1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/locks.c 4 * 5 * We implement four types of file locks: BSD locks, posix locks, open 6 * file description locks, and leases. For details about BSD locks, 7 * see the flock(2) man page; for details about the other three, see 8 * fcntl(2). 9 * 10 * 11 * Locking conflicts and dependencies: 12 * If multiple threads attempt to lock the same byte (or flock the same file) 13 * only one can be granted the lock, and other must wait their turn. 14 * The first lock has been "applied" or "granted", the others are "waiting" 15 * and are "blocked" by the "applied" lock.. 16 * 17 * Waiting and applied locks are all kept in trees whose properties are: 18 * 19 * - the root of a tree may be an applied or waiting lock. 20 * - every other node in the tree is a waiting lock that 21 * conflicts with every ancestor of that node. 22 * 23 * Every such tree begins life as a waiting singleton which obviously 24 * satisfies the above properties. 25 * 26 * The only ways we modify trees preserve these properties: 27 * 28 * 1. We may add a new leaf node, but only after first verifying that it 29 * conflicts with all of its ancestors. 30 * 2. We may remove the root of a tree, creating a new singleton 31 * tree from the root and N new trees rooted in the immediate 32 * children. 33 * 3. If the root of a tree is not currently an applied lock, we may 34 * apply it (if possible). 35 * 4. We may upgrade the root of the tree (either extend its range, 36 * or upgrade its entire range from read to write). 37 * 38 * When an applied lock is modified in a way that reduces or downgrades any 39 * part of its range, we remove all its children (2 above). This particularly 40 * happens when a lock is unlocked. 41 * 42 * For each of those child trees we "wake up" the thread which is 43 * waiting for the lock so it can continue handling as follows: if the 44 * root of the tree applies, we do so (3). If it doesn't, it must 45 * conflict with some applied lock. We remove (wake up) all of its children 46 * (2), and add it is a new leaf to the tree rooted in the applied 47 * lock (1). We then repeat the process recursively with those 48 * children. 49 * 50 */ 51 52 #include <linux/capability.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/fs.h> 56 #include <linux/init.h> 57 #include <linux/security.h> 58 #include <linux/slab.h> 59 #include <linux/syscalls.h> 60 #include <linux/time.h> 61 #include <linux/rcupdate.h> 62 #include <linux/pid_namespace.h> 63 #include <linux/hashtable.h> 64 #include <linux/percpu.h> 65 #include <linux/sysctl.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/filelock.h> 69 70 #include <linux/uaccess.h> 71 72 #define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 73 #define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 74 #define IS_LEASE(fl) (fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) 75 #define IS_OFDLCK(fl) (fl->fl_flags & FL_OFDLCK) 76 #define IS_REMOTELCK(fl) (fl->fl_pid <= 0) 77 78 static bool lease_breaking(struct file_lock *fl) 79 { 80 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 81 } 82 83 static int target_leasetype(struct file_lock *fl) 84 { 85 if (fl->fl_flags & FL_UNLOCK_PENDING) 86 return F_UNLCK; 87 if (fl->fl_flags & FL_DOWNGRADE_PENDING) 88 return F_RDLCK; 89 return fl->fl_type; 90 } 91 92 static int leases_enable = 1; 93 static int lease_break_time = 45; 94 95 #ifdef CONFIG_SYSCTL 96 static struct ctl_table locks_sysctls[] = { 97 { 98 .procname = "leases-enable", 99 .data = &leases_enable, 100 .maxlen = sizeof(int), 101 .mode = 0644, 102 .proc_handler = proc_dointvec, 103 }, 104 #ifdef CONFIG_MMU 105 { 106 .procname = "lease-break-time", 107 .data = &lease_break_time, 108 .maxlen = sizeof(int), 109 .mode = 0644, 110 .proc_handler = proc_dointvec, 111 }, 112 #endif /* CONFIG_MMU */ 113 {} 114 }; 115 116 static int __init init_fs_locks_sysctls(void) 117 { 118 register_sysctl_init("fs", locks_sysctls); 119 return 0; 120 } 121 early_initcall(init_fs_locks_sysctls); 122 #endif /* CONFIG_SYSCTL */ 123 124 /* 125 * The global file_lock_list is only used for displaying /proc/locks, so we 126 * keep a list on each CPU, with each list protected by its own spinlock. 127 * Global serialization is done using file_rwsem. 128 * 129 * Note that alterations to the list also require that the relevant flc_lock is 130 * held. 131 */ 132 struct file_lock_list_struct { 133 spinlock_t lock; 134 struct hlist_head hlist; 135 }; 136 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list); 137 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem); 138 139 140 /* 141 * The blocked_hash is used to find POSIX lock loops for deadlock detection. 142 * It is protected by blocked_lock_lock. 143 * 144 * We hash locks by lockowner in order to optimize searching for the lock a 145 * particular lockowner is waiting on. 146 * 147 * FIXME: make this value scale via some heuristic? We generally will want more 148 * buckets when we have more lockowners holding locks, but that's a little 149 * difficult to determine without knowing what the workload will look like. 150 */ 151 #define BLOCKED_HASH_BITS 7 152 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS); 153 154 /* 155 * This lock protects the blocked_hash. Generally, if you're accessing it, you 156 * want to be holding this lock. 157 * 158 * In addition, it also protects the fl->fl_blocked_requests list, and the 159 * fl->fl_blocker pointer for file_lock structures that are acting as lock 160 * requests (in contrast to those that are acting as records of acquired locks). 161 * 162 * Note that when we acquire this lock in order to change the above fields, 163 * we often hold the flc_lock as well. In certain cases, when reading the fields 164 * protected by this lock, we can skip acquiring it iff we already hold the 165 * flc_lock. 166 */ 167 static DEFINE_SPINLOCK(blocked_lock_lock); 168 169 static struct kmem_cache *flctx_cache __read_mostly; 170 static struct kmem_cache *filelock_cache __read_mostly; 171 172 static struct file_lock_context * 173 locks_get_lock_context(struct inode *inode, int type) 174 { 175 struct file_lock_context *ctx; 176 177 /* paired with cmpxchg() below */ 178 ctx = smp_load_acquire(&inode->i_flctx); 179 if (likely(ctx) || type == F_UNLCK) 180 goto out; 181 182 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL); 183 if (!ctx) 184 goto out; 185 186 spin_lock_init(&ctx->flc_lock); 187 INIT_LIST_HEAD(&ctx->flc_flock); 188 INIT_LIST_HEAD(&ctx->flc_posix); 189 INIT_LIST_HEAD(&ctx->flc_lease); 190 191 /* 192 * Assign the pointer if it's not already assigned. If it is, then 193 * free the context we just allocated. 194 */ 195 if (cmpxchg(&inode->i_flctx, NULL, ctx)) { 196 kmem_cache_free(flctx_cache, ctx); 197 ctx = smp_load_acquire(&inode->i_flctx); 198 } 199 out: 200 trace_locks_get_lock_context(inode, type, ctx); 201 return ctx; 202 } 203 204 static void 205 locks_dump_ctx_list(struct list_head *list, char *list_type) 206 { 207 struct file_lock *fl; 208 209 list_for_each_entry(fl, list, fl_list) { 210 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 211 } 212 } 213 214 static void 215 locks_check_ctx_lists(struct inode *inode) 216 { 217 struct file_lock_context *ctx = inode->i_flctx; 218 219 if (unlikely(!list_empty(&ctx->flc_flock) || 220 !list_empty(&ctx->flc_posix) || 221 !list_empty(&ctx->flc_lease))) { 222 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n", 223 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), 224 inode->i_ino); 225 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK"); 226 locks_dump_ctx_list(&ctx->flc_posix, "POSIX"); 227 locks_dump_ctx_list(&ctx->flc_lease, "LEASE"); 228 } 229 } 230 231 static void 232 locks_check_ctx_file_list(struct file *filp, struct list_head *list, 233 char *list_type) 234 { 235 struct file_lock *fl; 236 struct inode *inode = locks_inode(filp); 237 238 list_for_each_entry(fl, list, fl_list) 239 if (fl->fl_file == filp) 240 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx " 241 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 242 list_type, MAJOR(inode->i_sb->s_dev), 243 MINOR(inode->i_sb->s_dev), inode->i_ino, 244 fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 245 } 246 247 void 248 locks_free_lock_context(struct inode *inode) 249 { 250 struct file_lock_context *ctx = inode->i_flctx; 251 252 if (unlikely(ctx)) { 253 locks_check_ctx_lists(inode); 254 kmem_cache_free(flctx_cache, ctx); 255 } 256 } 257 258 static void locks_init_lock_heads(struct file_lock *fl) 259 { 260 INIT_HLIST_NODE(&fl->fl_link); 261 INIT_LIST_HEAD(&fl->fl_list); 262 INIT_LIST_HEAD(&fl->fl_blocked_requests); 263 INIT_LIST_HEAD(&fl->fl_blocked_member); 264 init_waitqueue_head(&fl->fl_wait); 265 } 266 267 /* Allocate an empty lock structure. */ 268 struct file_lock *locks_alloc_lock(void) 269 { 270 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 271 272 if (fl) 273 locks_init_lock_heads(fl); 274 275 return fl; 276 } 277 EXPORT_SYMBOL_GPL(locks_alloc_lock); 278 279 void locks_release_private(struct file_lock *fl) 280 { 281 BUG_ON(waitqueue_active(&fl->fl_wait)); 282 BUG_ON(!list_empty(&fl->fl_list)); 283 BUG_ON(!list_empty(&fl->fl_blocked_requests)); 284 BUG_ON(!list_empty(&fl->fl_blocked_member)); 285 BUG_ON(!hlist_unhashed(&fl->fl_link)); 286 287 if (fl->fl_ops) { 288 if (fl->fl_ops->fl_release_private) 289 fl->fl_ops->fl_release_private(fl); 290 fl->fl_ops = NULL; 291 } 292 293 if (fl->fl_lmops) { 294 if (fl->fl_lmops->lm_put_owner) { 295 fl->fl_lmops->lm_put_owner(fl->fl_owner); 296 fl->fl_owner = NULL; 297 } 298 fl->fl_lmops = NULL; 299 } 300 } 301 EXPORT_SYMBOL_GPL(locks_release_private); 302 303 /** 304 * locks_owner_has_blockers - Check for blocking lock requests 305 * @flctx: file lock context 306 * @owner: lock owner 307 * 308 * Return values: 309 * %true: @owner has at least one blocker 310 * %false: @owner has no blockers 311 */ 312 bool locks_owner_has_blockers(struct file_lock_context *flctx, 313 fl_owner_t owner) 314 { 315 struct file_lock *fl; 316 317 spin_lock(&flctx->flc_lock); 318 list_for_each_entry(fl, &flctx->flc_posix, fl_list) { 319 if (fl->fl_owner != owner) 320 continue; 321 if (!list_empty(&fl->fl_blocked_requests)) { 322 spin_unlock(&flctx->flc_lock); 323 return true; 324 } 325 } 326 spin_unlock(&flctx->flc_lock); 327 return false; 328 } 329 EXPORT_SYMBOL_GPL(locks_owner_has_blockers); 330 331 /* Free a lock which is not in use. */ 332 void locks_free_lock(struct file_lock *fl) 333 { 334 locks_release_private(fl); 335 kmem_cache_free(filelock_cache, fl); 336 } 337 EXPORT_SYMBOL(locks_free_lock); 338 339 static void 340 locks_dispose_list(struct list_head *dispose) 341 { 342 struct file_lock *fl; 343 344 while (!list_empty(dispose)) { 345 fl = list_first_entry(dispose, struct file_lock, fl_list); 346 list_del_init(&fl->fl_list); 347 locks_free_lock(fl); 348 } 349 } 350 351 void locks_init_lock(struct file_lock *fl) 352 { 353 memset(fl, 0, sizeof(struct file_lock)); 354 locks_init_lock_heads(fl); 355 } 356 EXPORT_SYMBOL(locks_init_lock); 357 358 /* 359 * Initialize a new lock from an existing file_lock structure. 360 */ 361 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) 362 { 363 new->fl_owner = fl->fl_owner; 364 new->fl_pid = fl->fl_pid; 365 new->fl_file = NULL; 366 new->fl_flags = fl->fl_flags; 367 new->fl_type = fl->fl_type; 368 new->fl_start = fl->fl_start; 369 new->fl_end = fl->fl_end; 370 new->fl_lmops = fl->fl_lmops; 371 new->fl_ops = NULL; 372 373 if (fl->fl_lmops) { 374 if (fl->fl_lmops->lm_get_owner) 375 fl->fl_lmops->lm_get_owner(fl->fl_owner); 376 } 377 } 378 EXPORT_SYMBOL(locks_copy_conflock); 379 380 void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 381 { 382 /* "new" must be a freshly-initialized lock */ 383 WARN_ON_ONCE(new->fl_ops); 384 385 locks_copy_conflock(new, fl); 386 387 new->fl_file = fl->fl_file; 388 new->fl_ops = fl->fl_ops; 389 390 if (fl->fl_ops) { 391 if (fl->fl_ops->fl_copy_lock) 392 fl->fl_ops->fl_copy_lock(new, fl); 393 } 394 } 395 EXPORT_SYMBOL(locks_copy_lock); 396 397 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl) 398 { 399 struct file_lock *f; 400 401 /* 402 * As ctx->flc_lock is held, new requests cannot be added to 403 * ->fl_blocked_requests, so we don't need a lock to check if it 404 * is empty. 405 */ 406 if (list_empty(&fl->fl_blocked_requests)) 407 return; 408 spin_lock(&blocked_lock_lock); 409 list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests); 410 list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member) 411 f->fl_blocker = new; 412 spin_unlock(&blocked_lock_lock); 413 } 414 415 static inline int flock_translate_cmd(int cmd) { 416 switch (cmd) { 417 case LOCK_SH: 418 return F_RDLCK; 419 case LOCK_EX: 420 return F_WRLCK; 421 case LOCK_UN: 422 return F_UNLCK; 423 } 424 return -EINVAL; 425 } 426 427 /* Fill in a file_lock structure with an appropriate FLOCK lock. */ 428 static void flock_make_lock(struct file *filp, struct file_lock *fl, int type) 429 { 430 locks_init_lock(fl); 431 432 fl->fl_file = filp; 433 fl->fl_owner = filp; 434 fl->fl_pid = current->tgid; 435 fl->fl_flags = FL_FLOCK; 436 fl->fl_type = type; 437 fl->fl_end = OFFSET_MAX; 438 } 439 440 static int assign_type(struct file_lock *fl, long type) 441 { 442 switch (type) { 443 case F_RDLCK: 444 case F_WRLCK: 445 case F_UNLCK: 446 fl->fl_type = type; 447 break; 448 default: 449 return -EINVAL; 450 } 451 return 0; 452 } 453 454 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 455 struct flock64 *l) 456 { 457 switch (l->l_whence) { 458 case SEEK_SET: 459 fl->fl_start = 0; 460 break; 461 case SEEK_CUR: 462 fl->fl_start = filp->f_pos; 463 break; 464 case SEEK_END: 465 fl->fl_start = i_size_read(file_inode(filp)); 466 break; 467 default: 468 return -EINVAL; 469 } 470 if (l->l_start > OFFSET_MAX - fl->fl_start) 471 return -EOVERFLOW; 472 fl->fl_start += l->l_start; 473 if (fl->fl_start < 0) 474 return -EINVAL; 475 476 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 477 POSIX-2001 defines it. */ 478 if (l->l_len > 0) { 479 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start) 480 return -EOVERFLOW; 481 fl->fl_end = fl->fl_start + (l->l_len - 1); 482 483 } else if (l->l_len < 0) { 484 if (fl->fl_start + l->l_len < 0) 485 return -EINVAL; 486 fl->fl_end = fl->fl_start - 1; 487 fl->fl_start += l->l_len; 488 } else 489 fl->fl_end = OFFSET_MAX; 490 491 fl->fl_owner = current->files; 492 fl->fl_pid = current->tgid; 493 fl->fl_file = filp; 494 fl->fl_flags = FL_POSIX; 495 fl->fl_ops = NULL; 496 fl->fl_lmops = NULL; 497 498 return assign_type(fl, l->l_type); 499 } 500 501 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 502 * style lock. 503 */ 504 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 505 struct flock *l) 506 { 507 struct flock64 ll = { 508 .l_type = l->l_type, 509 .l_whence = l->l_whence, 510 .l_start = l->l_start, 511 .l_len = l->l_len, 512 }; 513 514 return flock64_to_posix_lock(filp, fl, &ll); 515 } 516 517 /* default lease lock manager operations */ 518 static bool 519 lease_break_callback(struct file_lock *fl) 520 { 521 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 522 return false; 523 } 524 525 static void 526 lease_setup(struct file_lock *fl, void **priv) 527 { 528 struct file *filp = fl->fl_file; 529 struct fasync_struct *fa = *priv; 530 531 /* 532 * fasync_insert_entry() returns the old entry if any. If there was no 533 * old entry, then it used "priv" and inserted it into the fasync list. 534 * Clear the pointer to indicate that it shouldn't be freed. 535 */ 536 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa)) 537 *priv = NULL; 538 539 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0); 540 } 541 542 static const struct lock_manager_operations lease_manager_ops = { 543 .lm_break = lease_break_callback, 544 .lm_change = lease_modify, 545 .lm_setup = lease_setup, 546 }; 547 548 /* 549 * Initialize a lease, use the default lock manager operations 550 */ 551 static int lease_init(struct file *filp, long type, struct file_lock *fl) 552 { 553 if (assign_type(fl, type) != 0) 554 return -EINVAL; 555 556 fl->fl_owner = filp; 557 fl->fl_pid = current->tgid; 558 559 fl->fl_file = filp; 560 fl->fl_flags = FL_LEASE; 561 fl->fl_start = 0; 562 fl->fl_end = OFFSET_MAX; 563 fl->fl_ops = NULL; 564 fl->fl_lmops = &lease_manager_ops; 565 return 0; 566 } 567 568 /* Allocate a file_lock initialised to this type of lease */ 569 static struct file_lock *lease_alloc(struct file *filp, long type) 570 { 571 struct file_lock *fl = locks_alloc_lock(); 572 int error = -ENOMEM; 573 574 if (fl == NULL) 575 return ERR_PTR(error); 576 577 error = lease_init(filp, type, fl); 578 if (error) { 579 locks_free_lock(fl); 580 return ERR_PTR(error); 581 } 582 return fl; 583 } 584 585 /* Check if two locks overlap each other. 586 */ 587 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 588 { 589 return ((fl1->fl_end >= fl2->fl_start) && 590 (fl2->fl_end >= fl1->fl_start)); 591 } 592 593 /* 594 * Check whether two locks have the same owner. 595 */ 596 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 597 { 598 return fl1->fl_owner == fl2->fl_owner; 599 } 600 601 /* Must be called with the flc_lock held! */ 602 static void locks_insert_global_locks(struct file_lock *fl) 603 { 604 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list); 605 606 percpu_rwsem_assert_held(&file_rwsem); 607 608 spin_lock(&fll->lock); 609 fl->fl_link_cpu = smp_processor_id(); 610 hlist_add_head(&fl->fl_link, &fll->hlist); 611 spin_unlock(&fll->lock); 612 } 613 614 /* Must be called with the flc_lock held! */ 615 static void locks_delete_global_locks(struct file_lock *fl) 616 { 617 struct file_lock_list_struct *fll; 618 619 percpu_rwsem_assert_held(&file_rwsem); 620 621 /* 622 * Avoid taking lock if already unhashed. This is safe since this check 623 * is done while holding the flc_lock, and new insertions into the list 624 * also require that it be held. 625 */ 626 if (hlist_unhashed(&fl->fl_link)) 627 return; 628 629 fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu); 630 spin_lock(&fll->lock); 631 hlist_del_init(&fl->fl_link); 632 spin_unlock(&fll->lock); 633 } 634 635 static unsigned long 636 posix_owner_key(struct file_lock *fl) 637 { 638 return (unsigned long)fl->fl_owner; 639 } 640 641 static void locks_insert_global_blocked(struct file_lock *waiter) 642 { 643 lockdep_assert_held(&blocked_lock_lock); 644 645 hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter)); 646 } 647 648 static void locks_delete_global_blocked(struct file_lock *waiter) 649 { 650 lockdep_assert_held(&blocked_lock_lock); 651 652 hash_del(&waiter->fl_link); 653 } 654 655 /* Remove waiter from blocker's block list. 656 * When blocker ends up pointing to itself then the list is empty. 657 * 658 * Must be called with blocked_lock_lock held. 659 */ 660 static void __locks_delete_block(struct file_lock *waiter) 661 { 662 locks_delete_global_blocked(waiter); 663 list_del_init(&waiter->fl_blocked_member); 664 } 665 666 static void __locks_wake_up_blocks(struct file_lock *blocker) 667 { 668 while (!list_empty(&blocker->fl_blocked_requests)) { 669 struct file_lock *waiter; 670 671 waiter = list_first_entry(&blocker->fl_blocked_requests, 672 struct file_lock, fl_blocked_member); 673 __locks_delete_block(waiter); 674 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify) 675 waiter->fl_lmops->lm_notify(waiter); 676 else 677 wake_up(&waiter->fl_wait); 678 679 /* 680 * The setting of fl_blocker to NULL marks the "done" 681 * point in deleting a block. Paired with acquire at the top 682 * of locks_delete_block(). 683 */ 684 smp_store_release(&waiter->fl_blocker, NULL); 685 } 686 } 687 688 /** 689 * locks_delete_block - stop waiting for a file lock 690 * @waiter: the lock which was waiting 691 * 692 * lockd/nfsd need to disconnect the lock while working on it. 693 */ 694 int locks_delete_block(struct file_lock *waiter) 695 { 696 int status = -ENOENT; 697 698 /* 699 * If fl_blocker is NULL, it won't be set again as this thread "owns" 700 * the lock and is the only one that might try to claim the lock. 701 * 702 * We use acquire/release to manage fl_blocker so that we can 703 * optimize away taking the blocked_lock_lock in many cases. 704 * 705 * The smp_load_acquire guarantees two things: 706 * 707 * 1/ that fl_blocked_requests can be tested locklessly. If something 708 * was recently added to that list it must have been in a locked region 709 * *before* the locked region when fl_blocker was set to NULL. 710 * 711 * 2/ that no other thread is accessing 'waiter', so it is safe to free 712 * it. __locks_wake_up_blocks is careful not to touch waiter after 713 * fl_blocker is released. 714 * 715 * If a lockless check of fl_blocker shows it to be NULL, we know that 716 * no new locks can be inserted into its fl_blocked_requests list, and 717 * can avoid doing anything further if the list is empty. 718 */ 719 if (!smp_load_acquire(&waiter->fl_blocker) && 720 list_empty(&waiter->fl_blocked_requests)) 721 return status; 722 723 spin_lock(&blocked_lock_lock); 724 if (waiter->fl_blocker) 725 status = 0; 726 __locks_wake_up_blocks(waiter); 727 __locks_delete_block(waiter); 728 729 /* 730 * The setting of fl_blocker to NULL marks the "done" point in deleting 731 * a block. Paired with acquire at the top of this function. 732 */ 733 smp_store_release(&waiter->fl_blocker, NULL); 734 spin_unlock(&blocked_lock_lock); 735 return status; 736 } 737 EXPORT_SYMBOL(locks_delete_block); 738 739 /* Insert waiter into blocker's block list. 740 * We use a circular list so that processes can be easily woken up in 741 * the order they blocked. The documentation doesn't require this but 742 * it seems like the reasonable thing to do. 743 * 744 * Must be called with both the flc_lock and blocked_lock_lock held. The 745 * fl_blocked_requests list itself is protected by the blocked_lock_lock, 746 * but by ensuring that the flc_lock is also held on insertions we can avoid 747 * taking the blocked_lock_lock in some cases when we see that the 748 * fl_blocked_requests list is empty. 749 * 750 * Rather than just adding to the list, we check for conflicts with any existing 751 * waiters, and add beneath any waiter that blocks the new waiter. 752 * Thus wakeups don't happen until needed. 753 */ 754 static void __locks_insert_block(struct file_lock *blocker, 755 struct file_lock *waiter, 756 bool conflict(struct file_lock *, 757 struct file_lock *)) 758 { 759 struct file_lock *fl; 760 BUG_ON(!list_empty(&waiter->fl_blocked_member)); 761 762 new_blocker: 763 list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member) 764 if (conflict(fl, waiter)) { 765 blocker = fl; 766 goto new_blocker; 767 } 768 waiter->fl_blocker = blocker; 769 list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests); 770 if (IS_POSIX(blocker) && !IS_OFDLCK(blocker)) 771 locks_insert_global_blocked(waiter); 772 773 /* The requests in waiter->fl_blocked are known to conflict with 774 * waiter, but might not conflict with blocker, or the requests 775 * and lock which block it. So they all need to be woken. 776 */ 777 __locks_wake_up_blocks(waiter); 778 } 779 780 /* Must be called with flc_lock held. */ 781 static void locks_insert_block(struct file_lock *blocker, 782 struct file_lock *waiter, 783 bool conflict(struct file_lock *, 784 struct file_lock *)) 785 { 786 spin_lock(&blocked_lock_lock); 787 __locks_insert_block(blocker, waiter, conflict); 788 spin_unlock(&blocked_lock_lock); 789 } 790 791 /* 792 * Wake up processes blocked waiting for blocker. 793 * 794 * Must be called with the inode->flc_lock held! 795 */ 796 static void locks_wake_up_blocks(struct file_lock *blocker) 797 { 798 /* 799 * Avoid taking global lock if list is empty. This is safe since new 800 * blocked requests are only added to the list under the flc_lock, and 801 * the flc_lock is always held here. Note that removal from the 802 * fl_blocked_requests list does not require the flc_lock, so we must 803 * recheck list_empty() after acquiring the blocked_lock_lock. 804 */ 805 if (list_empty(&blocker->fl_blocked_requests)) 806 return; 807 808 spin_lock(&blocked_lock_lock); 809 __locks_wake_up_blocks(blocker); 810 spin_unlock(&blocked_lock_lock); 811 } 812 813 static void 814 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before) 815 { 816 list_add_tail(&fl->fl_list, before); 817 locks_insert_global_locks(fl); 818 } 819 820 static void 821 locks_unlink_lock_ctx(struct file_lock *fl) 822 { 823 locks_delete_global_locks(fl); 824 list_del_init(&fl->fl_list); 825 locks_wake_up_blocks(fl); 826 } 827 828 static void 829 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose) 830 { 831 locks_unlink_lock_ctx(fl); 832 if (dispose) 833 list_add(&fl->fl_list, dispose); 834 else 835 locks_free_lock(fl); 836 } 837 838 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality 839 * checks for shared/exclusive status of overlapping locks. 840 */ 841 static bool locks_conflict(struct file_lock *caller_fl, 842 struct file_lock *sys_fl) 843 { 844 if (sys_fl->fl_type == F_WRLCK) 845 return true; 846 if (caller_fl->fl_type == F_WRLCK) 847 return true; 848 return false; 849 } 850 851 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 852 * checking before calling the locks_conflict(). 853 */ 854 static bool posix_locks_conflict(struct file_lock *caller_fl, 855 struct file_lock *sys_fl) 856 { 857 /* POSIX locks owned by the same process do not conflict with 858 * each other. 859 */ 860 if (posix_same_owner(caller_fl, sys_fl)) 861 return false; 862 863 /* Check whether they overlap */ 864 if (!locks_overlap(caller_fl, sys_fl)) 865 return false; 866 867 return locks_conflict(caller_fl, sys_fl); 868 } 869 870 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 871 * checking before calling the locks_conflict(). 872 */ 873 static bool flock_locks_conflict(struct file_lock *caller_fl, 874 struct file_lock *sys_fl) 875 { 876 /* FLOCK locks referring to the same filp do not conflict with 877 * each other. 878 */ 879 if (caller_fl->fl_file == sys_fl->fl_file) 880 return false; 881 882 return locks_conflict(caller_fl, sys_fl); 883 } 884 885 void 886 posix_test_lock(struct file *filp, struct file_lock *fl) 887 { 888 struct file_lock *cfl; 889 struct file_lock_context *ctx; 890 struct inode *inode = locks_inode(filp); 891 void *owner; 892 void (*func)(void); 893 894 ctx = smp_load_acquire(&inode->i_flctx); 895 if (!ctx || list_empty_careful(&ctx->flc_posix)) { 896 fl->fl_type = F_UNLCK; 897 return; 898 } 899 900 retry: 901 spin_lock(&ctx->flc_lock); 902 list_for_each_entry(cfl, &ctx->flc_posix, fl_list) { 903 if (!posix_locks_conflict(fl, cfl)) 904 continue; 905 if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable 906 && (*cfl->fl_lmops->lm_lock_expirable)(cfl)) { 907 owner = cfl->fl_lmops->lm_mod_owner; 908 func = cfl->fl_lmops->lm_expire_lock; 909 __module_get(owner); 910 spin_unlock(&ctx->flc_lock); 911 (*func)(); 912 module_put(owner); 913 goto retry; 914 } 915 locks_copy_conflock(fl, cfl); 916 goto out; 917 } 918 fl->fl_type = F_UNLCK; 919 out: 920 spin_unlock(&ctx->flc_lock); 921 return; 922 } 923 EXPORT_SYMBOL(posix_test_lock); 924 925 /* 926 * Deadlock detection: 927 * 928 * We attempt to detect deadlocks that are due purely to posix file 929 * locks. 930 * 931 * We assume that a task can be waiting for at most one lock at a time. 932 * So for any acquired lock, the process holding that lock may be 933 * waiting on at most one other lock. That lock in turns may be held by 934 * someone waiting for at most one other lock. Given a requested lock 935 * caller_fl which is about to wait for a conflicting lock block_fl, we 936 * follow this chain of waiters to ensure we are not about to create a 937 * cycle. 938 * 939 * Since we do this before we ever put a process to sleep on a lock, we 940 * are ensured that there is never a cycle; that is what guarantees that 941 * the while() loop in posix_locks_deadlock() eventually completes. 942 * 943 * Note: the above assumption may not be true when handling lock 944 * requests from a broken NFS client. It may also fail in the presence 945 * of tasks (such as posix threads) sharing the same open file table. 946 * To handle those cases, we just bail out after a few iterations. 947 * 948 * For FL_OFDLCK locks, the owner is the filp, not the files_struct. 949 * Because the owner is not even nominally tied to a thread of 950 * execution, the deadlock detection below can't reasonably work well. Just 951 * skip it for those. 952 * 953 * In principle, we could do a more limited deadlock detection on FL_OFDLCK 954 * locks that just checks for the case where two tasks are attempting to 955 * upgrade from read to write locks on the same inode. 956 */ 957 958 #define MAX_DEADLK_ITERATIONS 10 959 960 /* Find a lock that the owner of the given block_fl is blocking on. */ 961 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 962 { 963 struct file_lock *fl; 964 965 hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) { 966 if (posix_same_owner(fl, block_fl)) { 967 while (fl->fl_blocker) 968 fl = fl->fl_blocker; 969 return fl; 970 } 971 } 972 return NULL; 973 } 974 975 /* Must be called with the blocked_lock_lock held! */ 976 static int posix_locks_deadlock(struct file_lock *caller_fl, 977 struct file_lock *block_fl) 978 { 979 int i = 0; 980 981 lockdep_assert_held(&blocked_lock_lock); 982 983 /* 984 * This deadlock detector can't reasonably detect deadlocks with 985 * FL_OFDLCK locks, since they aren't owned by a process, per-se. 986 */ 987 if (IS_OFDLCK(caller_fl)) 988 return 0; 989 990 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 991 if (i++ > MAX_DEADLK_ITERATIONS) 992 return 0; 993 if (posix_same_owner(caller_fl, block_fl)) 994 return 1; 995 } 996 return 0; 997 } 998 999 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 1000 * after any leases, but before any posix locks. 1001 * 1002 * Note that if called with an FL_EXISTS argument, the caller may determine 1003 * whether or not a lock was successfully freed by testing the return 1004 * value for -ENOENT. 1005 */ 1006 static int flock_lock_inode(struct inode *inode, struct file_lock *request) 1007 { 1008 struct file_lock *new_fl = NULL; 1009 struct file_lock *fl; 1010 struct file_lock_context *ctx; 1011 int error = 0; 1012 bool found = false; 1013 LIST_HEAD(dispose); 1014 1015 ctx = locks_get_lock_context(inode, request->fl_type); 1016 if (!ctx) { 1017 if (request->fl_type != F_UNLCK) 1018 return -ENOMEM; 1019 return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0; 1020 } 1021 1022 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 1023 new_fl = locks_alloc_lock(); 1024 if (!new_fl) 1025 return -ENOMEM; 1026 } 1027 1028 percpu_down_read(&file_rwsem); 1029 spin_lock(&ctx->flc_lock); 1030 if (request->fl_flags & FL_ACCESS) 1031 goto find_conflict; 1032 1033 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1034 if (request->fl_file != fl->fl_file) 1035 continue; 1036 if (request->fl_type == fl->fl_type) 1037 goto out; 1038 found = true; 1039 locks_delete_lock_ctx(fl, &dispose); 1040 break; 1041 } 1042 1043 if (request->fl_type == F_UNLCK) { 1044 if ((request->fl_flags & FL_EXISTS) && !found) 1045 error = -ENOENT; 1046 goto out; 1047 } 1048 1049 find_conflict: 1050 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1051 if (!flock_locks_conflict(request, fl)) 1052 continue; 1053 error = -EAGAIN; 1054 if (!(request->fl_flags & FL_SLEEP)) 1055 goto out; 1056 error = FILE_LOCK_DEFERRED; 1057 locks_insert_block(fl, request, flock_locks_conflict); 1058 goto out; 1059 } 1060 if (request->fl_flags & FL_ACCESS) 1061 goto out; 1062 locks_copy_lock(new_fl, request); 1063 locks_move_blocks(new_fl, request); 1064 locks_insert_lock_ctx(new_fl, &ctx->flc_flock); 1065 new_fl = NULL; 1066 error = 0; 1067 1068 out: 1069 spin_unlock(&ctx->flc_lock); 1070 percpu_up_read(&file_rwsem); 1071 if (new_fl) 1072 locks_free_lock(new_fl); 1073 locks_dispose_list(&dispose); 1074 trace_flock_lock_inode(inode, request, error); 1075 return error; 1076 } 1077 1078 static int posix_lock_inode(struct inode *inode, struct file_lock *request, 1079 struct file_lock *conflock) 1080 { 1081 struct file_lock *fl, *tmp; 1082 struct file_lock *new_fl = NULL; 1083 struct file_lock *new_fl2 = NULL; 1084 struct file_lock *left = NULL; 1085 struct file_lock *right = NULL; 1086 struct file_lock_context *ctx; 1087 int error; 1088 bool added = false; 1089 LIST_HEAD(dispose); 1090 void *owner; 1091 void (*func)(void); 1092 1093 ctx = locks_get_lock_context(inode, request->fl_type); 1094 if (!ctx) 1095 return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM; 1096 1097 /* 1098 * We may need two file_lock structures for this operation, 1099 * so we get them in advance to avoid races. 1100 * 1101 * In some cases we can be sure, that no new locks will be needed 1102 */ 1103 if (!(request->fl_flags & FL_ACCESS) && 1104 (request->fl_type != F_UNLCK || 1105 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 1106 new_fl = locks_alloc_lock(); 1107 new_fl2 = locks_alloc_lock(); 1108 } 1109 1110 retry: 1111 percpu_down_read(&file_rwsem); 1112 spin_lock(&ctx->flc_lock); 1113 /* 1114 * New lock request. Walk all POSIX locks and look for conflicts. If 1115 * there are any, either return error or put the request on the 1116 * blocker's list of waiters and the global blocked_hash. 1117 */ 1118 if (request->fl_type != F_UNLCK) { 1119 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1120 if (!posix_locks_conflict(request, fl)) 1121 continue; 1122 if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable 1123 && (*fl->fl_lmops->lm_lock_expirable)(fl)) { 1124 owner = fl->fl_lmops->lm_mod_owner; 1125 func = fl->fl_lmops->lm_expire_lock; 1126 __module_get(owner); 1127 spin_unlock(&ctx->flc_lock); 1128 percpu_up_read(&file_rwsem); 1129 (*func)(); 1130 module_put(owner); 1131 goto retry; 1132 } 1133 if (conflock) 1134 locks_copy_conflock(conflock, fl); 1135 error = -EAGAIN; 1136 if (!(request->fl_flags & FL_SLEEP)) 1137 goto out; 1138 /* 1139 * Deadlock detection and insertion into the blocked 1140 * locks list must be done while holding the same lock! 1141 */ 1142 error = -EDEADLK; 1143 spin_lock(&blocked_lock_lock); 1144 /* 1145 * Ensure that we don't find any locks blocked on this 1146 * request during deadlock detection. 1147 */ 1148 __locks_wake_up_blocks(request); 1149 if (likely(!posix_locks_deadlock(request, fl))) { 1150 error = FILE_LOCK_DEFERRED; 1151 __locks_insert_block(fl, request, 1152 posix_locks_conflict); 1153 } 1154 spin_unlock(&blocked_lock_lock); 1155 goto out; 1156 } 1157 } 1158 1159 /* If we're just looking for a conflict, we're done. */ 1160 error = 0; 1161 if (request->fl_flags & FL_ACCESS) 1162 goto out; 1163 1164 /* Find the first old lock with the same owner as the new lock */ 1165 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1166 if (posix_same_owner(request, fl)) 1167 break; 1168 } 1169 1170 /* Process locks with this owner. */ 1171 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) { 1172 if (!posix_same_owner(request, fl)) 1173 break; 1174 1175 /* Detect adjacent or overlapping regions (if same lock type) */ 1176 if (request->fl_type == fl->fl_type) { 1177 /* In all comparisons of start vs end, use 1178 * "start - 1" rather than "end + 1". If end 1179 * is OFFSET_MAX, end + 1 will become negative. 1180 */ 1181 if (fl->fl_end < request->fl_start - 1) 1182 continue; 1183 /* If the next lock in the list has entirely bigger 1184 * addresses than the new one, insert the lock here. 1185 */ 1186 if (fl->fl_start - 1 > request->fl_end) 1187 break; 1188 1189 /* If we come here, the new and old lock are of the 1190 * same type and adjacent or overlapping. Make one 1191 * lock yielding from the lower start address of both 1192 * locks to the higher end address. 1193 */ 1194 if (fl->fl_start > request->fl_start) 1195 fl->fl_start = request->fl_start; 1196 else 1197 request->fl_start = fl->fl_start; 1198 if (fl->fl_end < request->fl_end) 1199 fl->fl_end = request->fl_end; 1200 else 1201 request->fl_end = fl->fl_end; 1202 if (added) { 1203 locks_delete_lock_ctx(fl, &dispose); 1204 continue; 1205 } 1206 request = fl; 1207 added = true; 1208 } else { 1209 /* Processing for different lock types is a bit 1210 * more complex. 1211 */ 1212 if (fl->fl_end < request->fl_start) 1213 continue; 1214 if (fl->fl_start > request->fl_end) 1215 break; 1216 if (request->fl_type == F_UNLCK) 1217 added = true; 1218 if (fl->fl_start < request->fl_start) 1219 left = fl; 1220 /* If the next lock in the list has a higher end 1221 * address than the new one, insert the new one here. 1222 */ 1223 if (fl->fl_end > request->fl_end) { 1224 right = fl; 1225 break; 1226 } 1227 if (fl->fl_start >= request->fl_start) { 1228 /* The new lock completely replaces an old 1229 * one (This may happen several times). 1230 */ 1231 if (added) { 1232 locks_delete_lock_ctx(fl, &dispose); 1233 continue; 1234 } 1235 /* 1236 * Replace the old lock with new_fl, and 1237 * remove the old one. It's safe to do the 1238 * insert here since we know that we won't be 1239 * using new_fl later, and that the lock is 1240 * just replacing an existing lock. 1241 */ 1242 error = -ENOLCK; 1243 if (!new_fl) 1244 goto out; 1245 locks_copy_lock(new_fl, request); 1246 locks_move_blocks(new_fl, request); 1247 request = new_fl; 1248 new_fl = NULL; 1249 locks_insert_lock_ctx(request, &fl->fl_list); 1250 locks_delete_lock_ctx(fl, &dispose); 1251 added = true; 1252 } 1253 } 1254 } 1255 1256 /* 1257 * The above code only modifies existing locks in case of merging or 1258 * replacing. If new lock(s) need to be inserted all modifications are 1259 * done below this, so it's safe yet to bail out. 1260 */ 1261 error = -ENOLCK; /* "no luck" */ 1262 if (right && left == right && !new_fl2) 1263 goto out; 1264 1265 error = 0; 1266 if (!added) { 1267 if (request->fl_type == F_UNLCK) { 1268 if (request->fl_flags & FL_EXISTS) 1269 error = -ENOENT; 1270 goto out; 1271 } 1272 1273 if (!new_fl) { 1274 error = -ENOLCK; 1275 goto out; 1276 } 1277 locks_copy_lock(new_fl, request); 1278 locks_move_blocks(new_fl, request); 1279 locks_insert_lock_ctx(new_fl, &fl->fl_list); 1280 fl = new_fl; 1281 new_fl = NULL; 1282 } 1283 if (right) { 1284 if (left == right) { 1285 /* The new lock breaks the old one in two pieces, 1286 * so we have to use the second new lock. 1287 */ 1288 left = new_fl2; 1289 new_fl2 = NULL; 1290 locks_copy_lock(left, right); 1291 locks_insert_lock_ctx(left, &fl->fl_list); 1292 } 1293 right->fl_start = request->fl_end + 1; 1294 locks_wake_up_blocks(right); 1295 } 1296 if (left) { 1297 left->fl_end = request->fl_start - 1; 1298 locks_wake_up_blocks(left); 1299 } 1300 out: 1301 spin_unlock(&ctx->flc_lock); 1302 percpu_up_read(&file_rwsem); 1303 /* 1304 * Free any unused locks. 1305 */ 1306 if (new_fl) 1307 locks_free_lock(new_fl); 1308 if (new_fl2) 1309 locks_free_lock(new_fl2); 1310 locks_dispose_list(&dispose); 1311 trace_posix_lock_inode(inode, request, error); 1312 1313 return error; 1314 } 1315 1316 /** 1317 * posix_lock_file - Apply a POSIX-style lock to a file 1318 * @filp: The file to apply the lock to 1319 * @fl: The lock to be applied 1320 * @conflock: Place to return a copy of the conflicting lock, if found. 1321 * 1322 * Add a POSIX style lock to a file. 1323 * We merge adjacent & overlapping locks whenever possible. 1324 * POSIX locks are sorted by owner task, then by starting address 1325 * 1326 * Note that if called with an FL_EXISTS argument, the caller may determine 1327 * whether or not a lock was successfully freed by testing the return 1328 * value for -ENOENT. 1329 */ 1330 int posix_lock_file(struct file *filp, struct file_lock *fl, 1331 struct file_lock *conflock) 1332 { 1333 return posix_lock_inode(locks_inode(filp), fl, conflock); 1334 } 1335 EXPORT_SYMBOL(posix_lock_file); 1336 1337 /** 1338 * posix_lock_inode_wait - Apply a POSIX-style lock to a file 1339 * @inode: inode of file to which lock request should be applied 1340 * @fl: The lock to be applied 1341 * 1342 * Apply a POSIX style lock request to an inode. 1343 */ 1344 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) 1345 { 1346 int error; 1347 might_sleep (); 1348 for (;;) { 1349 error = posix_lock_inode(inode, fl, NULL); 1350 if (error != FILE_LOCK_DEFERRED) 1351 break; 1352 error = wait_event_interruptible(fl->fl_wait, 1353 list_empty(&fl->fl_blocked_member)); 1354 if (error) 1355 break; 1356 } 1357 locks_delete_block(fl); 1358 return error; 1359 } 1360 1361 static void lease_clear_pending(struct file_lock *fl, int arg) 1362 { 1363 switch (arg) { 1364 case F_UNLCK: 1365 fl->fl_flags &= ~FL_UNLOCK_PENDING; 1366 fallthrough; 1367 case F_RDLCK: 1368 fl->fl_flags &= ~FL_DOWNGRADE_PENDING; 1369 } 1370 } 1371 1372 /* We already had a lease on this file; just change its type */ 1373 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) 1374 { 1375 int error = assign_type(fl, arg); 1376 1377 if (error) 1378 return error; 1379 lease_clear_pending(fl, arg); 1380 locks_wake_up_blocks(fl); 1381 if (arg == F_UNLCK) { 1382 struct file *filp = fl->fl_file; 1383 1384 f_delown(filp); 1385 filp->f_owner.signum = 0; 1386 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 1387 if (fl->fl_fasync != NULL) { 1388 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 1389 fl->fl_fasync = NULL; 1390 } 1391 locks_delete_lock_ctx(fl, dispose); 1392 } 1393 return 0; 1394 } 1395 EXPORT_SYMBOL(lease_modify); 1396 1397 static bool past_time(unsigned long then) 1398 { 1399 if (!then) 1400 /* 0 is a special value meaning "this never expires": */ 1401 return false; 1402 return time_after(jiffies, then); 1403 } 1404 1405 static void time_out_leases(struct inode *inode, struct list_head *dispose) 1406 { 1407 struct file_lock_context *ctx = inode->i_flctx; 1408 struct file_lock *fl, *tmp; 1409 1410 lockdep_assert_held(&ctx->flc_lock); 1411 1412 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1413 trace_time_out_leases(inode, fl); 1414 if (past_time(fl->fl_downgrade_time)) 1415 lease_modify(fl, F_RDLCK, dispose); 1416 if (past_time(fl->fl_break_time)) 1417 lease_modify(fl, F_UNLCK, dispose); 1418 } 1419 } 1420 1421 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker) 1422 { 1423 bool rc; 1424 1425 if (lease->fl_lmops->lm_breaker_owns_lease 1426 && lease->fl_lmops->lm_breaker_owns_lease(lease)) 1427 return false; 1428 if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) { 1429 rc = false; 1430 goto trace; 1431 } 1432 if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) { 1433 rc = false; 1434 goto trace; 1435 } 1436 1437 rc = locks_conflict(breaker, lease); 1438 trace: 1439 trace_leases_conflict(rc, lease, breaker); 1440 return rc; 1441 } 1442 1443 static bool 1444 any_leases_conflict(struct inode *inode, struct file_lock *breaker) 1445 { 1446 struct file_lock_context *ctx = inode->i_flctx; 1447 struct file_lock *fl; 1448 1449 lockdep_assert_held(&ctx->flc_lock); 1450 1451 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1452 if (leases_conflict(fl, breaker)) 1453 return true; 1454 } 1455 return false; 1456 } 1457 1458 /** 1459 * __break_lease - revoke all outstanding leases on file 1460 * @inode: the inode of the file to return 1461 * @mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR: 1462 * break all leases 1463 * @type: FL_LEASE: break leases and delegations; FL_DELEG: break 1464 * only delegations 1465 * 1466 * break_lease (inlined for speed) has checked there already is at least 1467 * some kind of lock (maybe a lease) on this file. Leases are broken on 1468 * a call to open() or truncate(). This function can sleep unless you 1469 * specified %O_NONBLOCK to your open(). 1470 */ 1471 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) 1472 { 1473 int error = 0; 1474 struct file_lock_context *ctx; 1475 struct file_lock *new_fl, *fl, *tmp; 1476 unsigned long break_time; 1477 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1478 LIST_HEAD(dispose); 1479 1480 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1481 if (IS_ERR(new_fl)) 1482 return PTR_ERR(new_fl); 1483 new_fl->fl_flags = type; 1484 1485 /* typically we will check that ctx is non-NULL before calling */ 1486 ctx = smp_load_acquire(&inode->i_flctx); 1487 if (!ctx) { 1488 WARN_ON_ONCE(1); 1489 goto free_lock; 1490 } 1491 1492 percpu_down_read(&file_rwsem); 1493 spin_lock(&ctx->flc_lock); 1494 1495 time_out_leases(inode, &dispose); 1496 1497 if (!any_leases_conflict(inode, new_fl)) 1498 goto out; 1499 1500 break_time = 0; 1501 if (lease_break_time > 0) { 1502 break_time = jiffies + lease_break_time * HZ; 1503 if (break_time == 0) 1504 break_time++; /* so that 0 means no break time */ 1505 } 1506 1507 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1508 if (!leases_conflict(fl, new_fl)) 1509 continue; 1510 if (want_write) { 1511 if (fl->fl_flags & FL_UNLOCK_PENDING) 1512 continue; 1513 fl->fl_flags |= FL_UNLOCK_PENDING; 1514 fl->fl_break_time = break_time; 1515 } else { 1516 if (lease_breaking(fl)) 1517 continue; 1518 fl->fl_flags |= FL_DOWNGRADE_PENDING; 1519 fl->fl_downgrade_time = break_time; 1520 } 1521 if (fl->fl_lmops->lm_break(fl)) 1522 locks_delete_lock_ctx(fl, &dispose); 1523 } 1524 1525 if (list_empty(&ctx->flc_lease)) 1526 goto out; 1527 1528 if (mode & O_NONBLOCK) { 1529 trace_break_lease_noblock(inode, new_fl); 1530 error = -EWOULDBLOCK; 1531 goto out; 1532 } 1533 1534 restart: 1535 fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list); 1536 break_time = fl->fl_break_time; 1537 if (break_time != 0) 1538 break_time -= jiffies; 1539 if (break_time == 0) 1540 break_time++; 1541 locks_insert_block(fl, new_fl, leases_conflict); 1542 trace_break_lease_block(inode, new_fl); 1543 spin_unlock(&ctx->flc_lock); 1544 percpu_up_read(&file_rwsem); 1545 1546 locks_dispose_list(&dispose); 1547 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1548 list_empty(&new_fl->fl_blocked_member), 1549 break_time); 1550 1551 percpu_down_read(&file_rwsem); 1552 spin_lock(&ctx->flc_lock); 1553 trace_break_lease_unblock(inode, new_fl); 1554 locks_delete_block(new_fl); 1555 if (error >= 0) { 1556 /* 1557 * Wait for the next conflicting lease that has not been 1558 * broken yet 1559 */ 1560 if (error == 0) 1561 time_out_leases(inode, &dispose); 1562 if (any_leases_conflict(inode, new_fl)) 1563 goto restart; 1564 error = 0; 1565 } 1566 out: 1567 spin_unlock(&ctx->flc_lock); 1568 percpu_up_read(&file_rwsem); 1569 locks_dispose_list(&dispose); 1570 free_lock: 1571 locks_free_lock(new_fl); 1572 return error; 1573 } 1574 EXPORT_SYMBOL(__break_lease); 1575 1576 /** 1577 * lease_get_mtime - update modified time of an inode with exclusive lease 1578 * @inode: the inode 1579 * @time: pointer to a timespec which contains the last modified time 1580 * 1581 * This is to force NFS clients to flush their caches for files with 1582 * exclusive leases. The justification is that if someone has an 1583 * exclusive lease, then they could be modifying it. 1584 */ 1585 void lease_get_mtime(struct inode *inode, struct timespec64 *time) 1586 { 1587 bool has_lease = false; 1588 struct file_lock_context *ctx; 1589 struct file_lock *fl; 1590 1591 ctx = smp_load_acquire(&inode->i_flctx); 1592 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1593 spin_lock(&ctx->flc_lock); 1594 fl = list_first_entry_or_null(&ctx->flc_lease, 1595 struct file_lock, fl_list); 1596 if (fl && (fl->fl_type == F_WRLCK)) 1597 has_lease = true; 1598 spin_unlock(&ctx->flc_lock); 1599 } 1600 1601 if (has_lease) 1602 *time = current_time(inode); 1603 } 1604 EXPORT_SYMBOL(lease_get_mtime); 1605 1606 /** 1607 * fcntl_getlease - Enquire what lease is currently active 1608 * @filp: the file 1609 * 1610 * The value returned by this function will be one of 1611 * (if no lease break is pending): 1612 * 1613 * %F_RDLCK to indicate a shared lease is held. 1614 * 1615 * %F_WRLCK to indicate an exclusive lease is held. 1616 * 1617 * %F_UNLCK to indicate no lease is held. 1618 * 1619 * (if a lease break is pending): 1620 * 1621 * %F_RDLCK to indicate an exclusive lease needs to be 1622 * changed to a shared lease (or removed). 1623 * 1624 * %F_UNLCK to indicate the lease needs to be removed. 1625 * 1626 * XXX: sfr & willy disagree over whether F_INPROGRESS 1627 * should be returned to userspace. 1628 */ 1629 int fcntl_getlease(struct file *filp) 1630 { 1631 struct file_lock *fl; 1632 struct inode *inode = locks_inode(filp); 1633 struct file_lock_context *ctx; 1634 int type = F_UNLCK; 1635 LIST_HEAD(dispose); 1636 1637 ctx = smp_load_acquire(&inode->i_flctx); 1638 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1639 percpu_down_read(&file_rwsem); 1640 spin_lock(&ctx->flc_lock); 1641 time_out_leases(inode, &dispose); 1642 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1643 if (fl->fl_file != filp) 1644 continue; 1645 type = target_leasetype(fl); 1646 break; 1647 } 1648 spin_unlock(&ctx->flc_lock); 1649 percpu_up_read(&file_rwsem); 1650 1651 locks_dispose_list(&dispose); 1652 } 1653 return type; 1654 } 1655 1656 /** 1657 * check_conflicting_open - see if the given file points to an inode that has 1658 * an existing open that would conflict with the 1659 * desired lease. 1660 * @filp: file to check 1661 * @arg: type of lease that we're trying to acquire 1662 * @flags: current lock flags 1663 * 1664 * Check to see if there's an existing open fd on this file that would 1665 * conflict with the lease we're trying to set. 1666 */ 1667 static int 1668 check_conflicting_open(struct file *filp, const long arg, int flags) 1669 { 1670 struct inode *inode = locks_inode(filp); 1671 int self_wcount = 0, self_rcount = 0; 1672 1673 if (flags & FL_LAYOUT) 1674 return 0; 1675 if (flags & FL_DELEG) 1676 /* We leave these checks to the caller */ 1677 return 0; 1678 1679 if (arg == F_RDLCK) 1680 return inode_is_open_for_write(inode) ? -EAGAIN : 0; 1681 else if (arg != F_WRLCK) 1682 return 0; 1683 1684 /* 1685 * Make sure that only read/write count is from lease requestor. 1686 * Note that this will result in denying write leases when i_writecount 1687 * is negative, which is what we want. (We shouldn't grant write leases 1688 * on files open for execution.) 1689 */ 1690 if (filp->f_mode & FMODE_WRITE) 1691 self_wcount = 1; 1692 else if (filp->f_mode & FMODE_READ) 1693 self_rcount = 1; 1694 1695 if (atomic_read(&inode->i_writecount) != self_wcount || 1696 atomic_read(&inode->i_readcount) != self_rcount) 1697 return -EAGAIN; 1698 1699 return 0; 1700 } 1701 1702 static int 1703 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv) 1704 { 1705 struct file_lock *fl, *my_fl = NULL, *lease; 1706 struct inode *inode = locks_inode(filp); 1707 struct file_lock_context *ctx; 1708 bool is_deleg = (*flp)->fl_flags & FL_DELEG; 1709 int error; 1710 LIST_HEAD(dispose); 1711 1712 lease = *flp; 1713 trace_generic_add_lease(inode, lease); 1714 1715 /* Note that arg is never F_UNLCK here */ 1716 ctx = locks_get_lock_context(inode, arg); 1717 if (!ctx) 1718 return -ENOMEM; 1719 1720 /* 1721 * In the delegation case we need mutual exclusion with 1722 * a number of operations that take the i_mutex. We trylock 1723 * because delegations are an optional optimization, and if 1724 * there's some chance of a conflict--we'd rather not 1725 * bother, maybe that's a sign this just isn't a good file to 1726 * hand out a delegation on. 1727 */ 1728 if (is_deleg && !inode_trylock(inode)) 1729 return -EAGAIN; 1730 1731 if (is_deleg && arg == F_WRLCK) { 1732 /* Write delegations are not currently supported: */ 1733 inode_unlock(inode); 1734 WARN_ON_ONCE(1); 1735 return -EINVAL; 1736 } 1737 1738 percpu_down_read(&file_rwsem); 1739 spin_lock(&ctx->flc_lock); 1740 time_out_leases(inode, &dispose); 1741 error = check_conflicting_open(filp, arg, lease->fl_flags); 1742 if (error) 1743 goto out; 1744 1745 /* 1746 * At this point, we know that if there is an exclusive 1747 * lease on this file, then we hold it on this filp 1748 * (otherwise our open of this file would have blocked). 1749 * And if we are trying to acquire an exclusive lease, 1750 * then the file is not open by anyone (including us) 1751 * except for this filp. 1752 */ 1753 error = -EAGAIN; 1754 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1755 if (fl->fl_file == filp && 1756 fl->fl_owner == lease->fl_owner) { 1757 my_fl = fl; 1758 continue; 1759 } 1760 1761 /* 1762 * No exclusive leases if someone else has a lease on 1763 * this file: 1764 */ 1765 if (arg == F_WRLCK) 1766 goto out; 1767 /* 1768 * Modifying our existing lease is OK, but no getting a 1769 * new lease if someone else is opening for write: 1770 */ 1771 if (fl->fl_flags & FL_UNLOCK_PENDING) 1772 goto out; 1773 } 1774 1775 if (my_fl != NULL) { 1776 lease = my_fl; 1777 error = lease->fl_lmops->lm_change(lease, arg, &dispose); 1778 if (error) 1779 goto out; 1780 goto out_setup; 1781 } 1782 1783 error = -EINVAL; 1784 if (!leases_enable) 1785 goto out; 1786 1787 locks_insert_lock_ctx(lease, &ctx->flc_lease); 1788 /* 1789 * The check in break_lease() is lockless. It's possible for another 1790 * open to race in after we did the earlier check for a conflicting 1791 * open but before the lease was inserted. Check again for a 1792 * conflicting open and cancel the lease if there is one. 1793 * 1794 * We also add a barrier here to ensure that the insertion of the lock 1795 * precedes these checks. 1796 */ 1797 smp_mb(); 1798 error = check_conflicting_open(filp, arg, lease->fl_flags); 1799 if (error) { 1800 locks_unlink_lock_ctx(lease); 1801 goto out; 1802 } 1803 1804 out_setup: 1805 if (lease->fl_lmops->lm_setup) 1806 lease->fl_lmops->lm_setup(lease, priv); 1807 out: 1808 spin_unlock(&ctx->flc_lock); 1809 percpu_up_read(&file_rwsem); 1810 locks_dispose_list(&dispose); 1811 if (is_deleg) 1812 inode_unlock(inode); 1813 if (!error && !my_fl) 1814 *flp = NULL; 1815 return error; 1816 } 1817 1818 static int generic_delete_lease(struct file *filp, void *owner) 1819 { 1820 int error = -EAGAIN; 1821 struct file_lock *fl, *victim = NULL; 1822 struct inode *inode = locks_inode(filp); 1823 struct file_lock_context *ctx; 1824 LIST_HEAD(dispose); 1825 1826 ctx = smp_load_acquire(&inode->i_flctx); 1827 if (!ctx) { 1828 trace_generic_delete_lease(inode, NULL); 1829 return error; 1830 } 1831 1832 percpu_down_read(&file_rwsem); 1833 spin_lock(&ctx->flc_lock); 1834 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1835 if (fl->fl_file == filp && 1836 fl->fl_owner == owner) { 1837 victim = fl; 1838 break; 1839 } 1840 } 1841 trace_generic_delete_lease(inode, victim); 1842 if (victim) 1843 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose); 1844 spin_unlock(&ctx->flc_lock); 1845 percpu_up_read(&file_rwsem); 1846 locks_dispose_list(&dispose); 1847 return error; 1848 } 1849 1850 /** 1851 * generic_setlease - sets a lease on an open file 1852 * @filp: file pointer 1853 * @arg: type of lease to obtain 1854 * @flp: input - file_lock to use, output - file_lock inserted 1855 * @priv: private data for lm_setup (may be NULL if lm_setup 1856 * doesn't require it) 1857 * 1858 * The (input) flp->fl_lmops->lm_break function is required 1859 * by break_lease(). 1860 */ 1861 int generic_setlease(struct file *filp, long arg, struct file_lock **flp, 1862 void **priv) 1863 { 1864 struct inode *inode = locks_inode(filp); 1865 int error; 1866 1867 if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE)) 1868 return -EACCES; 1869 if (!S_ISREG(inode->i_mode)) 1870 return -EINVAL; 1871 error = security_file_lock(filp, arg); 1872 if (error) 1873 return error; 1874 1875 switch (arg) { 1876 case F_UNLCK: 1877 return generic_delete_lease(filp, *priv); 1878 case F_RDLCK: 1879 case F_WRLCK: 1880 if (!(*flp)->fl_lmops->lm_break) { 1881 WARN_ON_ONCE(1); 1882 return -ENOLCK; 1883 } 1884 1885 return generic_add_lease(filp, arg, flp, priv); 1886 default: 1887 return -EINVAL; 1888 } 1889 } 1890 EXPORT_SYMBOL(generic_setlease); 1891 1892 #if IS_ENABLED(CONFIG_SRCU) 1893 /* 1894 * Kernel subsystems can register to be notified on any attempt to set 1895 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd 1896 * to close files that it may have cached when there is an attempt to set a 1897 * conflicting lease. 1898 */ 1899 static struct srcu_notifier_head lease_notifier_chain; 1900 1901 static inline void 1902 lease_notifier_chain_init(void) 1903 { 1904 srcu_init_notifier_head(&lease_notifier_chain); 1905 } 1906 1907 static inline void 1908 setlease_notifier(long arg, struct file_lock *lease) 1909 { 1910 if (arg != F_UNLCK) 1911 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease); 1912 } 1913 1914 int lease_register_notifier(struct notifier_block *nb) 1915 { 1916 return srcu_notifier_chain_register(&lease_notifier_chain, nb); 1917 } 1918 EXPORT_SYMBOL_GPL(lease_register_notifier); 1919 1920 void lease_unregister_notifier(struct notifier_block *nb) 1921 { 1922 srcu_notifier_chain_unregister(&lease_notifier_chain, nb); 1923 } 1924 EXPORT_SYMBOL_GPL(lease_unregister_notifier); 1925 1926 #else /* !IS_ENABLED(CONFIG_SRCU) */ 1927 static inline void 1928 lease_notifier_chain_init(void) 1929 { 1930 } 1931 1932 static inline void 1933 setlease_notifier(long arg, struct file_lock *lease) 1934 { 1935 } 1936 1937 int lease_register_notifier(struct notifier_block *nb) 1938 { 1939 return 0; 1940 } 1941 EXPORT_SYMBOL_GPL(lease_register_notifier); 1942 1943 void lease_unregister_notifier(struct notifier_block *nb) 1944 { 1945 } 1946 EXPORT_SYMBOL_GPL(lease_unregister_notifier); 1947 1948 #endif /* IS_ENABLED(CONFIG_SRCU) */ 1949 1950 /** 1951 * vfs_setlease - sets a lease on an open file 1952 * @filp: file pointer 1953 * @arg: type of lease to obtain 1954 * @lease: file_lock to use when adding a lease 1955 * @priv: private info for lm_setup when adding a lease (may be 1956 * NULL if lm_setup doesn't require it) 1957 * 1958 * Call this to establish a lease on the file. The "lease" argument is not 1959 * used for F_UNLCK requests and may be NULL. For commands that set or alter 1960 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be 1961 * set; if not, this function will return -ENOLCK (and generate a scary-looking 1962 * stack trace). 1963 * 1964 * The "priv" pointer is passed directly to the lm_setup function as-is. It 1965 * may be NULL if the lm_setup operation doesn't require it. 1966 */ 1967 int 1968 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) 1969 { 1970 if (lease) 1971 setlease_notifier(arg, *lease); 1972 if (filp->f_op->setlease) 1973 return filp->f_op->setlease(filp, arg, lease, priv); 1974 else 1975 return generic_setlease(filp, arg, lease, priv); 1976 } 1977 EXPORT_SYMBOL_GPL(vfs_setlease); 1978 1979 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg) 1980 { 1981 struct file_lock *fl; 1982 struct fasync_struct *new; 1983 int error; 1984 1985 fl = lease_alloc(filp, arg); 1986 if (IS_ERR(fl)) 1987 return PTR_ERR(fl); 1988 1989 new = fasync_alloc(); 1990 if (!new) { 1991 locks_free_lock(fl); 1992 return -ENOMEM; 1993 } 1994 new->fa_fd = fd; 1995 1996 error = vfs_setlease(filp, arg, &fl, (void **)&new); 1997 if (fl) 1998 locks_free_lock(fl); 1999 if (new) 2000 fasync_free(new); 2001 return error; 2002 } 2003 2004 /** 2005 * fcntl_setlease - sets a lease on an open file 2006 * @fd: open file descriptor 2007 * @filp: file pointer 2008 * @arg: type of lease to obtain 2009 * 2010 * Call this fcntl to establish a lease on the file. 2011 * Note that you also need to call %F_SETSIG to 2012 * receive a signal when the lease is broken. 2013 */ 2014 int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 2015 { 2016 if (arg == F_UNLCK) 2017 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); 2018 return do_fcntl_add_lease(fd, filp, arg); 2019 } 2020 2021 /** 2022 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file 2023 * @inode: inode of the file to apply to 2024 * @fl: The lock to be applied 2025 * 2026 * Apply a FLOCK style lock request to an inode. 2027 */ 2028 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2029 { 2030 int error; 2031 might_sleep(); 2032 for (;;) { 2033 error = flock_lock_inode(inode, fl); 2034 if (error != FILE_LOCK_DEFERRED) 2035 break; 2036 error = wait_event_interruptible(fl->fl_wait, 2037 list_empty(&fl->fl_blocked_member)); 2038 if (error) 2039 break; 2040 } 2041 locks_delete_block(fl); 2042 return error; 2043 } 2044 2045 /** 2046 * locks_lock_inode_wait - Apply a lock to an inode 2047 * @inode: inode of the file to apply to 2048 * @fl: The lock to be applied 2049 * 2050 * Apply a POSIX or FLOCK style lock request to an inode. 2051 */ 2052 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2053 { 2054 int res = 0; 2055 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 2056 case FL_POSIX: 2057 res = posix_lock_inode_wait(inode, fl); 2058 break; 2059 case FL_FLOCK: 2060 res = flock_lock_inode_wait(inode, fl); 2061 break; 2062 default: 2063 BUG(); 2064 } 2065 return res; 2066 } 2067 EXPORT_SYMBOL(locks_lock_inode_wait); 2068 2069 /** 2070 * sys_flock: - flock() system call. 2071 * @fd: the file descriptor to lock. 2072 * @cmd: the type of lock to apply. 2073 * 2074 * Apply a %FL_FLOCK style lock to an open file descriptor. 2075 * The @cmd can be one of: 2076 * 2077 * - %LOCK_SH -- a shared lock. 2078 * - %LOCK_EX -- an exclusive lock. 2079 * - %LOCK_UN -- remove an existing lock. 2080 * - %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED) 2081 * 2082 * %LOCK_MAND support has been removed from the kernel. 2083 */ 2084 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 2085 { 2086 int can_sleep, error, type; 2087 struct file_lock fl; 2088 struct fd f; 2089 2090 /* 2091 * LOCK_MAND locks were broken for a long time in that they never 2092 * conflicted with one another and didn't prevent any sort of open, 2093 * read or write activity. 2094 * 2095 * Just ignore these requests now, to preserve legacy behavior, but 2096 * throw a warning to let people know that they don't actually work. 2097 */ 2098 if (cmd & LOCK_MAND) { 2099 pr_warn_once("Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n"); 2100 return 0; 2101 } 2102 2103 type = flock_translate_cmd(cmd & ~LOCK_NB); 2104 if (type < 0) 2105 return type; 2106 2107 error = -EBADF; 2108 f = fdget(fd); 2109 if (!f.file) 2110 return error; 2111 2112 if (type != F_UNLCK && !(f.file->f_mode & (FMODE_READ | FMODE_WRITE))) 2113 goto out_putf; 2114 2115 flock_make_lock(f.file, &fl, type); 2116 2117 error = security_file_lock(f.file, fl.fl_type); 2118 if (error) 2119 goto out_putf; 2120 2121 can_sleep = !(cmd & LOCK_NB); 2122 if (can_sleep) 2123 fl.fl_flags |= FL_SLEEP; 2124 2125 if (f.file->f_op->flock) 2126 error = f.file->f_op->flock(f.file, 2127 (can_sleep) ? F_SETLKW : F_SETLK, 2128 &fl); 2129 else 2130 error = locks_lock_file_wait(f.file, &fl); 2131 2132 out_putf: 2133 fdput(f); 2134 2135 return error; 2136 } 2137 2138 /** 2139 * vfs_test_lock - test file byte range lock 2140 * @filp: The file to test lock for 2141 * @fl: The lock to test; also used to hold result 2142 * 2143 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 2144 * setting conf->fl_type to something other than F_UNLCK. 2145 */ 2146 int vfs_test_lock(struct file *filp, struct file_lock *fl) 2147 { 2148 if (filp->f_op->lock) 2149 return filp->f_op->lock(filp, F_GETLK, fl); 2150 posix_test_lock(filp, fl); 2151 return 0; 2152 } 2153 EXPORT_SYMBOL_GPL(vfs_test_lock); 2154 2155 /** 2156 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace 2157 * @fl: The file_lock who's fl_pid should be translated 2158 * @ns: The namespace into which the pid should be translated 2159 * 2160 * Used to tranlate a fl_pid into a namespace virtual pid number 2161 */ 2162 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns) 2163 { 2164 pid_t vnr; 2165 struct pid *pid; 2166 2167 if (IS_OFDLCK(fl)) 2168 return -1; 2169 if (IS_REMOTELCK(fl)) 2170 return fl->fl_pid; 2171 /* 2172 * If the flock owner process is dead and its pid has been already 2173 * freed, the translation below won't work, but we still want to show 2174 * flock owner pid number in init pidns. 2175 */ 2176 if (ns == &init_pid_ns) 2177 return (pid_t)fl->fl_pid; 2178 2179 rcu_read_lock(); 2180 pid = find_pid_ns(fl->fl_pid, &init_pid_ns); 2181 vnr = pid_nr_ns(pid, ns); 2182 rcu_read_unlock(); 2183 return vnr; 2184 } 2185 2186 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 2187 { 2188 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2189 #if BITS_PER_LONG == 32 2190 /* 2191 * Make sure we can represent the posix lock via 2192 * legacy 32bit flock. 2193 */ 2194 if (fl->fl_start > OFFT_OFFSET_MAX) 2195 return -EOVERFLOW; 2196 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 2197 return -EOVERFLOW; 2198 #endif 2199 flock->l_start = fl->fl_start; 2200 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2201 fl->fl_end - fl->fl_start + 1; 2202 flock->l_whence = 0; 2203 flock->l_type = fl->fl_type; 2204 return 0; 2205 } 2206 2207 #if BITS_PER_LONG == 32 2208 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 2209 { 2210 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2211 flock->l_start = fl->fl_start; 2212 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2213 fl->fl_end - fl->fl_start + 1; 2214 flock->l_whence = 0; 2215 flock->l_type = fl->fl_type; 2216 } 2217 #endif 2218 2219 /* Report the first existing lock that would conflict with l. 2220 * This implements the F_GETLK command of fcntl(). 2221 */ 2222 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock) 2223 { 2224 struct file_lock *fl; 2225 int error; 2226 2227 fl = locks_alloc_lock(); 2228 if (fl == NULL) 2229 return -ENOMEM; 2230 error = -EINVAL; 2231 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2232 goto out; 2233 2234 error = flock_to_posix_lock(filp, fl, flock); 2235 if (error) 2236 goto out; 2237 2238 if (cmd == F_OFD_GETLK) { 2239 error = -EINVAL; 2240 if (flock->l_pid != 0) 2241 goto out; 2242 2243 fl->fl_flags |= FL_OFDLCK; 2244 fl->fl_owner = filp; 2245 } 2246 2247 error = vfs_test_lock(filp, fl); 2248 if (error) 2249 goto out; 2250 2251 flock->l_type = fl->fl_type; 2252 if (fl->fl_type != F_UNLCK) { 2253 error = posix_lock_to_flock(flock, fl); 2254 if (error) 2255 goto out; 2256 } 2257 out: 2258 locks_free_lock(fl); 2259 return error; 2260 } 2261 2262 /** 2263 * vfs_lock_file - file byte range lock 2264 * @filp: The file to apply the lock to 2265 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 2266 * @fl: The lock to be applied 2267 * @conf: Place to return a copy of the conflicting lock, if found. 2268 * 2269 * A caller that doesn't care about the conflicting lock may pass NULL 2270 * as the final argument. 2271 * 2272 * If the filesystem defines a private ->lock() method, then @conf will 2273 * be left unchanged; so a caller that cares should initialize it to 2274 * some acceptable default. 2275 * 2276 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 2277 * locks, the ->lock() interface may return asynchronously, before the lock has 2278 * been granted or denied by the underlying filesystem, if (and only if) 2279 * lm_grant is set. Callers expecting ->lock() to return asynchronously 2280 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 2281 * the request is for a blocking lock. When ->lock() does return asynchronously, 2282 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock 2283 * request completes. 2284 * If the request is for non-blocking lock the file system should return 2285 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 2286 * with the result. If the request timed out the callback routine will return a 2287 * nonzero return code and the file system should release the lock. The file 2288 * system is also responsible to keep a corresponding posix lock when it 2289 * grants a lock so the VFS can find out which locks are locally held and do 2290 * the correct lock cleanup when required. 2291 * The underlying filesystem must not drop the kernel lock or call 2292 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 2293 * return code. 2294 */ 2295 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 2296 { 2297 if (filp->f_op->lock) 2298 return filp->f_op->lock(filp, cmd, fl); 2299 else 2300 return posix_lock_file(filp, fl, conf); 2301 } 2302 EXPORT_SYMBOL_GPL(vfs_lock_file); 2303 2304 static int do_lock_file_wait(struct file *filp, unsigned int cmd, 2305 struct file_lock *fl) 2306 { 2307 int error; 2308 2309 error = security_file_lock(filp, fl->fl_type); 2310 if (error) 2311 return error; 2312 2313 for (;;) { 2314 error = vfs_lock_file(filp, cmd, fl, NULL); 2315 if (error != FILE_LOCK_DEFERRED) 2316 break; 2317 error = wait_event_interruptible(fl->fl_wait, 2318 list_empty(&fl->fl_blocked_member)); 2319 if (error) 2320 break; 2321 } 2322 locks_delete_block(fl); 2323 2324 return error; 2325 } 2326 2327 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */ 2328 static int 2329 check_fmode_for_setlk(struct file_lock *fl) 2330 { 2331 switch (fl->fl_type) { 2332 case F_RDLCK: 2333 if (!(fl->fl_file->f_mode & FMODE_READ)) 2334 return -EBADF; 2335 break; 2336 case F_WRLCK: 2337 if (!(fl->fl_file->f_mode & FMODE_WRITE)) 2338 return -EBADF; 2339 } 2340 return 0; 2341 } 2342 2343 /* Apply the lock described by l to an open file descriptor. 2344 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2345 */ 2346 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 2347 struct flock *flock) 2348 { 2349 struct file_lock *file_lock = locks_alloc_lock(); 2350 struct inode *inode = locks_inode(filp); 2351 struct file *f; 2352 int error; 2353 2354 if (file_lock == NULL) 2355 return -ENOLCK; 2356 2357 error = flock_to_posix_lock(filp, file_lock, flock); 2358 if (error) 2359 goto out; 2360 2361 error = check_fmode_for_setlk(file_lock); 2362 if (error) 2363 goto out; 2364 2365 /* 2366 * If the cmd is requesting file-private locks, then set the 2367 * FL_OFDLCK flag and override the owner. 2368 */ 2369 switch (cmd) { 2370 case F_OFD_SETLK: 2371 error = -EINVAL; 2372 if (flock->l_pid != 0) 2373 goto out; 2374 2375 cmd = F_SETLK; 2376 file_lock->fl_flags |= FL_OFDLCK; 2377 file_lock->fl_owner = filp; 2378 break; 2379 case F_OFD_SETLKW: 2380 error = -EINVAL; 2381 if (flock->l_pid != 0) 2382 goto out; 2383 2384 cmd = F_SETLKW; 2385 file_lock->fl_flags |= FL_OFDLCK; 2386 file_lock->fl_owner = filp; 2387 fallthrough; 2388 case F_SETLKW: 2389 file_lock->fl_flags |= FL_SLEEP; 2390 } 2391 2392 error = do_lock_file_wait(filp, cmd, file_lock); 2393 2394 /* 2395 * Attempt to detect a close/fcntl race and recover by releasing the 2396 * lock that was just acquired. There is no need to do that when we're 2397 * unlocking though, or for OFD locks. 2398 */ 2399 if (!error && file_lock->fl_type != F_UNLCK && 2400 !(file_lock->fl_flags & FL_OFDLCK)) { 2401 struct files_struct *files = current->files; 2402 /* 2403 * We need that spin_lock here - it prevents reordering between 2404 * update of i_flctx->flc_posix and check for it done in 2405 * close(). rcu_read_lock() wouldn't do. 2406 */ 2407 spin_lock(&files->file_lock); 2408 f = files_lookup_fd_locked(files, fd); 2409 spin_unlock(&files->file_lock); 2410 if (f != filp) { 2411 file_lock->fl_type = F_UNLCK; 2412 error = do_lock_file_wait(filp, cmd, file_lock); 2413 WARN_ON_ONCE(error); 2414 error = -EBADF; 2415 } 2416 } 2417 out: 2418 trace_fcntl_setlk(inode, file_lock, error); 2419 locks_free_lock(file_lock); 2420 return error; 2421 } 2422 2423 #if BITS_PER_LONG == 32 2424 /* Report the first existing lock that would conflict with l. 2425 * This implements the F_GETLK command of fcntl(). 2426 */ 2427 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock) 2428 { 2429 struct file_lock *fl; 2430 int error; 2431 2432 fl = locks_alloc_lock(); 2433 if (fl == NULL) 2434 return -ENOMEM; 2435 2436 error = -EINVAL; 2437 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2438 goto out; 2439 2440 error = flock64_to_posix_lock(filp, fl, flock); 2441 if (error) 2442 goto out; 2443 2444 if (cmd == F_OFD_GETLK) { 2445 error = -EINVAL; 2446 if (flock->l_pid != 0) 2447 goto out; 2448 2449 cmd = F_GETLK64; 2450 fl->fl_flags |= FL_OFDLCK; 2451 fl->fl_owner = filp; 2452 } 2453 2454 error = vfs_test_lock(filp, fl); 2455 if (error) 2456 goto out; 2457 2458 flock->l_type = fl->fl_type; 2459 if (fl->fl_type != F_UNLCK) 2460 posix_lock_to_flock64(flock, fl); 2461 2462 out: 2463 locks_free_lock(fl); 2464 return error; 2465 } 2466 2467 /* Apply the lock described by l to an open file descriptor. 2468 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2469 */ 2470 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 2471 struct flock64 *flock) 2472 { 2473 struct file_lock *file_lock = locks_alloc_lock(); 2474 struct file *f; 2475 int error; 2476 2477 if (file_lock == NULL) 2478 return -ENOLCK; 2479 2480 error = flock64_to_posix_lock(filp, file_lock, flock); 2481 if (error) 2482 goto out; 2483 2484 error = check_fmode_for_setlk(file_lock); 2485 if (error) 2486 goto out; 2487 2488 /* 2489 * If the cmd is requesting file-private locks, then set the 2490 * FL_OFDLCK flag and override the owner. 2491 */ 2492 switch (cmd) { 2493 case F_OFD_SETLK: 2494 error = -EINVAL; 2495 if (flock->l_pid != 0) 2496 goto out; 2497 2498 cmd = F_SETLK64; 2499 file_lock->fl_flags |= FL_OFDLCK; 2500 file_lock->fl_owner = filp; 2501 break; 2502 case F_OFD_SETLKW: 2503 error = -EINVAL; 2504 if (flock->l_pid != 0) 2505 goto out; 2506 2507 cmd = F_SETLKW64; 2508 file_lock->fl_flags |= FL_OFDLCK; 2509 file_lock->fl_owner = filp; 2510 fallthrough; 2511 case F_SETLKW64: 2512 file_lock->fl_flags |= FL_SLEEP; 2513 } 2514 2515 error = do_lock_file_wait(filp, cmd, file_lock); 2516 2517 /* 2518 * Attempt to detect a close/fcntl race and recover by releasing the 2519 * lock that was just acquired. There is no need to do that when we're 2520 * unlocking though, or for OFD locks. 2521 */ 2522 if (!error && file_lock->fl_type != F_UNLCK && 2523 !(file_lock->fl_flags & FL_OFDLCK)) { 2524 struct files_struct *files = current->files; 2525 /* 2526 * We need that spin_lock here - it prevents reordering between 2527 * update of i_flctx->flc_posix and check for it done in 2528 * close(). rcu_read_lock() wouldn't do. 2529 */ 2530 spin_lock(&files->file_lock); 2531 f = files_lookup_fd_locked(files, fd); 2532 spin_unlock(&files->file_lock); 2533 if (f != filp) { 2534 file_lock->fl_type = F_UNLCK; 2535 error = do_lock_file_wait(filp, cmd, file_lock); 2536 WARN_ON_ONCE(error); 2537 error = -EBADF; 2538 } 2539 } 2540 out: 2541 locks_free_lock(file_lock); 2542 return error; 2543 } 2544 #endif /* BITS_PER_LONG == 32 */ 2545 2546 /* 2547 * This function is called when the file is being removed 2548 * from the task's fd array. POSIX locks belonging to this task 2549 * are deleted at this time. 2550 */ 2551 void locks_remove_posix(struct file *filp, fl_owner_t owner) 2552 { 2553 int error; 2554 struct inode *inode = locks_inode(filp); 2555 struct file_lock lock; 2556 struct file_lock_context *ctx; 2557 2558 /* 2559 * If there are no locks held on this file, we don't need to call 2560 * posix_lock_file(). Another process could be setting a lock on this 2561 * file at the same time, but we wouldn't remove that lock anyway. 2562 */ 2563 ctx = smp_load_acquire(&inode->i_flctx); 2564 if (!ctx || list_empty(&ctx->flc_posix)) 2565 return; 2566 2567 locks_init_lock(&lock); 2568 lock.fl_type = F_UNLCK; 2569 lock.fl_flags = FL_POSIX | FL_CLOSE; 2570 lock.fl_start = 0; 2571 lock.fl_end = OFFSET_MAX; 2572 lock.fl_owner = owner; 2573 lock.fl_pid = current->tgid; 2574 lock.fl_file = filp; 2575 lock.fl_ops = NULL; 2576 lock.fl_lmops = NULL; 2577 2578 error = vfs_lock_file(filp, F_SETLK, &lock, NULL); 2579 2580 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2581 lock.fl_ops->fl_release_private(&lock); 2582 trace_locks_remove_posix(inode, &lock, error); 2583 } 2584 EXPORT_SYMBOL(locks_remove_posix); 2585 2586 /* The i_flctx must be valid when calling into here */ 2587 static void 2588 locks_remove_flock(struct file *filp, struct file_lock_context *flctx) 2589 { 2590 struct file_lock fl; 2591 struct inode *inode = locks_inode(filp); 2592 2593 if (list_empty(&flctx->flc_flock)) 2594 return; 2595 2596 flock_make_lock(filp, &fl, F_UNLCK); 2597 fl.fl_flags |= FL_CLOSE; 2598 2599 if (filp->f_op->flock) 2600 filp->f_op->flock(filp, F_SETLKW, &fl); 2601 else 2602 flock_lock_inode(inode, &fl); 2603 2604 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2605 fl.fl_ops->fl_release_private(&fl); 2606 } 2607 2608 /* The i_flctx must be valid when calling into here */ 2609 static void 2610 locks_remove_lease(struct file *filp, struct file_lock_context *ctx) 2611 { 2612 struct file_lock *fl, *tmp; 2613 LIST_HEAD(dispose); 2614 2615 if (list_empty(&ctx->flc_lease)) 2616 return; 2617 2618 percpu_down_read(&file_rwsem); 2619 spin_lock(&ctx->flc_lock); 2620 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) 2621 if (filp == fl->fl_file) 2622 lease_modify(fl, F_UNLCK, &dispose); 2623 spin_unlock(&ctx->flc_lock); 2624 percpu_up_read(&file_rwsem); 2625 2626 locks_dispose_list(&dispose); 2627 } 2628 2629 /* 2630 * This function is called on the last close of an open file. 2631 */ 2632 void locks_remove_file(struct file *filp) 2633 { 2634 struct file_lock_context *ctx; 2635 2636 ctx = smp_load_acquire(&locks_inode(filp)->i_flctx); 2637 if (!ctx) 2638 return; 2639 2640 /* remove any OFD locks */ 2641 locks_remove_posix(filp, filp); 2642 2643 /* remove flock locks */ 2644 locks_remove_flock(filp, ctx); 2645 2646 /* remove any leases */ 2647 locks_remove_lease(filp, ctx); 2648 2649 spin_lock(&ctx->flc_lock); 2650 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX"); 2651 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK"); 2652 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE"); 2653 spin_unlock(&ctx->flc_lock); 2654 } 2655 2656 /** 2657 * vfs_cancel_lock - file byte range unblock lock 2658 * @filp: The file to apply the unblock to 2659 * @fl: The lock to be unblocked 2660 * 2661 * Used by lock managers to cancel blocked requests 2662 */ 2663 int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2664 { 2665 if (filp->f_op->lock) 2666 return filp->f_op->lock(filp, F_CANCELLK, fl); 2667 return 0; 2668 } 2669 EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2670 2671 #ifdef CONFIG_PROC_FS 2672 #include <linux/proc_fs.h> 2673 #include <linux/seq_file.h> 2674 2675 struct locks_iterator { 2676 int li_cpu; 2677 loff_t li_pos; 2678 }; 2679 2680 static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2681 loff_t id, char *pfx, int repeat) 2682 { 2683 struct inode *inode = NULL; 2684 unsigned int fl_pid; 2685 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2686 int type; 2687 2688 fl_pid = locks_translate_pid(fl, proc_pidns); 2689 /* 2690 * If lock owner is dead (and pid is freed) or not visible in current 2691 * pidns, zero is shown as a pid value. Check lock info from 2692 * init_pid_ns to get saved lock pid value. 2693 */ 2694 2695 if (fl->fl_file != NULL) 2696 inode = locks_inode(fl->fl_file); 2697 2698 seq_printf(f, "%lld: ", id); 2699 2700 if (repeat) 2701 seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx); 2702 2703 if (IS_POSIX(fl)) { 2704 if (fl->fl_flags & FL_ACCESS) 2705 seq_puts(f, "ACCESS"); 2706 else if (IS_OFDLCK(fl)) 2707 seq_puts(f, "OFDLCK"); 2708 else 2709 seq_puts(f, "POSIX "); 2710 2711 seq_printf(f, " %s ", 2712 (inode == NULL) ? "*NOINODE*" : "ADVISORY "); 2713 } else if (IS_FLOCK(fl)) { 2714 seq_puts(f, "FLOCK ADVISORY "); 2715 } else if (IS_LEASE(fl)) { 2716 if (fl->fl_flags & FL_DELEG) 2717 seq_puts(f, "DELEG "); 2718 else 2719 seq_puts(f, "LEASE "); 2720 2721 if (lease_breaking(fl)) 2722 seq_puts(f, "BREAKING "); 2723 else if (fl->fl_file) 2724 seq_puts(f, "ACTIVE "); 2725 else 2726 seq_puts(f, "BREAKER "); 2727 } else { 2728 seq_puts(f, "UNKNOWN UNKNOWN "); 2729 } 2730 type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type; 2731 2732 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" : 2733 (type == F_RDLCK) ? "READ" : "UNLCK"); 2734 if (inode) { 2735 /* userspace relies on this representation of dev_t */ 2736 seq_printf(f, "%d %02x:%02x:%lu ", fl_pid, 2737 MAJOR(inode->i_sb->s_dev), 2738 MINOR(inode->i_sb->s_dev), inode->i_ino); 2739 } else { 2740 seq_printf(f, "%d <none>:0 ", fl_pid); 2741 } 2742 if (IS_POSIX(fl)) { 2743 if (fl->fl_end == OFFSET_MAX) 2744 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2745 else 2746 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2747 } else { 2748 seq_puts(f, "0 EOF\n"); 2749 } 2750 } 2751 2752 static struct file_lock *get_next_blocked_member(struct file_lock *node) 2753 { 2754 struct file_lock *tmp; 2755 2756 /* NULL node or root node */ 2757 if (node == NULL || node->fl_blocker == NULL) 2758 return NULL; 2759 2760 /* Next member in the linked list could be itself */ 2761 tmp = list_next_entry(node, fl_blocked_member); 2762 if (list_entry_is_head(tmp, &node->fl_blocker->fl_blocked_requests, fl_blocked_member) 2763 || tmp == node) { 2764 return NULL; 2765 } 2766 2767 return tmp; 2768 } 2769 2770 static int locks_show(struct seq_file *f, void *v) 2771 { 2772 struct locks_iterator *iter = f->private; 2773 struct file_lock *cur, *tmp; 2774 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2775 int level = 0; 2776 2777 cur = hlist_entry(v, struct file_lock, fl_link); 2778 2779 if (locks_translate_pid(cur, proc_pidns) == 0) 2780 return 0; 2781 2782 /* View this crossed linked list as a binary tree, the first member of fl_blocked_requests 2783 * is the left child of current node, the next silibing in fl_blocked_member is the 2784 * right child, we can alse get the parent of current node from fl_blocker, so this 2785 * question becomes traversal of a binary tree 2786 */ 2787 while (cur != NULL) { 2788 if (level) 2789 lock_get_status(f, cur, iter->li_pos, "-> ", level); 2790 else 2791 lock_get_status(f, cur, iter->li_pos, "", level); 2792 2793 if (!list_empty(&cur->fl_blocked_requests)) { 2794 /* Turn left */ 2795 cur = list_first_entry_or_null(&cur->fl_blocked_requests, 2796 struct file_lock, fl_blocked_member); 2797 level++; 2798 } else { 2799 /* Turn right */ 2800 tmp = get_next_blocked_member(cur); 2801 /* Fall back to parent node */ 2802 while (tmp == NULL && cur->fl_blocker != NULL) { 2803 cur = cur->fl_blocker; 2804 level--; 2805 tmp = get_next_blocked_member(cur); 2806 } 2807 cur = tmp; 2808 } 2809 } 2810 2811 return 0; 2812 } 2813 2814 static void __show_fd_locks(struct seq_file *f, 2815 struct list_head *head, int *id, 2816 struct file *filp, struct files_struct *files) 2817 { 2818 struct file_lock *fl; 2819 2820 list_for_each_entry(fl, head, fl_list) { 2821 2822 if (filp != fl->fl_file) 2823 continue; 2824 if (fl->fl_owner != files && 2825 fl->fl_owner != filp) 2826 continue; 2827 2828 (*id)++; 2829 seq_puts(f, "lock:\t"); 2830 lock_get_status(f, fl, *id, "", 0); 2831 } 2832 } 2833 2834 void show_fd_locks(struct seq_file *f, 2835 struct file *filp, struct files_struct *files) 2836 { 2837 struct inode *inode = locks_inode(filp); 2838 struct file_lock_context *ctx; 2839 int id = 0; 2840 2841 ctx = smp_load_acquire(&inode->i_flctx); 2842 if (!ctx) 2843 return; 2844 2845 spin_lock(&ctx->flc_lock); 2846 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files); 2847 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files); 2848 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files); 2849 spin_unlock(&ctx->flc_lock); 2850 } 2851 2852 static void *locks_start(struct seq_file *f, loff_t *pos) 2853 __acquires(&blocked_lock_lock) 2854 { 2855 struct locks_iterator *iter = f->private; 2856 2857 iter->li_pos = *pos + 1; 2858 percpu_down_write(&file_rwsem); 2859 spin_lock(&blocked_lock_lock); 2860 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos); 2861 } 2862 2863 static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2864 { 2865 struct locks_iterator *iter = f->private; 2866 2867 ++iter->li_pos; 2868 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos); 2869 } 2870 2871 static void locks_stop(struct seq_file *f, void *v) 2872 __releases(&blocked_lock_lock) 2873 { 2874 spin_unlock(&blocked_lock_lock); 2875 percpu_up_write(&file_rwsem); 2876 } 2877 2878 static const struct seq_operations locks_seq_operations = { 2879 .start = locks_start, 2880 .next = locks_next, 2881 .stop = locks_stop, 2882 .show = locks_show, 2883 }; 2884 2885 static int __init proc_locks_init(void) 2886 { 2887 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations, 2888 sizeof(struct locks_iterator), NULL); 2889 return 0; 2890 } 2891 fs_initcall(proc_locks_init); 2892 #endif 2893 2894 static int __init filelock_init(void) 2895 { 2896 int i; 2897 2898 flctx_cache = kmem_cache_create("file_lock_ctx", 2899 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL); 2900 2901 filelock_cache = kmem_cache_create("file_lock_cache", 2902 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 2903 2904 for_each_possible_cpu(i) { 2905 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i); 2906 2907 spin_lock_init(&fll->lock); 2908 INIT_HLIST_HEAD(&fll->hlist); 2909 } 2910 2911 lease_notifier_chain_init(); 2912 return 0; 2913 } 2914 core_initcall(filelock_init); 2915