1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/pagemap.h> 8 #include <linux/mount.h> 9 #include <linux/vfs.h> 10 #include <linux/mutex.h> 11 12 #include <asm/uaccess.h> 13 14 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 15 struct kstat *stat) 16 { 17 struct inode *inode = dentry->d_inode; 18 generic_fillattr(inode, stat); 19 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 20 return 0; 21 } 22 23 int simple_statfs(struct super_block *sb, struct kstatfs *buf) 24 { 25 buf->f_type = sb->s_magic; 26 buf->f_bsize = PAGE_CACHE_SIZE; 27 buf->f_namelen = NAME_MAX; 28 return 0; 29 } 30 31 /* 32 * Retaining negative dentries for an in-memory filesystem just wastes 33 * memory and lookup time: arrange for them to be deleted immediately. 34 */ 35 static int simple_delete_dentry(struct dentry *dentry) 36 { 37 return 1; 38 } 39 40 /* 41 * Lookup the data. This is trivial - if the dentry didn't already 42 * exist, we know it is negative. Set d_op to delete negative dentries. 43 */ 44 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 45 { 46 static struct dentry_operations simple_dentry_operations = { 47 .d_delete = simple_delete_dentry, 48 }; 49 50 if (dentry->d_name.len > NAME_MAX) 51 return ERR_PTR(-ENAMETOOLONG); 52 dentry->d_op = &simple_dentry_operations; 53 d_add(dentry, NULL); 54 return NULL; 55 } 56 57 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync) 58 { 59 return 0; 60 } 61 62 int dcache_dir_open(struct inode *inode, struct file *file) 63 { 64 static struct qstr cursor_name = {.len = 1, .name = "."}; 65 66 file->private_data = d_alloc(file->f_dentry, &cursor_name); 67 68 return file->private_data ? 0 : -ENOMEM; 69 } 70 71 int dcache_dir_close(struct inode *inode, struct file *file) 72 { 73 dput(file->private_data); 74 return 0; 75 } 76 77 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin) 78 { 79 mutex_lock(&file->f_dentry->d_inode->i_mutex); 80 switch (origin) { 81 case 1: 82 offset += file->f_pos; 83 case 0: 84 if (offset >= 0) 85 break; 86 default: 87 mutex_unlock(&file->f_dentry->d_inode->i_mutex); 88 return -EINVAL; 89 } 90 if (offset != file->f_pos) { 91 file->f_pos = offset; 92 if (file->f_pos >= 2) { 93 struct list_head *p; 94 struct dentry *cursor = file->private_data; 95 loff_t n = file->f_pos - 2; 96 97 spin_lock(&dcache_lock); 98 list_del(&cursor->d_u.d_child); 99 p = file->f_dentry->d_subdirs.next; 100 while (n && p != &file->f_dentry->d_subdirs) { 101 struct dentry *next; 102 next = list_entry(p, struct dentry, d_u.d_child); 103 if (!d_unhashed(next) && next->d_inode) 104 n--; 105 p = p->next; 106 } 107 list_add_tail(&cursor->d_u.d_child, p); 108 spin_unlock(&dcache_lock); 109 } 110 } 111 mutex_unlock(&file->f_dentry->d_inode->i_mutex); 112 return offset; 113 } 114 115 /* Relationship between i_mode and the DT_xxx types */ 116 static inline unsigned char dt_type(struct inode *inode) 117 { 118 return (inode->i_mode >> 12) & 15; 119 } 120 121 /* 122 * Directory is locked and all positive dentries in it are safe, since 123 * for ramfs-type trees they can't go away without unlink() or rmdir(), 124 * both impossible due to the lock on directory. 125 */ 126 127 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir) 128 { 129 struct dentry *dentry = filp->f_dentry; 130 struct dentry *cursor = filp->private_data; 131 struct list_head *p, *q = &cursor->d_u.d_child; 132 ino_t ino; 133 int i = filp->f_pos; 134 135 switch (i) { 136 case 0: 137 ino = dentry->d_inode->i_ino; 138 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 139 break; 140 filp->f_pos++; 141 i++; 142 /* fallthrough */ 143 case 1: 144 ino = parent_ino(dentry); 145 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 146 break; 147 filp->f_pos++; 148 i++; 149 /* fallthrough */ 150 default: 151 spin_lock(&dcache_lock); 152 if (filp->f_pos == 2) { 153 list_del(q); 154 list_add(q, &dentry->d_subdirs); 155 } 156 for (p=q->next; p != &dentry->d_subdirs; p=p->next) { 157 struct dentry *next; 158 next = list_entry(p, struct dentry, d_u.d_child); 159 if (d_unhashed(next) || !next->d_inode) 160 continue; 161 162 spin_unlock(&dcache_lock); 163 if (filldir(dirent, next->d_name.name, next->d_name.len, filp->f_pos, next->d_inode->i_ino, dt_type(next->d_inode)) < 0) 164 return 0; 165 spin_lock(&dcache_lock); 166 /* next is still alive */ 167 list_del(q); 168 list_add(q, p); 169 p = q; 170 filp->f_pos++; 171 } 172 spin_unlock(&dcache_lock); 173 } 174 return 0; 175 } 176 177 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 178 { 179 return -EISDIR; 180 } 181 182 const struct file_operations simple_dir_operations = { 183 .open = dcache_dir_open, 184 .release = dcache_dir_close, 185 .llseek = dcache_dir_lseek, 186 .read = generic_read_dir, 187 .readdir = dcache_readdir, 188 .fsync = simple_sync_file, 189 }; 190 191 struct inode_operations simple_dir_inode_operations = { 192 .lookup = simple_lookup, 193 }; 194 195 /* 196 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 197 * will never be mountable) 198 */ 199 struct super_block * 200 get_sb_pseudo(struct file_system_type *fs_type, char *name, 201 struct super_operations *ops, unsigned long magic) 202 { 203 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 204 static struct super_operations default_ops = {.statfs = simple_statfs}; 205 struct dentry *dentry; 206 struct inode *root; 207 struct qstr d_name = {.name = name, .len = strlen(name)}; 208 209 if (IS_ERR(s)) 210 return s; 211 212 s->s_flags = MS_NOUSER; 213 s->s_maxbytes = ~0ULL; 214 s->s_blocksize = 1024; 215 s->s_blocksize_bits = 10; 216 s->s_magic = magic; 217 s->s_op = ops ? ops : &default_ops; 218 s->s_time_gran = 1; 219 root = new_inode(s); 220 if (!root) 221 goto Enomem; 222 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 223 root->i_uid = root->i_gid = 0; 224 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 225 dentry = d_alloc(NULL, &d_name); 226 if (!dentry) { 227 iput(root); 228 goto Enomem; 229 } 230 dentry->d_sb = s; 231 dentry->d_parent = dentry; 232 d_instantiate(dentry, root); 233 s->s_root = dentry; 234 s->s_flags |= MS_ACTIVE; 235 return s; 236 237 Enomem: 238 up_write(&s->s_umount); 239 deactivate_super(s); 240 return ERR_PTR(-ENOMEM); 241 } 242 243 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 244 { 245 struct inode *inode = old_dentry->d_inode; 246 247 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 248 inode->i_nlink++; 249 atomic_inc(&inode->i_count); 250 dget(dentry); 251 d_instantiate(dentry, inode); 252 return 0; 253 } 254 255 static inline int simple_positive(struct dentry *dentry) 256 { 257 return dentry->d_inode && !d_unhashed(dentry); 258 } 259 260 int simple_empty(struct dentry *dentry) 261 { 262 struct dentry *child; 263 int ret = 0; 264 265 spin_lock(&dcache_lock); 266 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) 267 if (simple_positive(child)) 268 goto out; 269 ret = 1; 270 out: 271 spin_unlock(&dcache_lock); 272 return ret; 273 } 274 275 int simple_unlink(struct inode *dir, struct dentry *dentry) 276 { 277 struct inode *inode = dentry->d_inode; 278 279 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 280 inode->i_nlink--; 281 dput(dentry); 282 return 0; 283 } 284 285 int simple_rmdir(struct inode *dir, struct dentry *dentry) 286 { 287 if (!simple_empty(dentry)) 288 return -ENOTEMPTY; 289 290 dentry->d_inode->i_nlink--; 291 simple_unlink(dir, dentry); 292 dir->i_nlink--; 293 return 0; 294 } 295 296 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 297 struct inode *new_dir, struct dentry *new_dentry) 298 { 299 struct inode *inode = old_dentry->d_inode; 300 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode); 301 302 if (!simple_empty(new_dentry)) 303 return -ENOTEMPTY; 304 305 if (new_dentry->d_inode) { 306 simple_unlink(new_dir, new_dentry); 307 if (they_are_dirs) 308 old_dir->i_nlink--; 309 } else if (they_are_dirs) { 310 old_dir->i_nlink--; 311 new_dir->i_nlink++; 312 } 313 314 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 315 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 316 317 return 0; 318 } 319 320 int simple_readpage(struct file *file, struct page *page) 321 { 322 void *kaddr; 323 324 if (PageUptodate(page)) 325 goto out; 326 327 kaddr = kmap_atomic(page, KM_USER0); 328 memset(kaddr, 0, PAGE_CACHE_SIZE); 329 kunmap_atomic(kaddr, KM_USER0); 330 flush_dcache_page(page); 331 SetPageUptodate(page); 332 out: 333 unlock_page(page); 334 return 0; 335 } 336 337 int simple_prepare_write(struct file *file, struct page *page, 338 unsigned from, unsigned to) 339 { 340 if (!PageUptodate(page)) { 341 if (to - from != PAGE_CACHE_SIZE) { 342 void *kaddr = kmap_atomic(page, KM_USER0); 343 memset(kaddr, 0, from); 344 memset(kaddr + to, 0, PAGE_CACHE_SIZE - to); 345 flush_dcache_page(page); 346 kunmap_atomic(kaddr, KM_USER0); 347 } 348 SetPageUptodate(page); 349 } 350 return 0; 351 } 352 353 int simple_commit_write(struct file *file, struct page *page, 354 unsigned offset, unsigned to) 355 { 356 struct inode *inode = page->mapping->host; 357 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 358 359 /* 360 * No need to use i_size_read() here, the i_size 361 * cannot change under us because we hold the i_mutex. 362 */ 363 if (pos > inode->i_size) 364 i_size_write(inode, pos); 365 set_page_dirty(page); 366 return 0; 367 } 368 369 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files) 370 { 371 static struct super_operations s_ops = {.statfs = simple_statfs}; 372 struct inode *inode; 373 struct dentry *root; 374 struct dentry *dentry; 375 int i; 376 377 s->s_blocksize = PAGE_CACHE_SIZE; 378 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 379 s->s_magic = magic; 380 s->s_op = &s_ops; 381 s->s_time_gran = 1; 382 383 inode = new_inode(s); 384 if (!inode) 385 return -ENOMEM; 386 inode->i_mode = S_IFDIR | 0755; 387 inode->i_uid = inode->i_gid = 0; 388 inode->i_blksize = PAGE_CACHE_SIZE; 389 inode->i_blocks = 0; 390 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 391 inode->i_op = &simple_dir_inode_operations; 392 inode->i_fop = &simple_dir_operations; 393 inode->i_nlink = 2; 394 root = d_alloc_root(inode); 395 if (!root) { 396 iput(inode); 397 return -ENOMEM; 398 } 399 for (i = 0; !files->name || files->name[0]; i++, files++) { 400 if (!files->name) 401 continue; 402 dentry = d_alloc_name(root, files->name); 403 if (!dentry) 404 goto out; 405 inode = new_inode(s); 406 if (!inode) 407 goto out; 408 inode->i_mode = S_IFREG | files->mode; 409 inode->i_uid = inode->i_gid = 0; 410 inode->i_blksize = PAGE_CACHE_SIZE; 411 inode->i_blocks = 0; 412 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 413 inode->i_fop = files->ops; 414 inode->i_ino = i; 415 d_add(dentry, inode); 416 } 417 s->s_root = root; 418 return 0; 419 out: 420 d_genocide(root); 421 dput(root); 422 return -ENOMEM; 423 } 424 425 static DEFINE_SPINLOCK(pin_fs_lock); 426 427 int simple_pin_fs(char *name, struct vfsmount **mount, int *count) 428 { 429 struct vfsmount *mnt = NULL; 430 spin_lock(&pin_fs_lock); 431 if (unlikely(!*mount)) { 432 spin_unlock(&pin_fs_lock); 433 mnt = do_kern_mount(name, 0, name, NULL); 434 if (IS_ERR(mnt)) 435 return PTR_ERR(mnt); 436 spin_lock(&pin_fs_lock); 437 if (!*mount) 438 *mount = mnt; 439 } 440 mntget(*mount); 441 ++*count; 442 spin_unlock(&pin_fs_lock); 443 mntput(mnt); 444 return 0; 445 } 446 447 void simple_release_fs(struct vfsmount **mount, int *count) 448 { 449 struct vfsmount *mnt; 450 spin_lock(&pin_fs_lock); 451 mnt = *mount; 452 if (!--*count) 453 *mount = NULL; 454 spin_unlock(&pin_fs_lock); 455 mntput(mnt); 456 } 457 458 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 459 const void *from, size_t available) 460 { 461 loff_t pos = *ppos; 462 if (pos < 0) 463 return -EINVAL; 464 if (pos >= available) 465 return 0; 466 if (count > available - pos) 467 count = available - pos; 468 if (copy_to_user(to, from + pos, count)) 469 return -EFAULT; 470 *ppos = pos + count; 471 return count; 472 } 473 474 /* 475 * Transaction based IO. 476 * The file expects a single write which triggers the transaction, and then 477 * possibly a read which collects the result - which is stored in a 478 * file-local buffer. 479 */ 480 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 481 { 482 struct simple_transaction_argresp *ar; 483 static DEFINE_SPINLOCK(simple_transaction_lock); 484 485 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 486 return ERR_PTR(-EFBIG); 487 488 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 489 if (!ar) 490 return ERR_PTR(-ENOMEM); 491 492 spin_lock(&simple_transaction_lock); 493 494 /* only one write allowed per open */ 495 if (file->private_data) { 496 spin_unlock(&simple_transaction_lock); 497 free_page((unsigned long)ar); 498 return ERR_PTR(-EBUSY); 499 } 500 501 file->private_data = ar; 502 503 spin_unlock(&simple_transaction_lock); 504 505 if (copy_from_user(ar->data, buf, size)) 506 return ERR_PTR(-EFAULT); 507 508 return ar->data; 509 } 510 511 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 512 { 513 struct simple_transaction_argresp *ar = file->private_data; 514 515 if (!ar) 516 return 0; 517 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 518 } 519 520 int simple_transaction_release(struct inode *inode, struct file *file) 521 { 522 free_page((unsigned long)file->private_data); 523 return 0; 524 } 525 526 /* Simple attribute files */ 527 528 struct simple_attr { 529 u64 (*get)(void *); 530 void (*set)(void *, u64); 531 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 532 char set_buf[24]; 533 void *data; 534 const char *fmt; /* format for read operation */ 535 struct mutex mutex; /* protects access to these buffers */ 536 }; 537 538 /* simple_attr_open is called by an actual attribute open file operation 539 * to set the attribute specific access operations. */ 540 int simple_attr_open(struct inode *inode, struct file *file, 541 u64 (*get)(void *), void (*set)(void *, u64), 542 const char *fmt) 543 { 544 struct simple_attr *attr; 545 546 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 547 if (!attr) 548 return -ENOMEM; 549 550 attr->get = get; 551 attr->set = set; 552 attr->data = inode->u.generic_ip; 553 attr->fmt = fmt; 554 mutex_init(&attr->mutex); 555 556 file->private_data = attr; 557 558 return nonseekable_open(inode, file); 559 } 560 561 int simple_attr_close(struct inode *inode, struct file *file) 562 { 563 kfree(file->private_data); 564 return 0; 565 } 566 567 /* read from the buffer that is filled with the get function */ 568 ssize_t simple_attr_read(struct file *file, char __user *buf, 569 size_t len, loff_t *ppos) 570 { 571 struct simple_attr *attr; 572 size_t size; 573 ssize_t ret; 574 575 attr = file->private_data; 576 577 if (!attr->get) 578 return -EACCES; 579 580 mutex_lock(&attr->mutex); 581 if (*ppos) /* continued read */ 582 size = strlen(attr->get_buf); 583 else /* first read */ 584 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 585 attr->fmt, 586 (unsigned long long)attr->get(attr->data)); 587 588 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 589 mutex_unlock(&attr->mutex); 590 return ret; 591 } 592 593 /* interpret the buffer as a number to call the set function with */ 594 ssize_t simple_attr_write(struct file *file, const char __user *buf, 595 size_t len, loff_t *ppos) 596 { 597 struct simple_attr *attr; 598 u64 val; 599 size_t size; 600 ssize_t ret; 601 602 attr = file->private_data; 603 604 if (!attr->set) 605 return -EACCES; 606 607 mutex_lock(&attr->mutex); 608 ret = -EFAULT; 609 size = min(sizeof(attr->set_buf) - 1, len); 610 if (copy_from_user(attr->set_buf, buf, size)) 611 goto out; 612 613 ret = len; /* claim we got the whole input */ 614 attr->set_buf[size] = '\0'; 615 val = simple_strtol(attr->set_buf, NULL, 0); 616 attr->set(attr->data, val); 617 out: 618 mutex_unlock(&attr->mutex); 619 return ret; 620 } 621 622 EXPORT_SYMBOL(dcache_dir_close); 623 EXPORT_SYMBOL(dcache_dir_lseek); 624 EXPORT_SYMBOL(dcache_dir_open); 625 EXPORT_SYMBOL(dcache_readdir); 626 EXPORT_SYMBOL(generic_read_dir); 627 EXPORT_SYMBOL(get_sb_pseudo); 628 EXPORT_SYMBOL(simple_commit_write); 629 EXPORT_SYMBOL(simple_dir_inode_operations); 630 EXPORT_SYMBOL(simple_dir_operations); 631 EXPORT_SYMBOL(simple_empty); 632 EXPORT_SYMBOL(d_alloc_name); 633 EXPORT_SYMBOL(simple_fill_super); 634 EXPORT_SYMBOL(simple_getattr); 635 EXPORT_SYMBOL(simple_link); 636 EXPORT_SYMBOL(simple_lookup); 637 EXPORT_SYMBOL(simple_pin_fs); 638 EXPORT_SYMBOL(simple_prepare_write); 639 EXPORT_SYMBOL(simple_readpage); 640 EXPORT_SYMBOL(simple_release_fs); 641 EXPORT_SYMBOL(simple_rename); 642 EXPORT_SYMBOL(simple_rmdir); 643 EXPORT_SYMBOL(simple_statfs); 644 EXPORT_SYMBOL(simple_sync_file); 645 EXPORT_SYMBOL(simple_unlink); 646 EXPORT_SYMBOL(simple_read_from_buffer); 647 EXPORT_SYMBOL(simple_transaction_get); 648 EXPORT_SYMBOL(simple_transaction_read); 649 EXPORT_SYMBOL(simple_transaction_release); 650 EXPORT_SYMBOL_GPL(simple_attr_open); 651 EXPORT_SYMBOL_GPL(simple_attr_close); 652 EXPORT_SYMBOL_GPL(simple_attr_read); 653 EXPORT_SYMBOL_GPL(simple_attr_write); 654