 	ctx = smp_load_acquire(&locks_inode(filp)->i_flctx);
2573 	if (!ctx)
2574 		return;
2575 
2576 	/* remove any OFD locks */
2577 	locks_remove_posix(filp, filp);
2578 
2579 	/* remove flock locks */
2580 	locks_remove_flock(filp, ctx);
2581 
2582 	/* remove any leases */
2583 	locks_remove_lease(filp, ctx);
2584 
2585 	spin_lock(&ctx->flc_lock);
2586 	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2587 	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2588 	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2589 	spin_unlock(&ctx->flc_lock);
2590 }
2591 
2592 /**
2593  * vfs_cancel_lock - file byte range unblock lock
2594  * @filp: The file to apply the unblock to
2595  * @fl: The lock to be unblocked
2596  *
2597  * Used by lock managers to cancel blocked requests
2598  */
2599 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2600 {
2601 	if (filp->f_op->lock)
2602 		return filp->f_op->lock(filp, F_CANCELLK, fl);
2603 	return 0;
2604 }
2605 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2606 
2607 #ifdef CONFIG_PROC_FS
2608 #include <linux/proc_fs.h>
2609 #include <linux/seq_file.h>
2610 
2611 struct locks_iterator {
2612 	int	li_cpu;
2613 	loff_t	li_pos;
2614 };
2615 
2616 static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2617 			    loff_t id, char *pfx, int repeat)
2618 {
2619 	struct inode *inode = NULL;
2620 	unsigned int fl_pid;
2621 	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2622 	int type;
2623 
2624 	fl_pid = locks_translate_pid(fl, proc_pidns);
2625 	/*
2626 	 * If lock owner is dead (and pid is freed) or not visible in current
2627 	 * pidns, zero is shown as a pid value. Check lock info from
2628 	 * init_pid_ns to get saved lock pid value.
2629 	 */
2630 
2631 	if (fl->fl_file != NULL)
2632 		inode = locks_inode(fl->fl_file);
2633 
2634 	seq_printf(f, "%lld: ", id);
2635 
2636 	if (repeat)
2637 		seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx);
2638 
2639 	if (IS_POSIX(fl)) {
2640 		if (fl->fl_flags & FL_ACCESS)
2641 			seq_puts(f, "ACCESS");
2642 		else if (IS_OFDLCK(fl))
2643 			seq_puts(f, "OFDLCK");
2644 		else
2645 			seq_puts(f, "POSIX ");
2646 
2647 		seq_printf(f, " %s ",
2648 			     (inode == NULL) ? "*NOINODE*" : "ADVISORY ");
2649 	} else if (IS_FLOCK(fl)) {
2650 		seq_puts(f, "FLOCK  ADVISORY  ");
2651 	} else if (IS_LEASE(fl)) {
2652 		if (fl->fl_flags & FL_DELEG)
2653 			seq_puts(f, "DELEG  ");
2654 		else
2655 			seq_puts(f, "LEASE  ");
2656 
2657 		if (lease_breaking(fl))
2658 			seq_puts(f, "BREAKING  ");
2659 		else if (fl->fl_file)
2660 			seq_puts(f, "ACTIVE    ");
2661 		else
2662 			seq_puts(f, "BREAKER   ");
2663 	} else {
2664 		seq_puts(f, "UNKNOWN UNKNOWN  ");
2665 	}
2666 	type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type;
2667 
2668 	seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2669 			     (type == F_RDLCK) ? "READ" : "UNLCK");
2670 	if (inode) {
2671 		/* userspace relies on this representation of dev_t */
2672 		seq_printf(f, "%d %02x:%02x:%lu ", fl_pid,
2673 				MAJOR(inode->i_sb->s_dev),
2674 				MINOR(inode->i_sb->s_dev), inode->i_ino);
2675 	} else {
2676 		seq_printf(f, "%d <none>:0 ", fl_pid);
2677 	}
2678 	if (IS_POSIX(fl)) {
2679 		if (fl->fl_end == OFFSET_MAX)
2680 			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2681 		else
2682 			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2683 	} else {
2684 		seq_puts(f, "0 EOF\n");
2685 	}
2686 }
2687 
2688 static struct file_lock *get_next_blocked_member(struct file_lock *node)
2689 {
2690 	struct file_lock *tmp;
2691 
2692 	/* NULL node or root node */
2693 	if (node == NULL || node->fl_blocker == NULL)
2694 		return NULL;
2695 
2696 	/* Next member in the linked list could be itself */
2697 	tmp = list_next_entry(node, fl_blocked_member);
2698 	if (list_entry_is_head(tmp, &node->fl_blocker->fl_blocked_requests, fl_blocked_member)
2699 		|| tmp == node) {
2700 		return NULL;
2701 	}
2702 
2703 	return tmp;
2704 }
2705 
2706 static int locks_show(struct seq_file *f, void *v)
2707 {
2708 	struct locks_iterator *iter = f->private;
2709 	struct file_lock *cur, *tmp;
2710 	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2711 	int level = 0;
2712 
2713 	cur = hlist_entry(v, struct file_lock, fl_link);
2714 
2715 	if (locks_translate_pid(cur, proc_pidns) == 0)
2716 		return 0;
2717 
2718 	/* View this crossed linked list as a binary tree, the first member of fl_blocked_requests
2719 	 * is the left child of current node, the next silibing in fl_blocked_member is the
2720 	 * right child, we can alse get the parent of current node from fl_blocker, so this
2721 	 * question becomes traversal of a binary tree
2722 	 */
2723 	while (cur != NULL) {
2724 		if (level)
2725 			lock_get_status(f, cur, iter->li_pos, "-> ", level);
2726 		else
2727 			lock_get_status(f, cur, iter->li_pos, "", level);
2728 
2729 		if (!list_empty(&cur->fl_blocked_requests)) {
2730 			/* Turn left */
2731 			cur = list_first_entry_or_null(&cur->fl_blocked_requests,
2732 				struct file_lock, fl_blocked_member);
2733 			level++;
2734 		} else {
2735 			/* Turn right */
2736 			tmp = get_next_blocked_member(cur);
2737 			/* Fall back to parent node */
2738 			while (tmp == NULL && cur->fl_blocker != NULL) {
2739 				cur = cur->fl_blocker;
2740 				level--;
2741 				tmp = get_next_blocked_member(cur);
2742 			}
2743 			cur = tmp;
2744 		}
2745 	}
2746 
2747 	return 0;
2748 }
2749 
2750 static void __show_fd_locks(struct seq_file *f,
2751 			struct list_head *head, int *id,
2752 			struct file *filp, struct files_struct *files)
2753 {
2754 	struct file_lock *fl;
2755 
2756 	list_for_each_entry(fl, head, fl_list) {
2757 
2758 		if (filp != fl->fl_file)
2759 			continue;
2760 		if (fl->fl_owner != files &&
2761 		    fl->fl_owner != filp)
2762 			continue;
2763 
2764 		(*id)++;
2765 		seq_puts(f, "lock:\t");
2766 		lock_get_status(f, fl, *id, "", 0);
2767 	}
2768 }
2769 
2770 void show_fd_locks(struct seq_file *f,
2771 		  struct file *filp, struct files_struct *files)
2772 {
2773 	struct inode *inode = locks_inode(filp);
2774 	struct file_lock_context *ctx;
2775 	int id = 0;
2776 
2777 	ctx = smp_load_acquire(&inode->i_flctx);
2778 	if (!ctx)
2779 		return;
2780 
2781 	spin_lock(&ctx->flc_lock);
2782 	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2783 	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2784 	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2785 	spin_unlock(&ctx->flc_lock);
2786 }
2787 
2788 static void *locks_start(struct seq_file *f, loff_t *pos)
2789 	__acquires(&blocked_lock_lock)
2790 {
2791 	struct locks_iterator *iter = f->private;
2792 
2793 	iter->li_pos = *pos + 1;
2794 	percpu_down_write(&file_rwsem);
2795 	spin_lock(&blocked_lock_lock);
2796 	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2797 }
2798 
2799 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2800 {
2801 	struct locks_iterator *iter = f->private;
2802 
2803 	++iter->li_pos;
2804 	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2805 }
2806 
2807 static void locks_stop(struct seq_file *f, void *v)
2808 	__releases(&blocked_lock_lock)
2809 {
2810 	spin_unlock(&blocked_lock_lock);
2811 	percpu_up_write(&file_rwsem);
2812 }
2813 
2814 static const struct seq_operations locks_seq_operations = {
2815 	.start	= locks_start,
2816 	.next	= locks_next,
2817 	.stop	= locks_stop,
2818 	.show	= locks_show,
2819 };
2820 
2821 static int __init proc_locks_init(void)
2822 {
2823 	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2824 			sizeof(struct locks_iterator), NULL);
2825 	return 0;
2826 }
2827 fs_initcall(proc_locks_init);
2828 #endif
2829 
2830 static int __init filelock_init(void)
2831 {
2832 	int i;
2833 
2834 	flctx_cache = kmem_cache_create("file_lock_ctx",
2835 			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
2836 
2837 	filelock_cache = kmem_cache_create("file_lock_cache",
2838 			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2839 
2840 	for_each_possible_cpu(i) {
2841 		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
2842 
2843 		spin_lock_init(&fll->lock);
2844 		INIT_HLIST_HEAD(&fll->hlist);
2845 	}
2846 
2847 	lease_notifier_chain_init();
2848 	return 0;
2849 }
2850 core_initcall(filelock_init);
2851