1 /* 2 * linux/fs/locks.c 3 * 4 * Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls. 5 * Doug Evans (dje@spiff.uucp), August 07, 1992 6 * 7 * Deadlock detection added. 8 * FIXME: one thing isn't handled yet: 9 * - mandatory locks (requires lots of changes elsewhere) 10 * Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994. 11 * 12 * Miscellaneous edits, and a total rewrite of posix_lock_file() code. 13 * Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994 14 * 15 * Converted file_lock_table to a linked list from an array, which eliminates 16 * the limits on how many active file locks are open. 17 * Chad Page (pageone@netcom.com), November 27, 1994 18 * 19 * Removed dependency on file descriptors. dup()'ed file descriptors now 20 * get the same locks as the original file descriptors, and a close() on 21 * any file descriptor removes ALL the locks on the file for the current 22 * process. Since locks still depend on the process id, locks are inherited 23 * after an exec() but not after a fork(). This agrees with POSIX, and both 24 * BSD and SVR4 practice. 25 * Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995 26 * 27 * Scrapped free list which is redundant now that we allocate locks 28 * dynamically with kmalloc()/kfree(). 29 * Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995 30 * 31 * Implemented two lock personalities - FL_FLOCK and FL_POSIX. 32 * 33 * FL_POSIX locks are created with calls to fcntl() and lockf() through the 34 * fcntl() system call. They have the semantics described above. 35 * 36 * FL_FLOCK locks are created with calls to flock(), through the flock() 37 * system call, which is new. Old C libraries implement flock() via fcntl() 38 * and will continue to use the old, broken implementation. 39 * 40 * FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated 41 * with a file pointer (filp). As a result they can be shared by a parent 42 * process and its children after a fork(). They are removed when the last 43 * file descriptor referring to the file pointer is closed (unless explicitly 44 * unlocked). 45 * 46 * FL_FLOCK locks never deadlock, an existing lock is always removed before 47 * upgrading from shared to exclusive (or vice versa). When this happens 48 * any processes blocked by the current lock are woken up and allowed to 49 * run before the new lock is applied. 50 * Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995 51 * 52 * Removed some race conditions in flock_lock_file(), marked other possible 53 * races. Just grep for FIXME to see them. 54 * Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996. 55 * 56 * Addressed Dmitry's concerns. Deadlock checking no longer recursive. 57 * Lock allocation changed to GFP_ATOMIC as we can't afford to sleep 58 * once we've checked for blocking and deadlocking. 59 * Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996. 60 * 61 * Initial implementation of mandatory locks. SunOS turned out to be 62 * a rotten model, so I implemented the "obvious" semantics. 63 * See 'Documentation/mandatory.txt' for details. 64 * Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996. 65 * 66 * Don't allow mandatory locks on mmap()'ed files. Added simple functions to 67 * check if a file has mandatory locks, used by mmap(), open() and creat() to 68 * see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference 69 * Manual, Section 2. 70 * Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996. 71 * 72 * Tidied up block list handling. Added '/proc/locks' interface. 73 * Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996. 74 * 75 * Fixed deadlock condition for pathological code that mixes calls to 76 * flock() and fcntl(). 77 * Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996. 78 * 79 * Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use 80 * for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to 81 * guarantee sensible behaviour in the case where file system modules might 82 * be compiled with different options than the kernel itself. 83 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 84 * 85 * Added a couple of missing wake_up() calls. Thanks to Thomas Meckel 86 * (Thomas.Meckel@mni.fh-giessen.de) for spotting this. 87 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 88 * 89 * Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK 90 * locks. Changed process synchronisation to avoid dereferencing locks that 91 * have already been freed. 92 * Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996. 93 * 94 * Made the block list a circular list to minimise searching in the list. 95 * Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996. 96 * 97 * Made mandatory locking a mount option. Default is not to allow mandatory 98 * locking. 99 * Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996. 100 * 101 * Some adaptations for NFS support. 102 * Olaf Kirch (okir@monad.swb.de), Dec 1996, 103 * 104 * Fixed /proc/locks interface so that we can't overrun the buffer we are handed. 105 * Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997. 106 * 107 * Use slab allocator instead of kmalloc/kfree. 108 * Use generic list implementation from <linux/list.h>. 109 * Sped up posix_locks_deadlock by only considering blocked locks. 110 * Matthew Wilcox <willy@debian.org>, March, 2000. 111 * 112 * Leases and LOCK_MAND 113 * Matthew Wilcox <willy@debian.org>, June, 2000. 114 * Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000. 115 */ 116 117 #include <linux/capability.h> 118 #include <linux/file.h> 119 #include <linux/fdtable.h> 120 #include <linux/fs.h> 121 #include <linux/init.h> 122 #include <linux/module.h> 123 #include <linux/security.h> 124 #include <linux/slab.h> 125 #include <linux/smp_lock.h> 126 #include <linux/syscalls.h> 127 #include <linux/time.h> 128 #include <linux/rcupdate.h> 129 #include <linux/pid_namespace.h> 130 131 #include <asm/uaccess.h> 132 133 #define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 134 #define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 135 #define IS_LEASE(fl) (fl->fl_flags & FL_LEASE) 136 137 int leases_enable = 1; 138 int lease_break_time = 45; 139 140 #define for_each_lock(inode, lockp) \ 141 for (lockp = &inode->i_flock; *lockp != NULL; lockp = &(*lockp)->fl_next) 142 143 static LIST_HEAD(file_lock_list); 144 static LIST_HEAD(blocked_list); 145 146 /* 147 * Protects the two list heads above, plus the inode->i_flock list 148 * FIXME: should use a spinlock, once lockd and ceph are ready. 149 */ 150 void lock_flocks(void) 151 { 152 lock_kernel(); 153 } 154 EXPORT_SYMBOL_GPL(lock_flocks); 155 156 void unlock_flocks(void) 157 { 158 unlock_kernel(); 159 } 160 EXPORT_SYMBOL_GPL(unlock_flocks); 161 162 static struct kmem_cache *filelock_cache __read_mostly; 163 164 /* Allocate an empty lock structure. */ 165 static struct file_lock *locks_alloc_lock(void) 166 { 167 return kmem_cache_alloc(filelock_cache, GFP_KERNEL); 168 } 169 170 void locks_release_private(struct file_lock *fl) 171 { 172 if (fl->fl_ops) { 173 if (fl->fl_ops->fl_release_private) 174 fl->fl_ops->fl_release_private(fl); 175 fl->fl_ops = NULL; 176 } 177 if (fl->fl_lmops) { 178 if (fl->fl_lmops->fl_release_private) 179 fl->fl_lmops->fl_release_private(fl); 180 fl->fl_lmops = NULL; 181 } 182 183 } 184 EXPORT_SYMBOL_GPL(locks_release_private); 185 186 /* Free a lock which is not in use. */ 187 static void locks_free_lock(struct file_lock *fl) 188 { 189 BUG_ON(waitqueue_active(&fl->fl_wait)); 190 BUG_ON(!list_empty(&fl->fl_block)); 191 BUG_ON(!list_empty(&fl->fl_link)); 192 193 locks_release_private(fl); 194 kmem_cache_free(filelock_cache, fl); 195 } 196 197 void locks_init_lock(struct file_lock *fl) 198 { 199 INIT_LIST_HEAD(&fl->fl_link); 200 INIT_LIST_HEAD(&fl->fl_block); 201 init_waitqueue_head(&fl->fl_wait); 202 fl->fl_next = NULL; 203 fl->fl_fasync = NULL; 204 fl->fl_owner = NULL; 205 fl->fl_pid = 0; 206 fl->fl_nspid = NULL; 207 fl->fl_file = NULL; 208 fl->fl_flags = 0; 209 fl->fl_type = 0; 210 fl->fl_start = fl->fl_end = 0; 211 fl->fl_ops = NULL; 212 fl->fl_lmops = NULL; 213 } 214 215 EXPORT_SYMBOL(locks_init_lock); 216 217 /* 218 * Initialises the fields of the file lock which are invariant for 219 * free file_locks. 220 */ 221 static void init_once(void *foo) 222 { 223 struct file_lock *lock = (struct file_lock *) foo; 224 225 locks_init_lock(lock); 226 } 227 228 static void locks_copy_private(struct file_lock *new, struct file_lock *fl) 229 { 230 if (fl->fl_ops) { 231 if (fl->fl_ops->fl_copy_lock) 232 fl->fl_ops->fl_copy_lock(new, fl); 233 new->fl_ops = fl->fl_ops; 234 } 235 if (fl->fl_lmops) { 236 if (fl->fl_lmops->fl_copy_lock) 237 fl->fl_lmops->fl_copy_lock(new, fl); 238 new->fl_lmops = fl->fl_lmops; 239 } 240 } 241 242 /* 243 * Initialize a new lock from an existing file_lock structure. 244 */ 245 void __locks_copy_lock(struct file_lock *new, const struct file_lock *fl) 246 { 247 new->fl_owner = fl->fl_owner; 248 new->fl_pid = fl->fl_pid; 249 new->fl_file = NULL; 250 new->fl_flags = fl->fl_flags; 251 new->fl_type = fl->fl_type; 252 new->fl_start = fl->fl_start; 253 new->fl_end = fl->fl_end; 254 new->fl_ops = NULL; 255 new->fl_lmops = NULL; 256 } 257 EXPORT_SYMBOL(__locks_copy_lock); 258 259 void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 260 { 261 locks_release_private(new); 262 263 __locks_copy_lock(new, fl); 264 new->fl_file = fl->fl_file; 265 new->fl_ops = fl->fl_ops; 266 new->fl_lmops = fl->fl_lmops; 267 268 locks_copy_private(new, fl); 269 } 270 271 EXPORT_SYMBOL(locks_copy_lock); 272 273 static inline int flock_translate_cmd(int cmd) { 274 if (cmd & LOCK_MAND) 275 return cmd & (LOCK_MAND | LOCK_RW); 276 switch (cmd) { 277 case LOCK_SH: 278 return F_RDLCK; 279 case LOCK_EX: 280 return F_WRLCK; 281 case LOCK_UN: 282 return F_UNLCK; 283 } 284 return -EINVAL; 285 } 286 287 /* Fill in a file_lock structure with an appropriate FLOCK lock. */ 288 static int flock_make_lock(struct file *filp, struct file_lock **lock, 289 unsigned int cmd) 290 { 291 struct file_lock *fl; 292 int type = flock_translate_cmd(cmd); 293 if (type < 0) 294 return type; 295 296 fl = locks_alloc_lock(); 297 if (fl == NULL) 298 return -ENOMEM; 299 300 fl->fl_file = filp; 301 fl->fl_pid = current->tgid; 302 fl->fl_flags = FL_FLOCK; 303 fl->fl_type = type; 304 fl->fl_end = OFFSET_MAX; 305 306 *lock = fl; 307 return 0; 308 } 309 310 static int assign_type(struct file_lock *fl, int type) 311 { 312 switch (type) { 313 case F_RDLCK: 314 case F_WRLCK: 315 case F_UNLCK: 316 fl->fl_type = type; 317 break; 318 default: 319 return -EINVAL; 320 } 321 return 0; 322 } 323 324 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 325 * style lock. 326 */ 327 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 328 struct flock *l) 329 { 330 off_t start, end; 331 332 switch (l->l_whence) { 333 case SEEK_SET: 334 start = 0; 335 break; 336 case SEEK_CUR: 337 start = filp->f_pos; 338 break; 339 case SEEK_END: 340 start = i_size_read(filp->f_path.dentry->d_inode); 341 break; 342 default: 343 return -EINVAL; 344 } 345 346 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 347 POSIX-2001 defines it. */ 348 start += l->l_start; 349 if (start < 0) 350 return -EINVAL; 351 fl->fl_end = OFFSET_MAX; 352 if (l->l_len > 0) { 353 end = start + l->l_len - 1; 354 fl->fl_end = end; 355 } else if (l->l_len < 0) { 356 end = start - 1; 357 fl->fl_end = end; 358 start += l->l_len; 359 if (start < 0) 360 return -EINVAL; 361 } 362 fl->fl_start = start; /* we record the absolute position */ 363 if (fl->fl_end < fl->fl_start) 364 return -EOVERFLOW; 365 366 fl->fl_owner = current->files; 367 fl->fl_pid = current->tgid; 368 fl->fl_file = filp; 369 fl->fl_flags = FL_POSIX; 370 fl->fl_ops = NULL; 371 fl->fl_lmops = NULL; 372 373 return assign_type(fl, l->l_type); 374 } 375 376 #if BITS_PER_LONG == 32 377 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 378 struct flock64 *l) 379 { 380 loff_t start; 381 382 switch (l->l_whence) { 383 case SEEK_SET: 384 start = 0; 385 break; 386 case SEEK_CUR: 387 start = filp->f_pos; 388 break; 389 case SEEK_END: 390 start = i_size_read(filp->f_path.dentry->d_inode); 391 break; 392 default: 393 return -EINVAL; 394 } 395 396 start += l->l_start; 397 if (start < 0) 398 return -EINVAL; 399 fl->fl_end = OFFSET_MAX; 400 if (l->l_len > 0) { 401 fl->fl_end = start + l->l_len - 1; 402 } else if (l->l_len < 0) { 403 fl->fl_end = start - 1; 404 start += l->l_len; 405 if (start < 0) 406 return -EINVAL; 407 } 408 fl->fl_start = start; /* we record the absolute position */ 409 if (fl->fl_end < fl->fl_start) 410 return -EOVERFLOW; 411 412 fl->fl_owner = current->files; 413 fl->fl_pid = current->tgid; 414 fl->fl_file = filp; 415 fl->fl_flags = FL_POSIX; 416 fl->fl_ops = NULL; 417 fl->fl_lmops = NULL; 418 419 switch (l->l_type) { 420 case F_RDLCK: 421 case F_WRLCK: 422 case F_UNLCK: 423 fl->fl_type = l->l_type; 424 break; 425 default: 426 return -EINVAL; 427 } 428 429 return (0); 430 } 431 #endif 432 433 /* default lease lock manager operations */ 434 static void lease_break_callback(struct file_lock *fl) 435 { 436 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 437 } 438 439 static void lease_release_private_callback(struct file_lock *fl) 440 { 441 if (!fl->fl_file) 442 return; 443 444 f_delown(fl->fl_file); 445 fl->fl_file->f_owner.signum = 0; 446 } 447 448 static int lease_mylease_callback(struct file_lock *fl, struct file_lock *try) 449 { 450 return fl->fl_file == try->fl_file; 451 } 452 453 static const struct lock_manager_operations lease_manager_ops = { 454 .fl_break = lease_break_callback, 455 .fl_release_private = lease_release_private_callback, 456 .fl_mylease = lease_mylease_callback, 457 .fl_change = lease_modify, 458 }; 459 460 /* 461 * Initialize a lease, use the default lock manager operations 462 */ 463 static int lease_init(struct file *filp, int type, struct file_lock *fl) 464 { 465 if (assign_type(fl, type) != 0) 466 return -EINVAL; 467 468 fl->fl_owner = current->files; 469 fl->fl_pid = current->tgid; 470 471 fl->fl_file = filp; 472 fl->fl_flags = FL_LEASE; 473 fl->fl_start = 0; 474 fl->fl_end = OFFSET_MAX; 475 fl->fl_ops = NULL; 476 fl->fl_lmops = &lease_manager_ops; 477 return 0; 478 } 479 480 /* Allocate a file_lock initialised to this type of lease */ 481 static struct file_lock *lease_alloc(struct file *filp, int type) 482 { 483 struct file_lock *fl = locks_alloc_lock(); 484 int error = -ENOMEM; 485 486 if (fl == NULL) 487 return ERR_PTR(error); 488 489 error = lease_init(filp, type, fl); 490 if (error) { 491 locks_free_lock(fl); 492 return ERR_PTR(error); 493 } 494 return fl; 495 } 496 497 /* Check if two locks overlap each other. 498 */ 499 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 500 { 501 return ((fl1->fl_end >= fl2->fl_start) && 502 (fl2->fl_end >= fl1->fl_start)); 503 } 504 505 /* 506 * Check whether two locks have the same owner. 507 */ 508 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 509 { 510 if (fl1->fl_lmops && fl1->fl_lmops->fl_compare_owner) 511 return fl2->fl_lmops == fl1->fl_lmops && 512 fl1->fl_lmops->fl_compare_owner(fl1, fl2); 513 return fl1->fl_owner == fl2->fl_owner; 514 } 515 516 /* Remove waiter from blocker's block list. 517 * When blocker ends up pointing to itself then the list is empty. 518 */ 519 static void __locks_delete_block(struct file_lock *waiter) 520 { 521 list_del_init(&waiter->fl_block); 522 list_del_init(&waiter->fl_link); 523 waiter->fl_next = NULL; 524 } 525 526 /* 527 */ 528 static void locks_delete_block(struct file_lock *waiter) 529 { 530 lock_flocks(); 531 __locks_delete_block(waiter); 532 unlock_flocks(); 533 } 534 535 /* Insert waiter into blocker's block list. 536 * We use a circular list so that processes can be easily woken up in 537 * the order they blocked. The documentation doesn't require this but 538 * it seems like the reasonable thing to do. 539 */ 540 static void locks_insert_block(struct file_lock *blocker, 541 struct file_lock *waiter) 542 { 543 BUG_ON(!list_empty(&waiter->fl_block)); 544 list_add_tail(&waiter->fl_block, &blocker->fl_block); 545 waiter->fl_next = blocker; 546 if (IS_POSIX(blocker)) 547 list_add(&waiter->fl_link, &blocked_list); 548 } 549 550 /* Wake up processes blocked waiting for blocker. 551 * If told to wait then schedule the processes until the block list 552 * is empty, otherwise empty the block list ourselves. 553 */ 554 static void locks_wake_up_blocks(struct file_lock *blocker) 555 { 556 while (!list_empty(&blocker->fl_block)) { 557 struct file_lock *waiter; 558 559 waiter = list_first_entry(&blocker->fl_block, 560 struct file_lock, fl_block); 561 __locks_delete_block(waiter); 562 if (waiter->fl_lmops && waiter->fl_lmops->fl_notify) 563 waiter->fl_lmops->fl_notify(waiter); 564 else 565 wake_up(&waiter->fl_wait); 566 } 567 } 568 569 /* Insert file lock fl into an inode's lock list at the position indicated 570 * by pos. At the same time add the lock to the global file lock list. 571 */ 572 static void locks_insert_lock(struct file_lock **pos, struct file_lock *fl) 573 { 574 list_add(&fl->fl_link, &file_lock_list); 575 576 fl->fl_nspid = get_pid(task_tgid(current)); 577 578 /* insert into file's list */ 579 fl->fl_next = *pos; 580 *pos = fl; 581 } 582 583 /* 584 * Delete a lock and then free it. 585 * Wake up processes that are blocked waiting for this lock, 586 * notify the FS that the lock has been cleared and 587 * finally free the lock. 588 */ 589 static void locks_delete_lock(struct file_lock **thisfl_p) 590 { 591 struct file_lock *fl = *thisfl_p; 592 593 *thisfl_p = fl->fl_next; 594 fl->fl_next = NULL; 595 list_del_init(&fl->fl_link); 596 597 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 598 if (fl->fl_fasync != NULL) { 599 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 600 fl->fl_fasync = NULL; 601 } 602 603 if (fl->fl_nspid) { 604 put_pid(fl->fl_nspid); 605 fl->fl_nspid = NULL; 606 } 607 608 locks_wake_up_blocks(fl); 609 locks_free_lock(fl); 610 } 611 612 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality 613 * checks for shared/exclusive status of overlapping locks. 614 */ 615 static int locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 616 { 617 if (sys_fl->fl_type == F_WRLCK) 618 return 1; 619 if (caller_fl->fl_type == F_WRLCK) 620 return 1; 621 return 0; 622 } 623 624 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 625 * checking before calling the locks_conflict(). 626 */ 627 static int posix_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 628 { 629 /* POSIX locks owned by the same process do not conflict with 630 * each other. 631 */ 632 if (!IS_POSIX(sys_fl) || posix_same_owner(caller_fl, sys_fl)) 633 return (0); 634 635 /* Check whether they overlap */ 636 if (!locks_overlap(caller_fl, sys_fl)) 637 return 0; 638 639 return (locks_conflict(caller_fl, sys_fl)); 640 } 641 642 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 643 * checking before calling the locks_conflict(). 644 */ 645 static int flock_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 646 { 647 /* FLOCK locks referring to the same filp do not conflict with 648 * each other. 649 */ 650 if (!IS_FLOCK(sys_fl) || (caller_fl->fl_file == sys_fl->fl_file)) 651 return (0); 652 if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND)) 653 return 0; 654 655 return (locks_conflict(caller_fl, sys_fl)); 656 } 657 658 void 659 posix_test_lock(struct file *filp, struct file_lock *fl) 660 { 661 struct file_lock *cfl; 662 663 lock_flocks(); 664 for (cfl = filp->f_path.dentry->d_inode->i_flock; cfl; cfl = cfl->fl_next) { 665 if (!IS_POSIX(cfl)) 666 continue; 667 if (posix_locks_conflict(fl, cfl)) 668 break; 669 } 670 if (cfl) { 671 __locks_copy_lock(fl, cfl); 672 if (cfl->fl_nspid) 673 fl->fl_pid = pid_vnr(cfl->fl_nspid); 674 } else 675 fl->fl_type = F_UNLCK; 676 unlock_flocks(); 677 return; 678 } 679 EXPORT_SYMBOL(posix_test_lock); 680 681 /* 682 * Deadlock detection: 683 * 684 * We attempt to detect deadlocks that are due purely to posix file 685 * locks. 686 * 687 * We assume that a task can be waiting for at most one lock at a time. 688 * So for any acquired lock, the process holding that lock may be 689 * waiting on at most one other lock. That lock in turns may be held by 690 * someone waiting for at most one other lock. Given a requested lock 691 * caller_fl which is about to wait for a conflicting lock block_fl, we 692 * follow this chain of waiters to ensure we are not about to create a 693 * cycle. 694 * 695 * Since we do this before we ever put a process to sleep on a lock, we 696 * are ensured that there is never a cycle; that is what guarantees that 697 * the while() loop in posix_locks_deadlock() eventually completes. 698 * 699 * Note: the above assumption may not be true when handling lock 700 * requests from a broken NFS client. It may also fail in the presence 701 * of tasks (such as posix threads) sharing the same open file table. 702 * 703 * To handle those cases, we just bail out after a few iterations. 704 */ 705 706 #define MAX_DEADLK_ITERATIONS 10 707 708 /* Find a lock that the owner of the given block_fl is blocking on. */ 709 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 710 { 711 struct file_lock *fl; 712 713 list_for_each_entry(fl, &blocked_list, fl_link) { 714 if (posix_same_owner(fl, block_fl)) 715 return fl->fl_next; 716 } 717 return NULL; 718 } 719 720 static int posix_locks_deadlock(struct file_lock *caller_fl, 721 struct file_lock *block_fl) 722 { 723 int i = 0; 724 725 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 726 if (i++ > MAX_DEADLK_ITERATIONS) 727 return 0; 728 if (posix_same_owner(caller_fl, block_fl)) 729 return 1; 730 } 731 return 0; 732 } 733 734 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 735 * after any leases, but before any posix locks. 736 * 737 * Note that if called with an FL_EXISTS argument, the caller may determine 738 * whether or not a lock was successfully freed by testing the return 739 * value for -ENOENT. 740 */ 741 static int flock_lock_file(struct file *filp, struct file_lock *request) 742 { 743 struct file_lock *new_fl = NULL; 744 struct file_lock **before; 745 struct inode * inode = filp->f_path.dentry->d_inode; 746 int error = 0; 747 int found = 0; 748 749 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 750 new_fl = locks_alloc_lock(); 751 if (!new_fl) 752 return -ENOMEM; 753 } 754 755 lock_flocks(); 756 if (request->fl_flags & FL_ACCESS) 757 goto find_conflict; 758 759 for_each_lock(inode, before) { 760 struct file_lock *fl = *before; 761 if (IS_POSIX(fl)) 762 break; 763 if (IS_LEASE(fl)) 764 continue; 765 if (filp != fl->fl_file) 766 continue; 767 if (request->fl_type == fl->fl_type) 768 goto out; 769 found = 1; 770 locks_delete_lock(before); 771 break; 772 } 773 774 if (request->fl_type == F_UNLCK) { 775 if ((request->fl_flags & FL_EXISTS) && !found) 776 error = -ENOENT; 777 goto out; 778 } 779 780 /* 781 * If a higher-priority process was blocked on the old file lock, 782 * give it the opportunity to lock the file. 783 */ 784 if (found) { 785 unlock_flocks(); 786 cond_resched(); 787 lock_flocks(); 788 } 789 790 find_conflict: 791 for_each_lock(inode, before) { 792 struct file_lock *fl = *before; 793 if (IS_POSIX(fl)) 794 break; 795 if (IS_LEASE(fl)) 796 continue; 797 if (!flock_locks_conflict(request, fl)) 798 continue; 799 error = -EAGAIN; 800 if (!(request->fl_flags & FL_SLEEP)) 801 goto out; 802 error = FILE_LOCK_DEFERRED; 803 locks_insert_block(fl, request); 804 goto out; 805 } 806 if (request->fl_flags & FL_ACCESS) 807 goto out; 808 locks_copy_lock(new_fl, request); 809 locks_insert_lock(before, new_fl); 810 new_fl = NULL; 811 error = 0; 812 813 out: 814 unlock_flocks(); 815 if (new_fl) 816 locks_free_lock(new_fl); 817 return error; 818 } 819 820 static int __posix_lock_file(struct inode *inode, struct file_lock *request, struct file_lock *conflock) 821 { 822 struct file_lock *fl; 823 struct file_lock *new_fl = NULL; 824 struct file_lock *new_fl2 = NULL; 825 struct file_lock *left = NULL; 826 struct file_lock *right = NULL; 827 struct file_lock **before; 828 int error, added = 0; 829 830 /* 831 * We may need two file_lock structures for this operation, 832 * so we get them in advance to avoid races. 833 * 834 * In some cases we can be sure, that no new locks will be needed 835 */ 836 if (!(request->fl_flags & FL_ACCESS) && 837 (request->fl_type != F_UNLCK || 838 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 839 new_fl = locks_alloc_lock(); 840 new_fl2 = locks_alloc_lock(); 841 } 842 843 lock_flocks(); 844 if (request->fl_type != F_UNLCK) { 845 for_each_lock(inode, before) { 846 fl = *before; 847 if (!IS_POSIX(fl)) 848 continue; 849 if (!posix_locks_conflict(request, fl)) 850 continue; 851 if (conflock) 852 __locks_copy_lock(conflock, fl); 853 error = -EAGAIN; 854 if (!(request->fl_flags & FL_SLEEP)) 855 goto out; 856 error = -EDEADLK; 857 if (posix_locks_deadlock(request, fl)) 858 goto out; 859 error = FILE_LOCK_DEFERRED; 860 locks_insert_block(fl, request); 861 goto out; 862 } 863 } 864 865 /* If we're just looking for a conflict, we're done. */ 866 error = 0; 867 if (request->fl_flags & FL_ACCESS) 868 goto out; 869 870 /* 871 * Find the first old lock with the same owner as the new lock. 872 */ 873 874 before = &inode->i_flock; 875 876 /* First skip locks owned by other processes. */ 877 while ((fl = *before) && (!IS_POSIX(fl) || 878 !posix_same_owner(request, fl))) { 879 before = &fl->fl_next; 880 } 881 882 /* Process locks with this owner. */ 883 while ((fl = *before) && posix_same_owner(request, fl)) { 884 /* Detect adjacent or overlapping regions (if same lock type) 885 */ 886 if (request->fl_type == fl->fl_type) { 887 /* In all comparisons of start vs end, use 888 * "start - 1" rather than "end + 1". If end 889 * is OFFSET_MAX, end + 1 will become negative. 890 */ 891 if (fl->fl_end < request->fl_start - 1) 892 goto next_lock; 893 /* If the next lock in the list has entirely bigger 894 * addresses than the new one, insert the lock here. 895 */ 896 if (fl->fl_start - 1 > request->fl_end) 897 break; 898 899 /* If we come here, the new and old lock are of the 900 * same type and adjacent or overlapping. Make one 901 * lock yielding from the lower start address of both 902 * locks to the higher end address. 903 */ 904 if (fl->fl_start > request->fl_start) 905 fl->fl_start = request->fl_start; 906 else 907 request->fl_start = fl->fl_start; 908 if (fl->fl_end < request->fl_end) 909 fl->fl_end = request->fl_end; 910 else 911 request->fl_end = fl->fl_end; 912 if (added) { 913 locks_delete_lock(before); 914 continue; 915 } 916 request = fl; 917 added = 1; 918 } 919 else { 920 /* Processing for different lock types is a bit 921 * more complex. 922 */ 923 if (fl->fl_end < request->fl_start) 924 goto next_lock; 925 if (fl->fl_start > request->fl_end) 926 break; 927 if (request->fl_type == F_UNLCK) 928 added = 1; 929 if (fl->fl_start < request->fl_start) 930 left = fl; 931 /* If the next lock in the list has a higher end 932 * address than the new one, insert the new one here. 933 */ 934 if (fl->fl_end > request->fl_end) { 935 right = fl; 936 break; 937 } 938 if (fl->fl_start >= request->fl_start) { 939 /* The new lock completely replaces an old 940 * one (This may happen several times). 941 */ 942 if (added) { 943 locks_delete_lock(before); 944 continue; 945 } 946 /* Replace the old lock with the new one. 947 * Wake up anybody waiting for the old one, 948 * as the change in lock type might satisfy 949 * their needs. 950 */ 951 locks_wake_up_blocks(fl); 952 fl->fl_start = request->fl_start; 953 fl->fl_end = request->fl_end; 954 fl->fl_type = request->fl_type; 955 locks_release_private(fl); 956 locks_copy_private(fl, request); 957 request = fl; 958 added = 1; 959 } 960 } 961 /* Go on to next lock. 962 */ 963 next_lock: 964 before = &fl->fl_next; 965 } 966 967 /* 968 * The above code only modifies existing locks in case of 969 * merging or replacing. If new lock(s) need to be inserted 970 * all modifications are done bellow this, so it's safe yet to 971 * bail out. 972 */ 973 error = -ENOLCK; /* "no luck" */ 974 if (right && left == right && !new_fl2) 975 goto out; 976 977 error = 0; 978 if (!added) { 979 if (request->fl_type == F_UNLCK) { 980 if (request->fl_flags & FL_EXISTS) 981 error = -ENOENT; 982 goto out; 983 } 984 985 if (!new_fl) { 986 error = -ENOLCK; 987 goto out; 988 } 989 locks_copy_lock(new_fl, request); 990 locks_insert_lock(before, new_fl); 991 new_fl = NULL; 992 } 993 if (right) { 994 if (left == right) { 995 /* The new lock breaks the old one in two pieces, 996 * so we have to use the second new lock. 997 */ 998 left = new_fl2; 999 new_fl2 = NULL; 1000 locks_copy_lock(left, right); 1001 locks_insert_lock(before, left); 1002 } 1003 right->fl_start = request->fl_end + 1; 1004 locks_wake_up_blocks(right); 1005 } 1006 if (left) { 1007 left->fl_end = request->fl_start - 1; 1008 locks_wake_up_blocks(left); 1009 } 1010 out: 1011 unlock_flocks(); 1012 /* 1013 * Free any unused locks. 1014 */ 1015 if (new_fl) 1016 locks_free_lock(new_fl); 1017 if (new_fl2) 1018 locks_free_lock(new_fl2); 1019 return error; 1020 } 1021 1022 /** 1023 * posix_lock_file - Apply a POSIX-style lock to a file 1024 * @filp: The file to apply the lock to 1025 * @fl: The lock to be applied 1026 * @conflock: Place to return a copy of the conflicting lock, if found. 1027 * 1028 * Add a POSIX style lock to a file. 1029 * We merge adjacent & overlapping locks whenever possible. 1030 * POSIX locks are sorted by owner task, then by starting address 1031 * 1032 * Note that if called with an FL_EXISTS argument, the caller may determine 1033 * whether or not a lock was successfully freed by testing the return 1034 * value for -ENOENT. 1035 */ 1036 int posix_lock_file(struct file *filp, struct file_lock *fl, 1037 struct file_lock *conflock) 1038 { 1039 return __posix_lock_file(filp->f_path.dentry->d_inode, fl, conflock); 1040 } 1041 EXPORT_SYMBOL(posix_lock_file); 1042 1043 /** 1044 * posix_lock_file_wait - Apply a POSIX-style lock to a file 1045 * @filp: The file to apply the lock to 1046 * @fl: The lock to be applied 1047 * 1048 * Add a POSIX style lock to a file. 1049 * We merge adjacent & overlapping locks whenever possible. 1050 * POSIX locks are sorted by owner task, then by starting address 1051 */ 1052 int posix_lock_file_wait(struct file *filp, struct file_lock *fl) 1053 { 1054 int error; 1055 might_sleep (); 1056 for (;;) { 1057 error = posix_lock_file(filp, fl, NULL); 1058 if (error != FILE_LOCK_DEFERRED) 1059 break; 1060 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1061 if (!error) 1062 continue; 1063 1064 locks_delete_block(fl); 1065 break; 1066 } 1067 return error; 1068 } 1069 EXPORT_SYMBOL(posix_lock_file_wait); 1070 1071 /** 1072 * locks_mandatory_locked - Check for an active lock 1073 * @inode: the file to check 1074 * 1075 * Searches the inode's list of locks to find any POSIX locks which conflict. 1076 * This function is called from locks_verify_locked() only. 1077 */ 1078 int locks_mandatory_locked(struct inode *inode) 1079 { 1080 fl_owner_t owner = current->files; 1081 struct file_lock *fl; 1082 1083 /* 1084 * Search the lock list for this inode for any POSIX locks. 1085 */ 1086 lock_flocks(); 1087 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 1088 if (!IS_POSIX(fl)) 1089 continue; 1090 if (fl->fl_owner != owner) 1091 break; 1092 } 1093 unlock_flocks(); 1094 return fl ? -EAGAIN : 0; 1095 } 1096 1097 /** 1098 * locks_mandatory_area - Check for a conflicting lock 1099 * @read_write: %FLOCK_VERIFY_WRITE for exclusive access, %FLOCK_VERIFY_READ 1100 * for shared 1101 * @inode: the file to check 1102 * @filp: how the file was opened (if it was) 1103 * @offset: start of area to check 1104 * @count: length of area to check 1105 * 1106 * Searches the inode's list of locks to find any POSIX locks which conflict. 1107 * This function is called from rw_verify_area() and 1108 * locks_verify_truncate(). 1109 */ 1110 int locks_mandatory_area(int read_write, struct inode *inode, 1111 struct file *filp, loff_t offset, 1112 size_t count) 1113 { 1114 struct file_lock fl; 1115 int error; 1116 1117 locks_init_lock(&fl); 1118 fl.fl_owner = current->files; 1119 fl.fl_pid = current->tgid; 1120 fl.fl_file = filp; 1121 fl.fl_flags = FL_POSIX | FL_ACCESS; 1122 if (filp && !(filp->f_flags & O_NONBLOCK)) 1123 fl.fl_flags |= FL_SLEEP; 1124 fl.fl_type = (read_write == FLOCK_VERIFY_WRITE) ? F_WRLCK : F_RDLCK; 1125 fl.fl_start = offset; 1126 fl.fl_end = offset + count - 1; 1127 1128 for (;;) { 1129 error = __posix_lock_file(inode, &fl, NULL); 1130 if (error != FILE_LOCK_DEFERRED) 1131 break; 1132 error = wait_event_interruptible(fl.fl_wait, !fl.fl_next); 1133 if (!error) { 1134 /* 1135 * If we've been sleeping someone might have 1136 * changed the permissions behind our back. 1137 */ 1138 if (__mandatory_lock(inode)) 1139 continue; 1140 } 1141 1142 locks_delete_block(&fl); 1143 break; 1144 } 1145 1146 return error; 1147 } 1148 1149 EXPORT_SYMBOL(locks_mandatory_area); 1150 1151 /* We already had a lease on this file; just change its type */ 1152 int lease_modify(struct file_lock **before, int arg) 1153 { 1154 struct file_lock *fl = *before; 1155 int error = assign_type(fl, arg); 1156 1157 if (error) 1158 return error; 1159 locks_wake_up_blocks(fl); 1160 if (arg == F_UNLCK) 1161 locks_delete_lock(before); 1162 return 0; 1163 } 1164 1165 EXPORT_SYMBOL(lease_modify); 1166 1167 static void time_out_leases(struct inode *inode) 1168 { 1169 struct file_lock **before; 1170 struct file_lock *fl; 1171 1172 before = &inode->i_flock; 1173 while ((fl = *before) && IS_LEASE(fl) && (fl->fl_type & F_INPROGRESS)) { 1174 if ((fl->fl_break_time == 0) 1175 || time_before(jiffies, fl->fl_break_time)) { 1176 before = &fl->fl_next; 1177 continue; 1178 } 1179 lease_modify(before, fl->fl_type & ~F_INPROGRESS); 1180 if (fl == *before) /* lease_modify may have freed fl */ 1181 before = &fl->fl_next; 1182 } 1183 } 1184 1185 /** 1186 * __break_lease - revoke all outstanding leases on file 1187 * @inode: the inode of the file to return 1188 * @mode: the open mode (read or write) 1189 * 1190 * break_lease (inlined for speed) has checked there already is at least 1191 * some kind of lock (maybe a lease) on this file. Leases are broken on 1192 * a call to open() or truncate(). This function can sleep unless you 1193 * specified %O_NONBLOCK to your open(). 1194 */ 1195 int __break_lease(struct inode *inode, unsigned int mode) 1196 { 1197 int error = 0, future; 1198 struct file_lock *new_fl, *flock; 1199 struct file_lock *fl; 1200 unsigned long break_time; 1201 int i_have_this_lease = 0; 1202 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1203 1204 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1205 1206 lock_flocks(); 1207 1208 time_out_leases(inode); 1209 1210 flock = inode->i_flock; 1211 if ((flock == NULL) || !IS_LEASE(flock)) 1212 goto out; 1213 1214 for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next) 1215 if (fl->fl_owner == current->files) 1216 i_have_this_lease = 1; 1217 1218 if (want_write) { 1219 /* If we want write access, we have to revoke any lease. */ 1220 future = F_UNLCK | F_INPROGRESS; 1221 } else if (flock->fl_type & F_INPROGRESS) { 1222 /* If the lease is already being broken, we just leave it */ 1223 future = flock->fl_type; 1224 } else if (flock->fl_type & F_WRLCK) { 1225 /* Downgrade the exclusive lease to a read-only lease. */ 1226 future = F_RDLCK | F_INPROGRESS; 1227 } else { 1228 /* the existing lease was read-only, so we can read too. */ 1229 goto out; 1230 } 1231 1232 if (IS_ERR(new_fl) && !i_have_this_lease 1233 && ((mode & O_NONBLOCK) == 0)) { 1234 error = PTR_ERR(new_fl); 1235 goto out; 1236 } 1237 1238 break_time = 0; 1239 if (lease_break_time > 0) { 1240 break_time = jiffies + lease_break_time * HZ; 1241 if (break_time == 0) 1242 break_time++; /* so that 0 means no break time */ 1243 } 1244 1245 for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next) { 1246 if (fl->fl_type != future) { 1247 fl->fl_type = future; 1248 fl->fl_break_time = break_time; 1249 /* lease must have lmops break callback */ 1250 fl->fl_lmops->fl_break(fl); 1251 } 1252 } 1253 1254 if (i_have_this_lease || (mode & O_NONBLOCK)) { 1255 error = -EWOULDBLOCK; 1256 goto out; 1257 } 1258 1259 restart: 1260 break_time = flock->fl_break_time; 1261 if (break_time != 0) { 1262 break_time -= jiffies; 1263 if (break_time == 0) 1264 break_time++; 1265 } 1266 locks_insert_block(flock, new_fl); 1267 unlock_flocks(); 1268 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1269 !new_fl->fl_next, break_time); 1270 lock_flocks(); 1271 __locks_delete_block(new_fl); 1272 if (error >= 0) { 1273 if (error == 0) 1274 time_out_leases(inode); 1275 /* Wait for the next lease that has not been broken yet */ 1276 for (flock = inode->i_flock; flock && IS_LEASE(flock); 1277 flock = flock->fl_next) { 1278 if (flock->fl_type & F_INPROGRESS) 1279 goto restart; 1280 } 1281 error = 0; 1282 } 1283 1284 out: 1285 unlock_flocks(); 1286 if (!IS_ERR(new_fl)) 1287 locks_free_lock(new_fl); 1288 return error; 1289 } 1290 1291 EXPORT_SYMBOL(__break_lease); 1292 1293 /** 1294 * lease_get_mtime - get the last modified time of an inode 1295 * @inode: the inode 1296 * @time: pointer to a timespec which will contain the last modified time 1297 * 1298 * This is to force NFS clients to flush their caches for files with 1299 * exclusive leases. The justification is that if someone has an 1300 * exclusive lease, then they could be modifying it. 1301 */ 1302 void lease_get_mtime(struct inode *inode, struct timespec *time) 1303 { 1304 struct file_lock *flock = inode->i_flock; 1305 if (flock && IS_LEASE(flock) && (flock->fl_type & F_WRLCK)) 1306 *time = current_fs_time(inode->i_sb); 1307 else 1308 *time = inode->i_mtime; 1309 } 1310 1311 EXPORT_SYMBOL(lease_get_mtime); 1312 1313 /** 1314 * fcntl_getlease - Enquire what lease is currently active 1315 * @filp: the file 1316 * 1317 * The value returned by this function will be one of 1318 * (if no lease break is pending): 1319 * 1320 * %F_RDLCK to indicate a shared lease is held. 1321 * 1322 * %F_WRLCK to indicate an exclusive lease is held. 1323 * 1324 * %F_UNLCK to indicate no lease is held. 1325 * 1326 * (if a lease break is pending): 1327 * 1328 * %F_RDLCK to indicate an exclusive lease needs to be 1329 * changed to a shared lease (or removed). 1330 * 1331 * %F_UNLCK to indicate the lease needs to be removed. 1332 * 1333 * XXX: sfr & willy disagree over whether F_INPROGRESS 1334 * should be returned to userspace. 1335 */ 1336 int fcntl_getlease(struct file *filp) 1337 { 1338 struct file_lock *fl; 1339 int type = F_UNLCK; 1340 1341 lock_flocks(); 1342 time_out_leases(filp->f_path.dentry->d_inode); 1343 for (fl = filp->f_path.dentry->d_inode->i_flock; fl && IS_LEASE(fl); 1344 fl = fl->fl_next) { 1345 if (fl->fl_file == filp) { 1346 type = fl->fl_type & ~F_INPROGRESS; 1347 break; 1348 } 1349 } 1350 unlock_flocks(); 1351 return type; 1352 } 1353 1354 /** 1355 * generic_setlease - sets a lease on an open file 1356 * @filp: file pointer 1357 * @arg: type of lease to obtain 1358 * @flp: input - file_lock to use, output - file_lock inserted 1359 * 1360 * The (input) flp->fl_lmops->fl_break function is required 1361 * by break_lease(). 1362 * 1363 * Called with file_lock_lock held. 1364 */ 1365 int generic_setlease(struct file *filp, long arg, struct file_lock **flp) 1366 { 1367 struct file_lock *fl, **before, **my_before = NULL, *lease; 1368 struct file_lock *new_fl = NULL; 1369 struct dentry *dentry = filp->f_path.dentry; 1370 struct inode *inode = dentry->d_inode; 1371 int error, rdlease_count = 0, wrlease_count = 0; 1372 1373 if ((current_fsuid() != inode->i_uid) && !capable(CAP_LEASE)) 1374 return -EACCES; 1375 if (!S_ISREG(inode->i_mode)) 1376 return -EINVAL; 1377 error = security_file_lock(filp, arg); 1378 if (error) 1379 return error; 1380 1381 time_out_leases(inode); 1382 1383 BUG_ON(!(*flp)->fl_lmops->fl_break); 1384 1385 lease = *flp; 1386 1387 if (arg != F_UNLCK) { 1388 error = -ENOMEM; 1389 new_fl = locks_alloc_lock(); 1390 if (new_fl == NULL) 1391 goto out; 1392 1393 error = -EAGAIN; 1394 if ((arg == F_RDLCK) && (atomic_read(&inode->i_writecount) > 0)) 1395 goto out; 1396 if ((arg == F_WRLCK) 1397 && ((atomic_read(&dentry->d_count) > 1) 1398 || (atomic_read(&inode->i_count) > 1))) 1399 goto out; 1400 } 1401 1402 /* 1403 * At this point, we know that if there is an exclusive 1404 * lease on this file, then we hold it on this filp 1405 * (otherwise our open of this file would have blocked). 1406 * And if we are trying to acquire an exclusive lease, 1407 * then the file is not open by anyone (including us) 1408 * except for this filp. 1409 */ 1410 for (before = &inode->i_flock; 1411 ((fl = *before) != NULL) && IS_LEASE(fl); 1412 before = &fl->fl_next) { 1413 if (lease->fl_lmops->fl_mylease(fl, lease)) 1414 my_before = before; 1415 else if (fl->fl_type == (F_INPROGRESS | F_UNLCK)) 1416 /* 1417 * Someone is in the process of opening this 1418 * file for writing so we may not take an 1419 * exclusive lease on it. 1420 */ 1421 wrlease_count++; 1422 else 1423 rdlease_count++; 1424 } 1425 1426 error = -EAGAIN; 1427 if ((arg == F_RDLCK && (wrlease_count > 0)) || 1428 (arg == F_WRLCK && ((rdlease_count + wrlease_count) > 0))) 1429 goto out; 1430 1431 if (my_before != NULL) { 1432 *flp = *my_before; 1433 error = lease->fl_lmops->fl_change(my_before, arg); 1434 goto out; 1435 } 1436 1437 error = 0; 1438 if (arg == F_UNLCK) 1439 goto out; 1440 1441 error = -EINVAL; 1442 if (!leases_enable) 1443 goto out; 1444 1445 locks_copy_lock(new_fl, lease); 1446 locks_insert_lock(before, new_fl); 1447 1448 *flp = new_fl; 1449 return 0; 1450 1451 out: 1452 if (new_fl != NULL) 1453 locks_free_lock(new_fl); 1454 return error; 1455 } 1456 EXPORT_SYMBOL(generic_setlease); 1457 1458 static int __vfs_setlease(struct file *filp, long arg, struct file_lock **lease) 1459 { 1460 if (filp->f_op && filp->f_op->setlease) 1461 return filp->f_op->setlease(filp, arg, lease); 1462 else 1463 return generic_setlease(filp, arg, lease); 1464 } 1465 1466 /** 1467 * vfs_setlease - sets a lease on an open file 1468 * @filp: file pointer 1469 * @arg: type of lease to obtain 1470 * @lease: file_lock to use 1471 * 1472 * Call this to establish a lease on the file. 1473 * The (*lease)->fl_lmops->fl_break operation must be set; if not, 1474 * break_lease will oops! 1475 * 1476 * This will call the filesystem's setlease file method, if 1477 * defined. Note that there is no getlease method; instead, the 1478 * filesystem setlease method should call back to setlease() to 1479 * add a lease to the inode's lease list, where fcntl_getlease() can 1480 * find it. Since fcntl_getlease() only reports whether the current 1481 * task holds a lease, a cluster filesystem need only do this for 1482 * leases held by processes on this node. 1483 * 1484 * There is also no break_lease method; filesystems that 1485 * handle their own leases should break leases themselves from the 1486 * filesystem's open, create, and (on truncate) setattr methods. 1487 * 1488 * Warning: the only current setlease methods exist only to disable 1489 * leases in certain cases. More vfs changes may be required to 1490 * allow a full filesystem lease implementation. 1491 */ 1492 1493 int vfs_setlease(struct file *filp, long arg, struct file_lock **lease) 1494 { 1495 int error; 1496 1497 lock_flocks(); 1498 error = __vfs_setlease(filp, arg, lease); 1499 unlock_flocks(); 1500 1501 return error; 1502 } 1503 EXPORT_SYMBOL_GPL(vfs_setlease); 1504 1505 /** 1506 * fcntl_setlease - sets a lease on an open file 1507 * @fd: open file descriptor 1508 * @filp: file pointer 1509 * @arg: type of lease to obtain 1510 * 1511 * Call this fcntl to establish a lease on the file. 1512 * Note that you also need to call %F_SETSIG to 1513 * receive a signal when the lease is broken. 1514 */ 1515 int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 1516 { 1517 struct file_lock fl, *flp = &fl; 1518 struct inode *inode = filp->f_path.dentry->d_inode; 1519 int error; 1520 1521 locks_init_lock(&fl); 1522 error = lease_init(filp, arg, &fl); 1523 if (error) 1524 return error; 1525 1526 lock_flocks(); 1527 1528 error = __vfs_setlease(filp, arg, &flp); 1529 if (error || arg == F_UNLCK) 1530 goto out_unlock; 1531 1532 error = fasync_helper(fd, filp, 1, &flp->fl_fasync); 1533 if (error < 0) { 1534 /* remove lease just inserted by setlease */ 1535 flp->fl_type = F_UNLCK | F_INPROGRESS; 1536 flp->fl_break_time = jiffies - 10; 1537 time_out_leases(inode); 1538 goto out_unlock; 1539 } 1540 1541 error = __f_setown(filp, task_pid(current), PIDTYPE_PID, 0); 1542 out_unlock: 1543 unlock_flocks(); 1544 return error; 1545 } 1546 1547 /** 1548 * flock_lock_file_wait - Apply a FLOCK-style lock to a file 1549 * @filp: The file to apply the lock to 1550 * @fl: The lock to be applied 1551 * 1552 * Add a FLOCK style lock to a file. 1553 */ 1554 int flock_lock_file_wait(struct file *filp, struct file_lock *fl) 1555 { 1556 int error; 1557 might_sleep(); 1558 for (;;) { 1559 error = flock_lock_file(filp, fl); 1560 if (error != FILE_LOCK_DEFERRED) 1561 break; 1562 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1563 if (!error) 1564 continue; 1565 1566 locks_delete_block(fl); 1567 break; 1568 } 1569 return error; 1570 } 1571 1572 EXPORT_SYMBOL(flock_lock_file_wait); 1573 1574 /** 1575 * sys_flock: - flock() system call. 1576 * @fd: the file descriptor to lock. 1577 * @cmd: the type of lock to apply. 1578 * 1579 * Apply a %FL_FLOCK style lock to an open file descriptor. 1580 * The @cmd can be one of 1581 * 1582 * %LOCK_SH -- a shared lock. 1583 * 1584 * %LOCK_EX -- an exclusive lock. 1585 * 1586 * %LOCK_UN -- remove an existing lock. 1587 * 1588 * %LOCK_MAND -- a `mandatory' flock. This exists to emulate Windows Share Modes. 1589 * 1590 * %LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other 1591 * processes read and write access respectively. 1592 */ 1593 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 1594 { 1595 struct file *filp; 1596 struct file_lock *lock; 1597 int can_sleep, unlock; 1598 int error; 1599 1600 error = -EBADF; 1601 filp = fget(fd); 1602 if (!filp) 1603 goto out; 1604 1605 can_sleep = !(cmd & LOCK_NB); 1606 cmd &= ~LOCK_NB; 1607 unlock = (cmd == LOCK_UN); 1608 1609 if (!unlock && !(cmd & LOCK_MAND) && 1610 !(filp->f_mode & (FMODE_READ|FMODE_WRITE))) 1611 goto out_putf; 1612 1613 error = flock_make_lock(filp, &lock, cmd); 1614 if (error) 1615 goto out_putf; 1616 if (can_sleep) 1617 lock->fl_flags |= FL_SLEEP; 1618 1619 error = security_file_lock(filp, lock->fl_type); 1620 if (error) 1621 goto out_free; 1622 1623 if (filp->f_op && filp->f_op->flock) 1624 error = filp->f_op->flock(filp, 1625 (can_sleep) ? F_SETLKW : F_SETLK, 1626 lock); 1627 else 1628 error = flock_lock_file_wait(filp, lock); 1629 1630 out_free: 1631 locks_free_lock(lock); 1632 1633 out_putf: 1634 fput(filp); 1635 out: 1636 return error; 1637 } 1638 1639 /** 1640 * vfs_test_lock - test file byte range lock 1641 * @filp: The file to test lock for 1642 * @fl: The lock to test; also used to hold result 1643 * 1644 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 1645 * setting conf->fl_type to something other than F_UNLCK. 1646 */ 1647 int vfs_test_lock(struct file *filp, struct file_lock *fl) 1648 { 1649 if (filp->f_op && filp->f_op->lock) 1650 return filp->f_op->lock(filp, F_GETLK, fl); 1651 posix_test_lock(filp, fl); 1652 return 0; 1653 } 1654 EXPORT_SYMBOL_GPL(vfs_test_lock); 1655 1656 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 1657 { 1658 flock->l_pid = fl->fl_pid; 1659 #if BITS_PER_LONG == 32 1660 /* 1661 * Make sure we can represent the posix lock via 1662 * legacy 32bit flock. 1663 */ 1664 if (fl->fl_start > OFFT_OFFSET_MAX) 1665 return -EOVERFLOW; 1666 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 1667 return -EOVERFLOW; 1668 #endif 1669 flock->l_start = fl->fl_start; 1670 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 1671 fl->fl_end - fl->fl_start + 1; 1672 flock->l_whence = 0; 1673 flock->l_type = fl->fl_type; 1674 return 0; 1675 } 1676 1677 #if BITS_PER_LONG == 32 1678 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 1679 { 1680 flock->l_pid = fl->fl_pid; 1681 flock->l_start = fl->fl_start; 1682 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 1683 fl->fl_end - fl->fl_start + 1; 1684 flock->l_whence = 0; 1685 flock->l_type = fl->fl_type; 1686 } 1687 #endif 1688 1689 /* Report the first existing lock that would conflict with l. 1690 * This implements the F_GETLK command of fcntl(). 1691 */ 1692 int fcntl_getlk(struct file *filp, struct flock __user *l) 1693 { 1694 struct file_lock file_lock; 1695 struct flock flock; 1696 int error; 1697 1698 error = -EFAULT; 1699 if (copy_from_user(&flock, l, sizeof(flock))) 1700 goto out; 1701 error = -EINVAL; 1702 if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK)) 1703 goto out; 1704 1705 error = flock_to_posix_lock(filp, &file_lock, &flock); 1706 if (error) 1707 goto out; 1708 1709 error = vfs_test_lock(filp, &file_lock); 1710 if (error) 1711 goto out; 1712 1713 flock.l_type = file_lock.fl_type; 1714 if (file_lock.fl_type != F_UNLCK) { 1715 error = posix_lock_to_flock(&flock, &file_lock); 1716 if (error) 1717 goto out; 1718 } 1719 error = -EFAULT; 1720 if (!copy_to_user(l, &flock, sizeof(flock))) 1721 error = 0; 1722 out: 1723 return error; 1724 } 1725 1726 /** 1727 * vfs_lock_file - file byte range lock 1728 * @filp: The file to apply the lock to 1729 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 1730 * @fl: The lock to be applied 1731 * @conf: Place to return a copy of the conflicting lock, if found. 1732 * 1733 * A caller that doesn't care about the conflicting lock may pass NULL 1734 * as the final argument. 1735 * 1736 * If the filesystem defines a private ->lock() method, then @conf will 1737 * be left unchanged; so a caller that cares should initialize it to 1738 * some acceptable default. 1739 * 1740 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 1741 * locks, the ->lock() interface may return asynchronously, before the lock has 1742 * been granted or denied by the underlying filesystem, if (and only if) 1743 * fl_grant is set. Callers expecting ->lock() to return asynchronously 1744 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 1745 * the request is for a blocking lock. When ->lock() does return asynchronously, 1746 * it must return FILE_LOCK_DEFERRED, and call ->fl_grant() when the lock 1747 * request completes. 1748 * If the request is for non-blocking lock the file system should return 1749 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 1750 * with the result. If the request timed out the callback routine will return a 1751 * nonzero return code and the file system should release the lock. The file 1752 * system is also responsible to keep a corresponding posix lock when it 1753 * grants a lock so the VFS can find out which locks are locally held and do 1754 * the correct lock cleanup when required. 1755 * The underlying filesystem must not drop the kernel lock or call 1756 * ->fl_grant() before returning to the caller with a FILE_LOCK_DEFERRED 1757 * return code. 1758 */ 1759 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 1760 { 1761 if (filp->f_op && filp->f_op->lock) 1762 return filp->f_op->lock(filp, cmd, fl); 1763 else 1764 return posix_lock_file(filp, fl, conf); 1765 } 1766 EXPORT_SYMBOL_GPL(vfs_lock_file); 1767 1768 static int do_lock_file_wait(struct file *filp, unsigned int cmd, 1769 struct file_lock *fl) 1770 { 1771 int error; 1772 1773 error = security_file_lock(filp, fl->fl_type); 1774 if (error) 1775 return error; 1776 1777 for (;;) { 1778 error = vfs_lock_file(filp, cmd, fl, NULL); 1779 if (error != FILE_LOCK_DEFERRED) 1780 break; 1781 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1782 if (!error) 1783 continue; 1784 1785 locks_delete_block(fl); 1786 break; 1787 } 1788 1789 return error; 1790 } 1791 1792 /* Apply the lock described by l to an open file descriptor. 1793 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 1794 */ 1795 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 1796 struct flock __user *l) 1797 { 1798 struct file_lock *file_lock = locks_alloc_lock(); 1799 struct flock flock; 1800 struct inode *inode; 1801 struct file *f; 1802 int error; 1803 1804 if (file_lock == NULL) 1805 return -ENOLCK; 1806 1807 /* 1808 * This might block, so we do it before checking the inode. 1809 */ 1810 error = -EFAULT; 1811 if (copy_from_user(&flock, l, sizeof(flock))) 1812 goto out; 1813 1814 inode = filp->f_path.dentry->d_inode; 1815 1816 /* Don't allow mandatory locks on files that may be memory mapped 1817 * and shared. 1818 */ 1819 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 1820 error = -EAGAIN; 1821 goto out; 1822 } 1823 1824 again: 1825 error = flock_to_posix_lock(filp, file_lock, &flock); 1826 if (error) 1827 goto out; 1828 if (cmd == F_SETLKW) { 1829 file_lock->fl_flags |= FL_SLEEP; 1830 } 1831 1832 error = -EBADF; 1833 switch (flock.l_type) { 1834 case F_RDLCK: 1835 if (!(filp->f_mode & FMODE_READ)) 1836 goto out; 1837 break; 1838 case F_WRLCK: 1839 if (!(filp->f_mode & FMODE_WRITE)) 1840 goto out; 1841 break; 1842 case F_UNLCK: 1843 break; 1844 default: 1845 error = -EINVAL; 1846 goto out; 1847 } 1848 1849 error = do_lock_file_wait(filp, cmd, file_lock); 1850 1851 /* 1852 * Attempt to detect a close/fcntl race and recover by 1853 * releasing the lock that was just acquired. 1854 */ 1855 /* 1856 * we need that spin_lock here - it prevents reordering between 1857 * update of inode->i_flock and check for it done in close(). 1858 * rcu_read_lock() wouldn't do. 1859 */ 1860 spin_lock(¤t->files->file_lock); 1861 f = fcheck(fd); 1862 spin_unlock(¤t->files->file_lock); 1863 if (!error && f != filp && flock.l_type != F_UNLCK) { 1864 flock.l_type = F_UNLCK; 1865 goto again; 1866 } 1867 1868 out: 1869 locks_free_lock(file_lock); 1870 return error; 1871 } 1872 1873 #if BITS_PER_LONG == 32 1874 /* Report the first existing lock that would conflict with l. 1875 * This implements the F_GETLK command of fcntl(). 1876 */ 1877 int fcntl_getlk64(struct file *filp, struct flock64 __user *l) 1878 { 1879 struct file_lock file_lock; 1880 struct flock64 flock; 1881 int error; 1882 1883 error = -EFAULT; 1884 if (copy_from_user(&flock, l, sizeof(flock))) 1885 goto out; 1886 error = -EINVAL; 1887 if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK)) 1888 goto out; 1889 1890 error = flock64_to_posix_lock(filp, &file_lock, &flock); 1891 if (error) 1892 goto out; 1893 1894 error = vfs_test_lock(filp, &file_lock); 1895 if (error) 1896 goto out; 1897 1898 flock.l_type = file_lock.fl_type; 1899 if (file_lock.fl_type != F_UNLCK) 1900 posix_lock_to_flock64(&flock, &file_lock); 1901 1902 error = -EFAULT; 1903 if (!copy_to_user(l, &flock, sizeof(flock))) 1904 error = 0; 1905 1906 out: 1907 return error; 1908 } 1909 1910 /* Apply the lock described by l to an open file descriptor. 1911 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 1912 */ 1913 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 1914 struct flock64 __user *l) 1915 { 1916 struct file_lock *file_lock = locks_alloc_lock(); 1917 struct flock64 flock; 1918 struct inode *inode; 1919 struct file *f; 1920 int error; 1921 1922 if (file_lock == NULL) 1923 return -ENOLCK; 1924 1925 /* 1926 * This might block, so we do it before checking the inode. 1927 */ 1928 error = -EFAULT; 1929 if (copy_from_user(&flock, l, sizeof(flock))) 1930 goto out; 1931 1932 inode = filp->f_path.dentry->d_inode; 1933 1934 /* Don't allow mandatory locks on files that may be memory mapped 1935 * and shared. 1936 */ 1937 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 1938 error = -EAGAIN; 1939 goto out; 1940 } 1941 1942 again: 1943 error = flock64_to_posix_lock(filp, file_lock, &flock); 1944 if (error) 1945 goto out; 1946 if (cmd == F_SETLKW64) { 1947 file_lock->fl_flags |= FL_SLEEP; 1948 } 1949 1950 error = -EBADF; 1951 switch (flock.l_type) { 1952 case F_RDLCK: 1953 if (!(filp->f_mode & FMODE_READ)) 1954 goto out; 1955 break; 1956 case F_WRLCK: 1957 if (!(filp->f_mode & FMODE_WRITE)) 1958 goto out; 1959 break; 1960 case F_UNLCK: 1961 break; 1962 default: 1963 error = -EINVAL; 1964 goto out; 1965 } 1966 1967 error = do_lock_file_wait(filp, cmd, file_lock); 1968 1969 /* 1970 * Attempt to detect a close/fcntl race and recover by 1971 * releasing the lock that was just acquired. 1972 */ 1973 spin_lock(¤t->files->file_lock); 1974 f = fcheck(fd); 1975 spin_unlock(¤t->files->file_lock); 1976 if (!error && f != filp && flock.l_type != F_UNLCK) { 1977 flock.l_type = F_UNLCK; 1978 goto again; 1979 } 1980 1981 out: 1982 locks_free_lock(file_lock); 1983 return error; 1984 } 1985 #endif /* BITS_PER_LONG == 32 */ 1986 1987 /* 1988 * This function is called when the file is being removed 1989 * from the task's fd array. POSIX locks belonging to this task 1990 * are deleted at this time. 1991 */ 1992 void locks_remove_posix(struct file *filp, fl_owner_t owner) 1993 { 1994 struct file_lock lock; 1995 1996 /* 1997 * If there are no locks held on this file, we don't need to call 1998 * posix_lock_file(). Another process could be setting a lock on this 1999 * file at the same time, but we wouldn't remove that lock anyway. 2000 */ 2001 if (!filp->f_path.dentry->d_inode->i_flock) 2002 return; 2003 2004 lock.fl_type = F_UNLCK; 2005 lock.fl_flags = FL_POSIX | FL_CLOSE; 2006 lock.fl_start = 0; 2007 lock.fl_end = OFFSET_MAX; 2008 lock.fl_owner = owner; 2009 lock.fl_pid = current->tgid; 2010 lock.fl_file = filp; 2011 lock.fl_ops = NULL; 2012 lock.fl_lmops = NULL; 2013 2014 vfs_lock_file(filp, F_SETLK, &lock, NULL); 2015 2016 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2017 lock.fl_ops->fl_release_private(&lock); 2018 } 2019 2020 EXPORT_SYMBOL(locks_remove_posix); 2021 2022 /* 2023 * This function is called on the last close of an open file. 2024 */ 2025 void locks_remove_flock(struct file *filp) 2026 { 2027 struct inode * inode = filp->f_path.dentry->d_inode; 2028 struct file_lock *fl; 2029 struct file_lock **before; 2030 2031 if (!inode->i_flock) 2032 return; 2033 2034 if (filp->f_op && filp->f_op->flock) { 2035 struct file_lock fl = { 2036 .fl_pid = current->tgid, 2037 .fl_file = filp, 2038 .fl_flags = FL_FLOCK, 2039 .fl_type = F_UNLCK, 2040 .fl_end = OFFSET_MAX, 2041 }; 2042 filp->f_op->flock(filp, F_SETLKW, &fl); 2043 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2044 fl.fl_ops->fl_release_private(&fl); 2045 } 2046 2047 lock_flocks(); 2048 before = &inode->i_flock; 2049 2050 while ((fl = *before) != NULL) { 2051 if (fl->fl_file == filp) { 2052 if (IS_FLOCK(fl)) { 2053 locks_delete_lock(before); 2054 continue; 2055 } 2056 if (IS_LEASE(fl)) { 2057 lease_modify(before, F_UNLCK); 2058 continue; 2059 } 2060 /* What? */ 2061 BUG(); 2062 } 2063 before = &fl->fl_next; 2064 } 2065 unlock_flocks(); 2066 } 2067 2068 /** 2069 * posix_unblock_lock - stop waiting for a file lock 2070 * @filp: how the file was opened 2071 * @waiter: the lock which was waiting 2072 * 2073 * lockd needs to block waiting for locks. 2074 */ 2075 int 2076 posix_unblock_lock(struct file *filp, struct file_lock *waiter) 2077 { 2078 int status = 0; 2079 2080 lock_flocks(); 2081 if (waiter->fl_next) 2082 __locks_delete_block(waiter); 2083 else 2084 status = -ENOENT; 2085 unlock_flocks(); 2086 return status; 2087 } 2088 2089 EXPORT_SYMBOL(posix_unblock_lock); 2090 2091 /** 2092 * vfs_cancel_lock - file byte range unblock lock 2093 * @filp: The file to apply the unblock to 2094 * @fl: The lock to be unblocked 2095 * 2096 * Used by lock managers to cancel blocked requests 2097 */ 2098 int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2099 { 2100 if (filp->f_op && filp->f_op->lock) 2101 return filp->f_op->lock(filp, F_CANCELLK, fl); 2102 return 0; 2103 } 2104 2105 EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2106 2107 #ifdef CONFIG_PROC_FS 2108 #include <linux/proc_fs.h> 2109 #include <linux/seq_file.h> 2110 2111 static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2112 int id, char *pfx) 2113 { 2114 struct inode *inode = NULL; 2115 unsigned int fl_pid; 2116 2117 if (fl->fl_nspid) 2118 fl_pid = pid_vnr(fl->fl_nspid); 2119 else 2120 fl_pid = fl->fl_pid; 2121 2122 if (fl->fl_file != NULL) 2123 inode = fl->fl_file->f_path.dentry->d_inode; 2124 2125 seq_printf(f, "%d:%s ", id, pfx); 2126 if (IS_POSIX(fl)) { 2127 seq_printf(f, "%6s %s ", 2128 (fl->fl_flags & FL_ACCESS) ? "ACCESS" : "POSIX ", 2129 (inode == NULL) ? "*NOINODE*" : 2130 mandatory_lock(inode) ? "MANDATORY" : "ADVISORY "); 2131 } else if (IS_FLOCK(fl)) { 2132 if (fl->fl_type & LOCK_MAND) { 2133 seq_printf(f, "FLOCK MSNFS "); 2134 } else { 2135 seq_printf(f, "FLOCK ADVISORY "); 2136 } 2137 } else if (IS_LEASE(fl)) { 2138 seq_printf(f, "LEASE "); 2139 if (fl->fl_type & F_INPROGRESS) 2140 seq_printf(f, "BREAKING "); 2141 else if (fl->fl_file) 2142 seq_printf(f, "ACTIVE "); 2143 else 2144 seq_printf(f, "BREAKER "); 2145 } else { 2146 seq_printf(f, "UNKNOWN UNKNOWN "); 2147 } 2148 if (fl->fl_type & LOCK_MAND) { 2149 seq_printf(f, "%s ", 2150 (fl->fl_type & LOCK_READ) 2151 ? (fl->fl_type & LOCK_WRITE) ? "RW " : "READ " 2152 : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE "); 2153 } else { 2154 seq_printf(f, "%s ", 2155 (fl->fl_type & F_INPROGRESS) 2156 ? (fl->fl_type & F_UNLCK) ? "UNLCK" : "READ " 2157 : (fl->fl_type & F_WRLCK) ? "WRITE" : "READ "); 2158 } 2159 if (inode) { 2160 #ifdef WE_CAN_BREAK_LSLK_NOW 2161 seq_printf(f, "%d %s:%ld ", fl_pid, 2162 inode->i_sb->s_id, inode->i_ino); 2163 #else 2164 /* userspace relies on this representation of dev_t ;-( */ 2165 seq_printf(f, "%d %02x:%02x:%ld ", fl_pid, 2166 MAJOR(inode->i_sb->s_dev), 2167 MINOR(inode->i_sb->s_dev), inode->i_ino); 2168 #endif 2169 } else { 2170 seq_printf(f, "%d <none>:0 ", fl_pid); 2171 } 2172 if (IS_POSIX(fl)) { 2173 if (fl->fl_end == OFFSET_MAX) 2174 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2175 else 2176 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2177 } else { 2178 seq_printf(f, "0 EOF\n"); 2179 } 2180 } 2181 2182 static int locks_show(struct seq_file *f, void *v) 2183 { 2184 struct file_lock *fl, *bfl; 2185 2186 fl = list_entry(v, struct file_lock, fl_link); 2187 2188 lock_get_status(f, fl, (long)f->private, ""); 2189 2190 list_for_each_entry(bfl, &fl->fl_block, fl_block) 2191 lock_get_status(f, bfl, (long)f->private, " ->"); 2192 2193 f->private++; 2194 return 0; 2195 } 2196 2197 static void *locks_start(struct seq_file *f, loff_t *pos) 2198 { 2199 lock_flocks(); 2200 f->private = (void *)1; 2201 return seq_list_start(&file_lock_list, *pos); 2202 } 2203 2204 static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2205 { 2206 return seq_list_next(v, &file_lock_list, pos); 2207 } 2208 2209 static void locks_stop(struct seq_file *f, void *v) 2210 { 2211 unlock_flocks(); 2212 } 2213 2214 static const struct seq_operations locks_seq_operations = { 2215 .start = locks_start, 2216 .next = locks_next, 2217 .stop = locks_stop, 2218 .show = locks_show, 2219 }; 2220 2221 static int locks_open(struct inode *inode, struct file *filp) 2222 { 2223 return seq_open(filp, &locks_seq_operations); 2224 } 2225 2226 static const struct file_operations proc_locks_operations = { 2227 .open = locks_open, 2228 .read = seq_read, 2229 .llseek = seq_lseek, 2230 .release = seq_release, 2231 }; 2232 2233 static int __init proc_locks_init(void) 2234 { 2235 proc_create("locks", 0, NULL, &proc_locks_operations); 2236 return 0; 2237 } 2238 module_init(proc_locks_init); 2239 #endif 2240 2241 /** 2242 * lock_may_read - checks that the region is free of locks 2243 * @inode: the inode that is being read 2244 * @start: the first byte to read 2245 * @len: the number of bytes to read 2246 * 2247 * Emulates Windows locking requirements. Whole-file 2248 * mandatory locks (share modes) can prohibit a read and 2249 * byte-range POSIX locks can prohibit a read if they overlap. 2250 * 2251 * N.B. this function is only ever called 2252 * from knfsd and ownership of locks is never checked. 2253 */ 2254 int lock_may_read(struct inode *inode, loff_t start, unsigned long len) 2255 { 2256 struct file_lock *fl; 2257 int result = 1; 2258 lock_flocks(); 2259 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 2260 if (IS_POSIX(fl)) { 2261 if (fl->fl_type == F_RDLCK) 2262 continue; 2263 if ((fl->fl_end < start) || (fl->fl_start > (start + len))) 2264 continue; 2265 } else if (IS_FLOCK(fl)) { 2266 if (!(fl->fl_type & LOCK_MAND)) 2267 continue; 2268 if (fl->fl_type & LOCK_READ) 2269 continue; 2270 } else 2271 continue; 2272 result = 0; 2273 break; 2274 } 2275 unlock_flocks(); 2276 return result; 2277 } 2278 2279 EXPORT_SYMBOL(lock_may_read); 2280 2281 /** 2282 * lock_may_write - checks that the region is free of locks 2283 * @inode: the inode that is being written 2284 * @start: the first byte to write 2285 * @len: the number of bytes to write 2286 * 2287 * Emulates Windows locking requirements. Whole-file 2288 * mandatory locks (share modes) can prohibit a write and 2289 * byte-range POSIX locks can prohibit a write if they overlap. 2290 * 2291 * N.B. this function is only ever called 2292 * from knfsd and ownership of locks is never checked. 2293 */ 2294 int lock_may_write(struct inode *inode, loff_t start, unsigned long len) 2295 { 2296 struct file_lock *fl; 2297 int result = 1; 2298 lock_flocks(); 2299 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 2300 if (IS_POSIX(fl)) { 2301 if ((fl->fl_end < start) || (fl->fl_start > (start + len))) 2302 continue; 2303 } else if (IS_FLOCK(fl)) { 2304 if (!(fl->fl_type & LOCK_MAND)) 2305 continue; 2306 if (fl->fl_type & LOCK_WRITE) 2307 continue; 2308 } else 2309 continue; 2310 result = 0; 2311 break; 2312 } 2313 unlock_flocks(); 2314 return result; 2315 } 2316 2317 EXPORT_SYMBOL(lock_may_write); 2318 2319 static int __init filelock_init(void) 2320 { 2321 filelock_cache = kmem_cache_create("file_lock_cache", 2322 sizeof(struct file_lock), 0, SLAB_PANIC, 2323 init_once); 2324 return 0; 2325 } 2326 2327 core_initcall(filelock_init); 2328