1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 #include <linux/pidfs.h> 27 28 #include <linux/uaccess.h> 29 30 #include "internal.h" 31 32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 33 struct kstat *stat, u32 request_mask, 34 unsigned int query_flags) 35 { 36 struct inode *inode = d_inode(path->dentry); 37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 39 return 0; 40 } 41 EXPORT_SYMBOL(simple_getattr); 42 43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 44 { 45 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 46 47 buf->f_fsid = u64_to_fsid(id); 48 buf->f_type = dentry->d_sb->s_magic; 49 buf->f_bsize = PAGE_SIZE; 50 buf->f_namelen = NAME_MAX; 51 return 0; 52 } 53 EXPORT_SYMBOL(simple_statfs); 54 55 /* 56 * Retaining negative dentries for an in-memory filesystem just wastes 57 * memory and lookup time: arrange for them to be deleted immediately. 58 */ 59 int always_delete_dentry(const struct dentry *dentry) 60 { 61 return 1; 62 } 63 EXPORT_SYMBOL(always_delete_dentry); 64 65 const struct dentry_operations simple_dentry_operations = { 66 .d_delete = always_delete_dentry, 67 }; 68 EXPORT_SYMBOL(simple_dentry_operations); 69 70 /* 71 * Lookup the data. This is trivial - if the dentry didn't already 72 * exist, we know it is negative. Set d_op to delete negative dentries. 73 */ 74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 75 { 76 if (dentry->d_name.len > NAME_MAX) 77 return ERR_PTR(-ENAMETOOLONG); 78 if (!dentry->d_sb->s_d_op) 79 d_set_d_op(dentry, &simple_dentry_operations); 80 81 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 82 return NULL; 83 84 d_add(dentry, NULL); 85 return NULL; 86 } 87 EXPORT_SYMBOL(simple_lookup); 88 89 int dcache_dir_open(struct inode *inode, struct file *file) 90 { 91 file->private_data = d_alloc_cursor(file->f_path.dentry); 92 93 return file->private_data ? 0 : -ENOMEM; 94 } 95 EXPORT_SYMBOL(dcache_dir_open); 96 97 int dcache_dir_close(struct inode *inode, struct file *file) 98 { 99 dput(file->private_data); 100 return 0; 101 } 102 EXPORT_SYMBOL(dcache_dir_close); 103 104 /* parent is locked at least shared */ 105 /* 106 * Returns an element of siblings' list. 107 * We are looking for <count>th positive after <p>; if 108 * found, dentry is grabbed and returned to caller. 109 * If no such element exists, NULL is returned. 110 */ 111 static struct dentry *scan_positives(struct dentry *cursor, 112 struct hlist_node **p, 113 loff_t count, 114 struct dentry *last) 115 { 116 struct dentry *dentry = cursor->d_parent, *found = NULL; 117 118 spin_lock(&dentry->d_lock); 119 while (*p) { 120 struct dentry *d = hlist_entry(*p, struct dentry, d_sib); 121 p = &d->d_sib.next; 122 // we must at least skip cursors, to avoid livelocks 123 if (d->d_flags & DCACHE_DENTRY_CURSOR) 124 continue; 125 if (simple_positive(d) && !--count) { 126 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 127 if (simple_positive(d)) 128 found = dget_dlock(d); 129 spin_unlock(&d->d_lock); 130 if (likely(found)) 131 break; 132 count = 1; 133 } 134 if (need_resched()) { 135 if (!hlist_unhashed(&cursor->d_sib)) 136 __hlist_del(&cursor->d_sib); 137 hlist_add_behind(&cursor->d_sib, &d->d_sib); 138 p = &cursor->d_sib.next; 139 spin_unlock(&dentry->d_lock); 140 cond_resched(); 141 spin_lock(&dentry->d_lock); 142 } 143 } 144 spin_unlock(&dentry->d_lock); 145 dput(last); 146 return found; 147 } 148 149 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 150 { 151 struct dentry *dentry = file->f_path.dentry; 152 switch (whence) { 153 case 1: 154 offset += file->f_pos; 155 fallthrough; 156 case 0: 157 if (offset >= 0) 158 break; 159 fallthrough; 160 default: 161 return -EINVAL; 162 } 163 if (offset != file->f_pos) { 164 struct dentry *cursor = file->private_data; 165 struct dentry *to = NULL; 166 167 inode_lock_shared(dentry->d_inode); 168 169 if (offset > 2) 170 to = scan_positives(cursor, &dentry->d_children.first, 171 offset - 2, NULL); 172 spin_lock(&dentry->d_lock); 173 hlist_del_init(&cursor->d_sib); 174 if (to) 175 hlist_add_behind(&cursor->d_sib, &to->d_sib); 176 spin_unlock(&dentry->d_lock); 177 dput(to); 178 179 file->f_pos = offset; 180 181 inode_unlock_shared(dentry->d_inode); 182 } 183 return offset; 184 } 185 EXPORT_SYMBOL(dcache_dir_lseek); 186 187 /* 188 * Directory is locked and all positive dentries in it are safe, since 189 * for ramfs-type trees they can't go away without unlink() or rmdir(), 190 * both impossible due to the lock on directory. 191 */ 192 193 int dcache_readdir(struct file *file, struct dir_context *ctx) 194 { 195 struct dentry *dentry = file->f_path.dentry; 196 struct dentry *cursor = file->private_data; 197 struct dentry *next = NULL; 198 struct hlist_node **p; 199 200 if (!dir_emit_dots(file, ctx)) 201 return 0; 202 203 if (ctx->pos == 2) 204 p = &dentry->d_children.first; 205 else 206 p = &cursor->d_sib.next; 207 208 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 209 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 210 d_inode(next)->i_ino, 211 fs_umode_to_dtype(d_inode(next)->i_mode))) 212 break; 213 ctx->pos++; 214 p = &next->d_sib.next; 215 } 216 spin_lock(&dentry->d_lock); 217 hlist_del_init(&cursor->d_sib); 218 if (next) 219 hlist_add_before(&cursor->d_sib, &next->d_sib); 220 spin_unlock(&dentry->d_lock); 221 dput(next); 222 223 return 0; 224 } 225 EXPORT_SYMBOL(dcache_readdir); 226 227 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 228 { 229 return -EISDIR; 230 } 231 EXPORT_SYMBOL(generic_read_dir); 232 233 const struct file_operations simple_dir_operations = { 234 .open = dcache_dir_open, 235 .release = dcache_dir_close, 236 .llseek = dcache_dir_lseek, 237 .read = generic_read_dir, 238 .iterate_shared = dcache_readdir, 239 .fsync = noop_fsync, 240 }; 241 EXPORT_SYMBOL(simple_dir_operations); 242 243 const struct inode_operations simple_dir_inode_operations = { 244 .lookup = simple_lookup, 245 }; 246 EXPORT_SYMBOL(simple_dir_inode_operations); 247 248 /* simple_offset_add() never assigns these to a dentry */ 249 enum { 250 DIR_OFFSET_FIRST = 2, /* Find first real entry */ 251 DIR_OFFSET_EOD = S32_MAX, 252 }; 253 254 /* simple_offset_add() allocation range */ 255 enum { 256 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1, 257 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1, 258 }; 259 260 static void offset_set(struct dentry *dentry, long offset) 261 { 262 dentry->d_fsdata = (void *)offset; 263 } 264 265 static long dentry2offset(struct dentry *dentry) 266 { 267 return (long)dentry->d_fsdata; 268 } 269 270 static struct lock_class_key simple_offset_lock_class; 271 272 /** 273 * simple_offset_init - initialize an offset_ctx 274 * @octx: directory offset map to be initialized 275 * 276 */ 277 void simple_offset_init(struct offset_ctx *octx) 278 { 279 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE); 280 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class); 281 octx->next_offset = DIR_OFFSET_MIN; 282 } 283 284 /** 285 * simple_offset_add - Add an entry to a directory's offset map 286 * @octx: directory offset ctx to be updated 287 * @dentry: new dentry being added 288 * 289 * Returns zero on success. @octx and the dentry's offset are updated. 290 * Otherwise, a negative errno value is returned. 291 */ 292 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 293 { 294 unsigned long offset; 295 int ret; 296 297 if (dentry2offset(dentry) != 0) 298 return -EBUSY; 299 300 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN, 301 DIR_OFFSET_MAX, &octx->next_offset, 302 GFP_KERNEL); 303 if (unlikely(ret < 0)) 304 return ret == -EBUSY ? -ENOSPC : ret; 305 306 offset_set(dentry, offset); 307 return 0; 308 } 309 310 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry, 311 long offset) 312 { 313 int ret; 314 315 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL); 316 if (ret) 317 return ret; 318 offset_set(dentry, offset); 319 return 0; 320 } 321 322 /** 323 * simple_offset_remove - Remove an entry to a directory's offset map 324 * @octx: directory offset ctx to be updated 325 * @dentry: dentry being removed 326 * 327 */ 328 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 329 { 330 long offset; 331 332 offset = dentry2offset(dentry); 333 if (offset == 0) 334 return; 335 336 mtree_erase(&octx->mt, offset); 337 offset_set(dentry, 0); 338 } 339 340 /** 341 * simple_offset_rename - handle directory offsets for rename 342 * @old_dir: parent directory of source entry 343 * @old_dentry: dentry of source entry 344 * @new_dir: parent_directory of destination entry 345 * @new_dentry: dentry of destination 346 * 347 * Caller provides appropriate serialization. 348 * 349 * User space expects the directory offset value of the replaced 350 * (new) directory entry to be unchanged after a rename. 351 * 352 * Returns zero on success, a negative errno value on failure. 353 */ 354 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 355 struct inode *new_dir, struct dentry *new_dentry) 356 { 357 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 358 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 359 long new_offset = dentry2offset(new_dentry); 360 361 simple_offset_remove(old_ctx, old_dentry); 362 363 if (new_offset) { 364 offset_set(new_dentry, 0); 365 return simple_offset_replace(new_ctx, old_dentry, new_offset); 366 } 367 return simple_offset_add(new_ctx, old_dentry); 368 } 369 370 /** 371 * simple_offset_rename_exchange - exchange rename with directory offsets 372 * @old_dir: parent of dentry being moved 373 * @old_dentry: dentry being moved 374 * @new_dir: destination parent 375 * @new_dentry: destination dentry 376 * 377 * This API preserves the directory offset values. Caller provides 378 * appropriate serialization. 379 * 380 * Returns zero on success. Otherwise a negative errno is returned and the 381 * rename is rolled back. 382 */ 383 int simple_offset_rename_exchange(struct inode *old_dir, 384 struct dentry *old_dentry, 385 struct inode *new_dir, 386 struct dentry *new_dentry) 387 { 388 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 389 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 390 long old_index = dentry2offset(old_dentry); 391 long new_index = dentry2offset(new_dentry); 392 int ret; 393 394 simple_offset_remove(old_ctx, old_dentry); 395 simple_offset_remove(new_ctx, new_dentry); 396 397 ret = simple_offset_replace(new_ctx, old_dentry, new_index); 398 if (ret) 399 goto out_restore; 400 401 ret = simple_offset_replace(old_ctx, new_dentry, old_index); 402 if (ret) { 403 simple_offset_remove(new_ctx, old_dentry); 404 goto out_restore; 405 } 406 407 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 408 if (ret) { 409 simple_offset_remove(new_ctx, old_dentry); 410 simple_offset_remove(old_ctx, new_dentry); 411 goto out_restore; 412 } 413 return 0; 414 415 out_restore: 416 (void)simple_offset_replace(old_ctx, old_dentry, old_index); 417 (void)simple_offset_replace(new_ctx, new_dentry, new_index); 418 return ret; 419 } 420 421 /** 422 * simple_offset_destroy - Release offset map 423 * @octx: directory offset ctx that is about to be destroyed 424 * 425 * During fs teardown (eg. umount), a directory's offset map might still 426 * contain entries. xa_destroy() cleans out anything that remains. 427 */ 428 void simple_offset_destroy(struct offset_ctx *octx) 429 { 430 mtree_destroy(&octx->mt); 431 } 432 433 /** 434 * offset_dir_llseek - Advance the read position of a directory descriptor 435 * @file: an open directory whose position is to be updated 436 * @offset: a byte offset 437 * @whence: enumerator describing the starting position for this update 438 * 439 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 440 * 441 * Returns the updated read position if successful; otherwise a 442 * negative errno is returned and the read position remains unchanged. 443 */ 444 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 445 { 446 switch (whence) { 447 case SEEK_CUR: 448 offset += file->f_pos; 449 fallthrough; 450 case SEEK_SET: 451 if (offset >= 0) 452 break; 453 fallthrough; 454 default: 455 return -EINVAL; 456 } 457 458 return vfs_setpos(file, offset, LONG_MAX); 459 } 460 461 static struct dentry *find_positive_dentry(struct dentry *parent, 462 struct dentry *dentry, 463 bool next) 464 { 465 struct dentry *found = NULL; 466 467 spin_lock(&parent->d_lock); 468 if (next) 469 dentry = d_next_sibling(dentry); 470 else if (!dentry) 471 dentry = d_first_child(parent); 472 hlist_for_each_entry_from(dentry, d_sib) { 473 if (!simple_positive(dentry)) 474 continue; 475 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 476 if (simple_positive(dentry)) 477 found = dget_dlock(dentry); 478 spin_unlock(&dentry->d_lock); 479 if (likely(found)) 480 break; 481 } 482 spin_unlock(&parent->d_lock); 483 return found; 484 } 485 486 static noinline_for_stack struct dentry * 487 offset_dir_lookup(struct dentry *parent, loff_t offset) 488 { 489 struct inode *inode = d_inode(parent); 490 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode); 491 struct dentry *child, *found = NULL; 492 493 MA_STATE(mas, &octx->mt, offset, offset); 494 495 if (offset == DIR_OFFSET_FIRST) 496 found = find_positive_dentry(parent, NULL, false); 497 else { 498 rcu_read_lock(); 499 child = mas_find(&mas, DIR_OFFSET_MAX); 500 found = find_positive_dentry(parent, child, false); 501 rcu_read_unlock(); 502 } 503 return found; 504 } 505 506 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 507 { 508 struct inode *inode = d_inode(dentry); 509 510 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len, 511 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 512 } 513 514 static void offset_iterate_dir(struct file *file, struct dir_context *ctx) 515 { 516 struct dentry *dir = file->f_path.dentry; 517 struct dentry *dentry; 518 519 dentry = offset_dir_lookup(dir, ctx->pos); 520 if (!dentry) 521 goto out_eod; 522 while (true) { 523 struct dentry *next; 524 525 ctx->pos = dentry2offset(dentry); 526 if (!offset_dir_emit(ctx, dentry)) 527 break; 528 529 next = find_positive_dentry(dir, dentry, true); 530 dput(dentry); 531 532 if (!next) 533 goto out_eod; 534 dentry = next; 535 } 536 dput(dentry); 537 return; 538 539 out_eod: 540 ctx->pos = DIR_OFFSET_EOD; 541 } 542 543 /** 544 * offset_readdir - Emit entries starting at offset @ctx->pos 545 * @file: an open directory to iterate over 546 * @ctx: directory iteration context 547 * 548 * Caller must hold @file's i_rwsem to prevent insertion or removal of 549 * entries during this call. 550 * 551 * On entry, @ctx->pos contains an offset that represents the first entry 552 * to be read from the directory. 553 * 554 * The operation continues until there are no more entries to read, or 555 * until the ctx->actor indicates there is no more space in the caller's 556 * output buffer. 557 * 558 * On return, @ctx->pos contains an offset that will read the next entry 559 * in this directory when offset_readdir() is called again with @ctx. 560 * Caller places this value in the d_off field of the last entry in the 561 * user's buffer. 562 * 563 * Return values: 564 * %0 - Complete 565 */ 566 static int offset_readdir(struct file *file, struct dir_context *ctx) 567 { 568 struct dentry *dir = file->f_path.dentry; 569 570 lockdep_assert_held(&d_inode(dir)->i_rwsem); 571 572 if (!dir_emit_dots(file, ctx)) 573 return 0; 574 if (ctx->pos != DIR_OFFSET_EOD) 575 offset_iterate_dir(file, ctx); 576 return 0; 577 } 578 579 const struct file_operations simple_offset_dir_operations = { 580 .llseek = offset_dir_llseek, 581 .iterate_shared = offset_readdir, 582 .read = generic_read_dir, 583 .fsync = noop_fsync, 584 }; 585 586 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 587 { 588 struct dentry *child = NULL, *d; 589 590 spin_lock(&parent->d_lock); 591 d = prev ? d_next_sibling(prev) : d_first_child(parent); 592 hlist_for_each_entry_from(d, d_sib) { 593 if (simple_positive(d)) { 594 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 595 if (simple_positive(d)) 596 child = dget_dlock(d); 597 spin_unlock(&d->d_lock); 598 if (likely(child)) 599 break; 600 } 601 } 602 spin_unlock(&parent->d_lock); 603 dput(prev); 604 return child; 605 } 606 607 void simple_recursive_removal(struct dentry *dentry, 608 void (*callback)(struct dentry *)) 609 { 610 struct dentry *this = dget(dentry); 611 while (true) { 612 struct dentry *victim = NULL, *child; 613 struct inode *inode = this->d_inode; 614 615 inode_lock(inode); 616 if (d_is_dir(this)) 617 inode->i_flags |= S_DEAD; 618 while ((child = find_next_child(this, victim)) == NULL) { 619 // kill and ascend 620 // update metadata while it's still locked 621 inode_set_ctime_current(inode); 622 clear_nlink(inode); 623 inode_unlock(inode); 624 victim = this; 625 this = this->d_parent; 626 inode = this->d_inode; 627 inode_lock(inode); 628 if (simple_positive(victim)) { 629 d_invalidate(victim); // avoid lost mounts 630 if (d_is_dir(victim)) 631 fsnotify_rmdir(inode, victim); 632 else 633 fsnotify_unlink(inode, victim); 634 if (callback) 635 callback(victim); 636 dput(victim); // unpin it 637 } 638 if (victim == dentry) { 639 inode_set_mtime_to_ts(inode, 640 inode_set_ctime_current(inode)); 641 if (d_is_dir(dentry)) 642 drop_nlink(inode); 643 inode_unlock(inode); 644 dput(dentry); 645 return; 646 } 647 } 648 inode_unlock(inode); 649 this = child; 650 } 651 } 652 EXPORT_SYMBOL(simple_recursive_removal); 653 654 static const struct super_operations simple_super_operations = { 655 .statfs = simple_statfs, 656 }; 657 658 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 659 { 660 struct pseudo_fs_context *ctx = fc->fs_private; 661 struct inode *root; 662 663 s->s_maxbytes = MAX_LFS_FILESIZE; 664 s->s_blocksize = PAGE_SIZE; 665 s->s_blocksize_bits = PAGE_SHIFT; 666 s->s_magic = ctx->magic; 667 s->s_op = ctx->ops ?: &simple_super_operations; 668 s->s_export_op = ctx->eops; 669 s->s_xattr = ctx->xattr; 670 s->s_time_gran = 1; 671 root = new_inode(s); 672 if (!root) 673 return -ENOMEM; 674 675 /* 676 * since this is the first inode, make it number 1. New inodes created 677 * after this must take care not to collide with it (by passing 678 * max_reserved of 1 to iunique). 679 */ 680 root->i_ino = 1; 681 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 682 simple_inode_init_ts(root); 683 s->s_root = d_make_root(root); 684 if (!s->s_root) 685 return -ENOMEM; 686 s->s_d_op = ctx->dops; 687 return 0; 688 } 689 690 static int pseudo_fs_get_tree(struct fs_context *fc) 691 { 692 return get_tree_nodev(fc, pseudo_fs_fill_super); 693 } 694 695 static void pseudo_fs_free(struct fs_context *fc) 696 { 697 kfree(fc->fs_private); 698 } 699 700 static const struct fs_context_operations pseudo_fs_context_ops = { 701 .free = pseudo_fs_free, 702 .get_tree = pseudo_fs_get_tree, 703 }; 704 705 /* 706 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 707 * will never be mountable) 708 */ 709 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 710 unsigned long magic) 711 { 712 struct pseudo_fs_context *ctx; 713 714 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 715 if (likely(ctx)) { 716 ctx->magic = magic; 717 fc->fs_private = ctx; 718 fc->ops = &pseudo_fs_context_ops; 719 fc->sb_flags |= SB_NOUSER; 720 fc->global = true; 721 } 722 return ctx; 723 } 724 EXPORT_SYMBOL(init_pseudo); 725 726 int simple_open(struct inode *inode, struct file *file) 727 { 728 if (inode->i_private) 729 file->private_data = inode->i_private; 730 return 0; 731 } 732 EXPORT_SYMBOL(simple_open); 733 734 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 735 { 736 struct inode *inode = d_inode(old_dentry); 737 738 inode_set_mtime_to_ts(dir, 739 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 740 inc_nlink(inode); 741 ihold(inode); 742 dget(dentry); 743 d_instantiate(dentry, inode); 744 return 0; 745 } 746 EXPORT_SYMBOL(simple_link); 747 748 int simple_empty(struct dentry *dentry) 749 { 750 struct dentry *child; 751 int ret = 0; 752 753 spin_lock(&dentry->d_lock); 754 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 755 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 756 if (simple_positive(child)) { 757 spin_unlock(&child->d_lock); 758 goto out; 759 } 760 spin_unlock(&child->d_lock); 761 } 762 ret = 1; 763 out: 764 spin_unlock(&dentry->d_lock); 765 return ret; 766 } 767 EXPORT_SYMBOL(simple_empty); 768 769 int simple_unlink(struct inode *dir, struct dentry *dentry) 770 { 771 struct inode *inode = d_inode(dentry); 772 773 inode_set_mtime_to_ts(dir, 774 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 775 drop_nlink(inode); 776 dput(dentry); 777 return 0; 778 } 779 EXPORT_SYMBOL(simple_unlink); 780 781 int simple_rmdir(struct inode *dir, struct dentry *dentry) 782 { 783 if (!simple_empty(dentry)) 784 return -ENOTEMPTY; 785 786 drop_nlink(d_inode(dentry)); 787 simple_unlink(dir, dentry); 788 drop_nlink(dir); 789 return 0; 790 } 791 EXPORT_SYMBOL(simple_rmdir); 792 793 /** 794 * simple_rename_timestamp - update the various inode timestamps for rename 795 * @old_dir: old parent directory 796 * @old_dentry: dentry that is being renamed 797 * @new_dir: new parent directory 798 * @new_dentry: target for rename 799 * 800 * POSIX mandates that the old and new parent directories have their ctime and 801 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 802 * their ctime updated. 803 */ 804 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 805 struct inode *new_dir, struct dentry *new_dentry) 806 { 807 struct inode *newino = d_inode(new_dentry); 808 809 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 810 if (new_dir != old_dir) 811 inode_set_mtime_to_ts(new_dir, 812 inode_set_ctime_current(new_dir)); 813 inode_set_ctime_current(d_inode(old_dentry)); 814 if (newino) 815 inode_set_ctime_current(newino); 816 } 817 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 818 819 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 820 struct inode *new_dir, struct dentry *new_dentry) 821 { 822 bool old_is_dir = d_is_dir(old_dentry); 823 bool new_is_dir = d_is_dir(new_dentry); 824 825 if (old_dir != new_dir && old_is_dir != new_is_dir) { 826 if (old_is_dir) { 827 drop_nlink(old_dir); 828 inc_nlink(new_dir); 829 } else { 830 drop_nlink(new_dir); 831 inc_nlink(old_dir); 832 } 833 } 834 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 835 return 0; 836 } 837 EXPORT_SYMBOL_GPL(simple_rename_exchange); 838 839 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 840 struct dentry *old_dentry, struct inode *new_dir, 841 struct dentry *new_dentry, unsigned int flags) 842 { 843 int they_are_dirs = d_is_dir(old_dentry); 844 845 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 846 return -EINVAL; 847 848 if (flags & RENAME_EXCHANGE) 849 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 850 851 if (!simple_empty(new_dentry)) 852 return -ENOTEMPTY; 853 854 if (d_really_is_positive(new_dentry)) { 855 simple_unlink(new_dir, new_dentry); 856 if (they_are_dirs) { 857 drop_nlink(d_inode(new_dentry)); 858 drop_nlink(old_dir); 859 } 860 } else if (they_are_dirs) { 861 drop_nlink(old_dir); 862 inc_nlink(new_dir); 863 } 864 865 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 866 return 0; 867 } 868 EXPORT_SYMBOL(simple_rename); 869 870 /** 871 * simple_setattr - setattr for simple filesystem 872 * @idmap: idmap of the target mount 873 * @dentry: dentry 874 * @iattr: iattr structure 875 * 876 * Returns 0 on success, -error on failure. 877 * 878 * simple_setattr is a simple ->setattr implementation without a proper 879 * implementation of size changes. 880 * 881 * It can either be used for in-memory filesystems or special files 882 * on simple regular filesystems. Anything that needs to change on-disk 883 * or wire state on size changes needs its own setattr method. 884 */ 885 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 886 struct iattr *iattr) 887 { 888 struct inode *inode = d_inode(dentry); 889 int error; 890 891 error = setattr_prepare(idmap, dentry, iattr); 892 if (error) 893 return error; 894 895 if (iattr->ia_valid & ATTR_SIZE) 896 truncate_setsize(inode, iattr->ia_size); 897 setattr_copy(idmap, inode, iattr); 898 mark_inode_dirty(inode); 899 return 0; 900 } 901 EXPORT_SYMBOL(simple_setattr); 902 903 static int simple_read_folio(struct file *file, struct folio *folio) 904 { 905 folio_zero_range(folio, 0, folio_size(folio)); 906 flush_dcache_folio(folio); 907 folio_mark_uptodate(folio); 908 folio_unlock(folio); 909 return 0; 910 } 911 912 int simple_write_begin(struct file *file, struct address_space *mapping, 913 loff_t pos, unsigned len, 914 struct folio **foliop, void **fsdata) 915 { 916 struct folio *folio; 917 918 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 919 mapping_gfp_mask(mapping)); 920 if (IS_ERR(folio)) 921 return PTR_ERR(folio); 922 923 *foliop = folio; 924 925 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 926 size_t from = offset_in_folio(folio, pos); 927 928 folio_zero_segments(folio, 0, from, 929 from + len, folio_size(folio)); 930 } 931 return 0; 932 } 933 EXPORT_SYMBOL(simple_write_begin); 934 935 /** 936 * simple_write_end - .write_end helper for non-block-device FSes 937 * @file: See .write_end of address_space_operations 938 * @mapping: " 939 * @pos: " 940 * @len: " 941 * @copied: " 942 * @folio: " 943 * @fsdata: " 944 * 945 * simple_write_end does the minimum needed for updating a folio after 946 * writing is done. It has the same API signature as the .write_end of 947 * address_space_operations vector. So it can just be set onto .write_end for 948 * FSes that don't need any other processing. i_mutex is assumed to be held. 949 * Block based filesystems should use generic_write_end(). 950 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 951 * is not called, so a filesystem that actually does store data in .write_inode 952 * should extend on what's done here with a call to mark_inode_dirty() in the 953 * case that i_size has changed. 954 * 955 * Use *ONLY* with simple_read_folio() 956 */ 957 static int simple_write_end(struct file *file, struct address_space *mapping, 958 loff_t pos, unsigned len, unsigned copied, 959 struct folio *folio, void *fsdata) 960 { 961 struct inode *inode = folio->mapping->host; 962 loff_t last_pos = pos + copied; 963 964 /* zero the stale part of the folio if we did a short copy */ 965 if (!folio_test_uptodate(folio)) { 966 if (copied < len) { 967 size_t from = offset_in_folio(folio, pos); 968 969 folio_zero_range(folio, from + copied, len - copied); 970 } 971 folio_mark_uptodate(folio); 972 } 973 /* 974 * No need to use i_size_read() here, the i_size 975 * cannot change under us because we hold the i_mutex. 976 */ 977 if (last_pos > inode->i_size) 978 i_size_write(inode, last_pos); 979 980 folio_mark_dirty(folio); 981 folio_unlock(folio); 982 folio_put(folio); 983 984 return copied; 985 } 986 987 /* 988 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 989 */ 990 const struct address_space_operations ram_aops = { 991 .read_folio = simple_read_folio, 992 .write_begin = simple_write_begin, 993 .write_end = simple_write_end, 994 .dirty_folio = noop_dirty_folio, 995 }; 996 EXPORT_SYMBOL(ram_aops); 997 998 /* 999 * the inodes created here are not hashed. If you use iunique to generate 1000 * unique inode values later for this filesystem, then you must take care 1001 * to pass it an appropriate max_reserved value to avoid collisions. 1002 */ 1003 int simple_fill_super(struct super_block *s, unsigned long magic, 1004 const struct tree_descr *files) 1005 { 1006 struct inode *inode; 1007 struct dentry *dentry; 1008 int i; 1009 1010 s->s_blocksize = PAGE_SIZE; 1011 s->s_blocksize_bits = PAGE_SHIFT; 1012 s->s_magic = magic; 1013 s->s_op = &simple_super_operations; 1014 s->s_time_gran = 1; 1015 1016 inode = new_inode(s); 1017 if (!inode) 1018 return -ENOMEM; 1019 /* 1020 * because the root inode is 1, the files array must not contain an 1021 * entry at index 1 1022 */ 1023 inode->i_ino = 1; 1024 inode->i_mode = S_IFDIR | 0755; 1025 simple_inode_init_ts(inode); 1026 inode->i_op = &simple_dir_inode_operations; 1027 inode->i_fop = &simple_dir_operations; 1028 set_nlink(inode, 2); 1029 s->s_root = d_make_root(inode); 1030 if (!s->s_root) 1031 return -ENOMEM; 1032 for (i = 0; !files->name || files->name[0]; i++, files++) { 1033 if (!files->name) 1034 continue; 1035 1036 /* warn if it tries to conflict with the root inode */ 1037 if (unlikely(i == 1)) 1038 printk(KERN_WARNING "%s: %s passed in a files array" 1039 "with an index of 1!\n", __func__, 1040 s->s_type->name); 1041 1042 dentry = d_alloc_name(s->s_root, files->name); 1043 if (!dentry) 1044 return -ENOMEM; 1045 inode = new_inode(s); 1046 if (!inode) { 1047 dput(dentry); 1048 return -ENOMEM; 1049 } 1050 inode->i_mode = S_IFREG | files->mode; 1051 simple_inode_init_ts(inode); 1052 inode->i_fop = files->ops; 1053 inode->i_ino = i; 1054 d_add(dentry, inode); 1055 } 1056 return 0; 1057 } 1058 EXPORT_SYMBOL(simple_fill_super); 1059 1060 static DEFINE_SPINLOCK(pin_fs_lock); 1061 1062 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 1063 { 1064 struct vfsmount *mnt = NULL; 1065 spin_lock(&pin_fs_lock); 1066 if (unlikely(!*mount)) { 1067 spin_unlock(&pin_fs_lock); 1068 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 1069 if (IS_ERR(mnt)) 1070 return PTR_ERR(mnt); 1071 spin_lock(&pin_fs_lock); 1072 if (!*mount) 1073 *mount = mnt; 1074 } 1075 mntget(*mount); 1076 ++*count; 1077 spin_unlock(&pin_fs_lock); 1078 mntput(mnt); 1079 return 0; 1080 } 1081 EXPORT_SYMBOL(simple_pin_fs); 1082 1083 void simple_release_fs(struct vfsmount **mount, int *count) 1084 { 1085 struct vfsmount *mnt; 1086 spin_lock(&pin_fs_lock); 1087 mnt = *mount; 1088 if (!--*count) 1089 *mount = NULL; 1090 spin_unlock(&pin_fs_lock); 1091 mntput(mnt); 1092 } 1093 EXPORT_SYMBOL(simple_release_fs); 1094 1095 /** 1096 * simple_read_from_buffer - copy data from the buffer to user space 1097 * @to: the user space buffer to read to 1098 * @count: the maximum number of bytes to read 1099 * @ppos: the current position in the buffer 1100 * @from: the buffer to read from 1101 * @available: the size of the buffer 1102 * 1103 * The simple_read_from_buffer() function reads up to @count bytes from the 1104 * buffer @from at offset @ppos into the user space address starting at @to. 1105 * 1106 * On success, the number of bytes read is returned and the offset @ppos is 1107 * advanced by this number, or negative value is returned on error. 1108 **/ 1109 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1110 const void *from, size_t available) 1111 { 1112 loff_t pos = *ppos; 1113 size_t ret; 1114 1115 if (pos < 0) 1116 return -EINVAL; 1117 if (pos >= available || !count) 1118 return 0; 1119 if (count > available - pos) 1120 count = available - pos; 1121 ret = copy_to_user(to, from + pos, count); 1122 if (ret == count) 1123 return -EFAULT; 1124 count -= ret; 1125 *ppos = pos + count; 1126 return count; 1127 } 1128 EXPORT_SYMBOL(simple_read_from_buffer); 1129 1130 /** 1131 * simple_write_to_buffer - copy data from user space to the buffer 1132 * @to: the buffer to write to 1133 * @available: the size of the buffer 1134 * @ppos: the current position in the buffer 1135 * @from: the user space buffer to read from 1136 * @count: the maximum number of bytes to read 1137 * 1138 * The simple_write_to_buffer() function reads up to @count bytes from the user 1139 * space address starting at @from into the buffer @to at offset @ppos. 1140 * 1141 * On success, the number of bytes written is returned and the offset @ppos is 1142 * advanced by this number, or negative value is returned on error. 1143 **/ 1144 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1145 const void __user *from, size_t count) 1146 { 1147 loff_t pos = *ppos; 1148 size_t res; 1149 1150 if (pos < 0) 1151 return -EINVAL; 1152 if (pos >= available || !count) 1153 return 0; 1154 if (count > available - pos) 1155 count = available - pos; 1156 res = copy_from_user(to + pos, from, count); 1157 if (res == count) 1158 return -EFAULT; 1159 count -= res; 1160 *ppos = pos + count; 1161 return count; 1162 } 1163 EXPORT_SYMBOL(simple_write_to_buffer); 1164 1165 /** 1166 * memory_read_from_buffer - copy data from the buffer 1167 * @to: the kernel space buffer to read to 1168 * @count: the maximum number of bytes to read 1169 * @ppos: the current position in the buffer 1170 * @from: the buffer to read from 1171 * @available: the size of the buffer 1172 * 1173 * The memory_read_from_buffer() function reads up to @count bytes from the 1174 * buffer @from at offset @ppos into the kernel space address starting at @to. 1175 * 1176 * On success, the number of bytes read is returned and the offset @ppos is 1177 * advanced by this number, or negative value is returned on error. 1178 **/ 1179 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1180 const void *from, size_t available) 1181 { 1182 loff_t pos = *ppos; 1183 1184 if (pos < 0) 1185 return -EINVAL; 1186 if (pos >= available) 1187 return 0; 1188 if (count > available - pos) 1189 count = available - pos; 1190 memcpy(to, from + pos, count); 1191 *ppos = pos + count; 1192 1193 return count; 1194 } 1195 EXPORT_SYMBOL(memory_read_from_buffer); 1196 1197 /* 1198 * Transaction based IO. 1199 * The file expects a single write which triggers the transaction, and then 1200 * possibly a read which collects the result - which is stored in a 1201 * file-local buffer. 1202 */ 1203 1204 void simple_transaction_set(struct file *file, size_t n) 1205 { 1206 struct simple_transaction_argresp *ar = file->private_data; 1207 1208 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1209 1210 /* 1211 * The barrier ensures that ar->size will really remain zero until 1212 * ar->data is ready for reading. 1213 */ 1214 smp_mb(); 1215 ar->size = n; 1216 } 1217 EXPORT_SYMBOL(simple_transaction_set); 1218 1219 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1220 { 1221 struct simple_transaction_argresp *ar; 1222 static DEFINE_SPINLOCK(simple_transaction_lock); 1223 1224 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1225 return ERR_PTR(-EFBIG); 1226 1227 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1228 if (!ar) 1229 return ERR_PTR(-ENOMEM); 1230 1231 spin_lock(&simple_transaction_lock); 1232 1233 /* only one write allowed per open */ 1234 if (file->private_data) { 1235 spin_unlock(&simple_transaction_lock); 1236 free_page((unsigned long)ar); 1237 return ERR_PTR(-EBUSY); 1238 } 1239 1240 file->private_data = ar; 1241 1242 spin_unlock(&simple_transaction_lock); 1243 1244 if (copy_from_user(ar->data, buf, size)) 1245 return ERR_PTR(-EFAULT); 1246 1247 return ar->data; 1248 } 1249 EXPORT_SYMBOL(simple_transaction_get); 1250 1251 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1252 { 1253 struct simple_transaction_argresp *ar = file->private_data; 1254 1255 if (!ar) 1256 return 0; 1257 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1258 } 1259 EXPORT_SYMBOL(simple_transaction_read); 1260 1261 int simple_transaction_release(struct inode *inode, struct file *file) 1262 { 1263 free_page((unsigned long)file->private_data); 1264 return 0; 1265 } 1266 EXPORT_SYMBOL(simple_transaction_release); 1267 1268 /* Simple attribute files */ 1269 1270 struct simple_attr { 1271 int (*get)(void *, u64 *); 1272 int (*set)(void *, u64); 1273 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1274 char set_buf[24]; 1275 void *data; 1276 const char *fmt; /* format for read operation */ 1277 struct mutex mutex; /* protects access to these buffers */ 1278 }; 1279 1280 /* simple_attr_open is called by an actual attribute open file operation 1281 * to set the attribute specific access operations. */ 1282 int simple_attr_open(struct inode *inode, struct file *file, 1283 int (*get)(void *, u64 *), int (*set)(void *, u64), 1284 const char *fmt) 1285 { 1286 struct simple_attr *attr; 1287 1288 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1289 if (!attr) 1290 return -ENOMEM; 1291 1292 attr->get = get; 1293 attr->set = set; 1294 attr->data = inode->i_private; 1295 attr->fmt = fmt; 1296 mutex_init(&attr->mutex); 1297 1298 file->private_data = attr; 1299 1300 return nonseekable_open(inode, file); 1301 } 1302 EXPORT_SYMBOL_GPL(simple_attr_open); 1303 1304 int simple_attr_release(struct inode *inode, struct file *file) 1305 { 1306 kfree(file->private_data); 1307 return 0; 1308 } 1309 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1310 1311 /* read from the buffer that is filled with the get function */ 1312 ssize_t simple_attr_read(struct file *file, char __user *buf, 1313 size_t len, loff_t *ppos) 1314 { 1315 struct simple_attr *attr; 1316 size_t size; 1317 ssize_t ret; 1318 1319 attr = file->private_data; 1320 1321 if (!attr->get) 1322 return -EACCES; 1323 1324 ret = mutex_lock_interruptible(&attr->mutex); 1325 if (ret) 1326 return ret; 1327 1328 if (*ppos && attr->get_buf[0]) { 1329 /* continued read */ 1330 size = strlen(attr->get_buf); 1331 } else { 1332 /* first read */ 1333 u64 val; 1334 ret = attr->get(attr->data, &val); 1335 if (ret) 1336 goto out; 1337 1338 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1339 attr->fmt, (unsigned long long)val); 1340 } 1341 1342 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1343 out: 1344 mutex_unlock(&attr->mutex); 1345 return ret; 1346 } 1347 EXPORT_SYMBOL_GPL(simple_attr_read); 1348 1349 /* interpret the buffer as a number to call the set function with */ 1350 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1351 size_t len, loff_t *ppos, bool is_signed) 1352 { 1353 struct simple_attr *attr; 1354 unsigned long long val; 1355 size_t size; 1356 ssize_t ret; 1357 1358 attr = file->private_data; 1359 if (!attr->set) 1360 return -EACCES; 1361 1362 ret = mutex_lock_interruptible(&attr->mutex); 1363 if (ret) 1364 return ret; 1365 1366 ret = -EFAULT; 1367 size = min(sizeof(attr->set_buf) - 1, len); 1368 if (copy_from_user(attr->set_buf, buf, size)) 1369 goto out; 1370 1371 attr->set_buf[size] = '\0'; 1372 if (is_signed) 1373 ret = kstrtoll(attr->set_buf, 0, &val); 1374 else 1375 ret = kstrtoull(attr->set_buf, 0, &val); 1376 if (ret) 1377 goto out; 1378 ret = attr->set(attr->data, val); 1379 if (ret == 0) 1380 ret = len; /* on success, claim we got the whole input */ 1381 out: 1382 mutex_unlock(&attr->mutex); 1383 return ret; 1384 } 1385 1386 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1387 size_t len, loff_t *ppos) 1388 { 1389 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1390 } 1391 EXPORT_SYMBOL_GPL(simple_attr_write); 1392 1393 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1394 size_t len, loff_t *ppos) 1395 { 1396 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1397 } 1398 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1399 1400 /** 1401 * generic_encode_ino32_fh - generic export_operations->encode_fh function 1402 * @inode: the object to encode 1403 * @fh: where to store the file handle fragment 1404 * @max_len: maximum length to store there (in 4 byte units) 1405 * @parent: parent directory inode, if wanted 1406 * 1407 * This generic encode_fh function assumes that the 32 inode number 1408 * is suitable for locating an inode, and that the generation number 1409 * can be used to check that it is still valid. It places them in the 1410 * filehandle fragment where export_decode_fh expects to find them. 1411 */ 1412 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, 1413 struct inode *parent) 1414 { 1415 struct fid *fid = (void *)fh; 1416 int len = *max_len; 1417 int type = FILEID_INO32_GEN; 1418 1419 if (parent && (len < 4)) { 1420 *max_len = 4; 1421 return FILEID_INVALID; 1422 } else if (len < 2) { 1423 *max_len = 2; 1424 return FILEID_INVALID; 1425 } 1426 1427 len = 2; 1428 fid->i32.ino = inode->i_ino; 1429 fid->i32.gen = inode->i_generation; 1430 if (parent) { 1431 fid->i32.parent_ino = parent->i_ino; 1432 fid->i32.parent_gen = parent->i_generation; 1433 len = 4; 1434 type = FILEID_INO32_GEN_PARENT; 1435 } 1436 *max_len = len; 1437 return type; 1438 } 1439 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); 1440 1441 /** 1442 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1443 * @sb: filesystem to do the file handle conversion on 1444 * @fid: file handle to convert 1445 * @fh_len: length of the file handle in bytes 1446 * @fh_type: type of file handle 1447 * @get_inode: filesystem callback to retrieve inode 1448 * 1449 * This function decodes @fid as long as it has one of the well-known 1450 * Linux filehandle types and calls @get_inode on it to retrieve the 1451 * inode for the object specified in the file handle. 1452 */ 1453 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1454 int fh_len, int fh_type, struct inode *(*get_inode) 1455 (struct super_block *sb, u64 ino, u32 gen)) 1456 { 1457 struct inode *inode = NULL; 1458 1459 if (fh_len < 2) 1460 return NULL; 1461 1462 switch (fh_type) { 1463 case FILEID_INO32_GEN: 1464 case FILEID_INO32_GEN_PARENT: 1465 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1466 break; 1467 } 1468 1469 return d_obtain_alias(inode); 1470 } 1471 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1472 1473 /** 1474 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1475 * @sb: filesystem to do the file handle conversion on 1476 * @fid: file handle to convert 1477 * @fh_len: length of the file handle in bytes 1478 * @fh_type: type of file handle 1479 * @get_inode: filesystem callback to retrieve inode 1480 * 1481 * This function decodes @fid as long as it has one of the well-known 1482 * Linux filehandle types and calls @get_inode on it to retrieve the 1483 * inode for the _parent_ object specified in the file handle if it 1484 * is specified in the file handle, or NULL otherwise. 1485 */ 1486 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1487 int fh_len, int fh_type, struct inode *(*get_inode) 1488 (struct super_block *sb, u64 ino, u32 gen)) 1489 { 1490 struct inode *inode = NULL; 1491 1492 if (fh_len <= 2) 1493 return NULL; 1494 1495 switch (fh_type) { 1496 case FILEID_INO32_GEN_PARENT: 1497 inode = get_inode(sb, fid->i32.parent_ino, 1498 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1499 break; 1500 } 1501 1502 return d_obtain_alias(inode); 1503 } 1504 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1505 1506 /** 1507 * __generic_file_fsync - generic fsync implementation for simple filesystems 1508 * 1509 * @file: file to synchronize 1510 * @start: start offset in bytes 1511 * @end: end offset in bytes (inclusive) 1512 * @datasync: only synchronize essential metadata if true 1513 * 1514 * This is a generic implementation of the fsync method for simple 1515 * filesystems which track all non-inode metadata in the buffers list 1516 * hanging off the address_space structure. 1517 */ 1518 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1519 int datasync) 1520 { 1521 struct inode *inode = file->f_mapping->host; 1522 int err; 1523 int ret; 1524 1525 err = file_write_and_wait_range(file, start, end); 1526 if (err) 1527 return err; 1528 1529 inode_lock(inode); 1530 ret = sync_mapping_buffers(inode->i_mapping); 1531 if (!(inode->i_state & I_DIRTY_ALL)) 1532 goto out; 1533 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1534 goto out; 1535 1536 err = sync_inode_metadata(inode, 1); 1537 if (ret == 0) 1538 ret = err; 1539 1540 out: 1541 inode_unlock(inode); 1542 /* check and advance again to catch errors after syncing out buffers */ 1543 err = file_check_and_advance_wb_err(file); 1544 if (ret == 0) 1545 ret = err; 1546 return ret; 1547 } 1548 EXPORT_SYMBOL(__generic_file_fsync); 1549 1550 /** 1551 * generic_file_fsync - generic fsync implementation for simple filesystems 1552 * with flush 1553 * @file: file to synchronize 1554 * @start: start offset in bytes 1555 * @end: end offset in bytes (inclusive) 1556 * @datasync: only synchronize essential metadata if true 1557 * 1558 */ 1559 1560 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1561 int datasync) 1562 { 1563 struct inode *inode = file->f_mapping->host; 1564 int err; 1565 1566 err = __generic_file_fsync(file, start, end, datasync); 1567 if (err) 1568 return err; 1569 return blkdev_issue_flush(inode->i_sb->s_bdev); 1570 } 1571 EXPORT_SYMBOL(generic_file_fsync); 1572 1573 /** 1574 * generic_check_addressable - Check addressability of file system 1575 * @blocksize_bits: log of file system block size 1576 * @num_blocks: number of blocks in file system 1577 * 1578 * Determine whether a file system with @num_blocks blocks (and a 1579 * block size of 2**@blocksize_bits) is addressable by the sector_t 1580 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1581 */ 1582 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1583 { 1584 u64 last_fs_block = num_blocks - 1; 1585 u64 last_fs_page = 1586 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1587 1588 if (unlikely(num_blocks == 0)) 1589 return 0; 1590 1591 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1592 return -EINVAL; 1593 1594 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1595 (last_fs_page > (pgoff_t)(~0ULL))) { 1596 return -EFBIG; 1597 } 1598 return 0; 1599 } 1600 EXPORT_SYMBOL(generic_check_addressable); 1601 1602 /* 1603 * No-op implementation of ->fsync for in-memory filesystems. 1604 */ 1605 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1606 { 1607 return 0; 1608 } 1609 EXPORT_SYMBOL(noop_fsync); 1610 1611 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1612 { 1613 /* 1614 * iomap based filesystems support direct I/O without need for 1615 * this callback. However, it still needs to be set in 1616 * inode->a_ops so that open/fcntl know that direct I/O is 1617 * generally supported. 1618 */ 1619 return -EINVAL; 1620 } 1621 EXPORT_SYMBOL_GPL(noop_direct_IO); 1622 1623 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1624 void kfree_link(void *p) 1625 { 1626 kfree(p); 1627 } 1628 EXPORT_SYMBOL(kfree_link); 1629 1630 struct inode *alloc_anon_inode(struct super_block *s) 1631 { 1632 static const struct address_space_operations anon_aops = { 1633 .dirty_folio = noop_dirty_folio, 1634 }; 1635 struct inode *inode = new_inode_pseudo(s); 1636 1637 if (!inode) 1638 return ERR_PTR(-ENOMEM); 1639 1640 inode->i_ino = get_next_ino(); 1641 inode->i_mapping->a_ops = &anon_aops; 1642 1643 /* 1644 * Mark the inode dirty from the very beginning, 1645 * that way it will never be moved to the dirty 1646 * list because mark_inode_dirty() will think 1647 * that it already _is_ on the dirty list. 1648 */ 1649 inode->i_state = I_DIRTY; 1650 inode->i_mode = S_IRUSR | S_IWUSR; 1651 inode->i_uid = current_fsuid(); 1652 inode->i_gid = current_fsgid(); 1653 inode->i_flags |= S_PRIVATE; 1654 simple_inode_init_ts(inode); 1655 return inode; 1656 } 1657 EXPORT_SYMBOL(alloc_anon_inode); 1658 1659 /** 1660 * simple_nosetlease - generic helper for prohibiting leases 1661 * @filp: file pointer 1662 * @arg: type of lease to obtain 1663 * @flp: new lease supplied for insertion 1664 * @priv: private data for lm_setup operation 1665 * 1666 * Generic helper for filesystems that do not wish to allow leases to be set. 1667 * All arguments are ignored and it just returns -EINVAL. 1668 */ 1669 int 1670 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp, 1671 void **priv) 1672 { 1673 return -EINVAL; 1674 } 1675 EXPORT_SYMBOL(simple_nosetlease); 1676 1677 /** 1678 * simple_get_link - generic helper to get the target of "fast" symlinks 1679 * @dentry: not used here 1680 * @inode: the symlink inode 1681 * @done: not used here 1682 * 1683 * Generic helper for filesystems to use for symlink inodes where a pointer to 1684 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1685 * since as an optimization the path lookup code uses any non-NULL ->i_link 1686 * directly, without calling ->get_link(). But ->get_link() still must be set, 1687 * to mark the inode_operations as being for a symlink. 1688 * 1689 * Return: the symlink target 1690 */ 1691 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1692 struct delayed_call *done) 1693 { 1694 return inode->i_link; 1695 } 1696 EXPORT_SYMBOL(simple_get_link); 1697 1698 const struct inode_operations simple_symlink_inode_operations = { 1699 .get_link = simple_get_link, 1700 }; 1701 EXPORT_SYMBOL(simple_symlink_inode_operations); 1702 1703 /* 1704 * Operations for a permanently empty directory. 1705 */ 1706 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1707 { 1708 return ERR_PTR(-ENOENT); 1709 } 1710 1711 static int empty_dir_setattr(struct mnt_idmap *idmap, 1712 struct dentry *dentry, struct iattr *attr) 1713 { 1714 return -EPERM; 1715 } 1716 1717 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1718 { 1719 return -EOPNOTSUPP; 1720 } 1721 1722 static const struct inode_operations empty_dir_inode_operations = { 1723 .lookup = empty_dir_lookup, 1724 .setattr = empty_dir_setattr, 1725 .listxattr = empty_dir_listxattr, 1726 }; 1727 1728 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1729 { 1730 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1731 return generic_file_llseek_size(file, offset, whence, 2, 2); 1732 } 1733 1734 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1735 { 1736 dir_emit_dots(file, ctx); 1737 return 0; 1738 } 1739 1740 static const struct file_operations empty_dir_operations = { 1741 .llseek = empty_dir_llseek, 1742 .read = generic_read_dir, 1743 .iterate_shared = empty_dir_readdir, 1744 .fsync = noop_fsync, 1745 }; 1746 1747 1748 void make_empty_dir_inode(struct inode *inode) 1749 { 1750 set_nlink(inode, 2); 1751 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1752 inode->i_uid = GLOBAL_ROOT_UID; 1753 inode->i_gid = GLOBAL_ROOT_GID; 1754 inode->i_rdev = 0; 1755 inode->i_size = 0; 1756 inode->i_blkbits = PAGE_SHIFT; 1757 inode->i_blocks = 0; 1758 1759 inode->i_op = &empty_dir_inode_operations; 1760 inode->i_opflags &= ~IOP_XATTR; 1761 inode->i_fop = &empty_dir_operations; 1762 } 1763 1764 bool is_empty_dir_inode(struct inode *inode) 1765 { 1766 return (inode->i_fop == &empty_dir_operations) && 1767 (inode->i_op == &empty_dir_inode_operations); 1768 } 1769 1770 #if IS_ENABLED(CONFIG_UNICODE) 1771 /** 1772 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1773 * @dentry: dentry whose name we are checking against 1774 * @len: len of name of dentry 1775 * @str: str pointer to name of dentry 1776 * @name: Name to compare against 1777 * 1778 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1779 */ 1780 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1781 const char *str, const struct qstr *name) 1782 { 1783 const struct dentry *parent; 1784 const struct inode *dir; 1785 union shortname_store strbuf; 1786 struct qstr qstr; 1787 1788 /* 1789 * Attempt a case-sensitive match first. It is cheaper and 1790 * should cover most lookups, including all the sane 1791 * applications that expect a case-sensitive filesystem. 1792 * 1793 * This comparison is safe under RCU because the caller 1794 * guarantees the consistency between str and len. See 1795 * __d_lookup_rcu_op_compare() for details. 1796 */ 1797 if (len == name->len && !memcmp(str, name->name, len)) 1798 return 0; 1799 1800 parent = READ_ONCE(dentry->d_parent); 1801 dir = READ_ONCE(parent->d_inode); 1802 if (!dir || !IS_CASEFOLDED(dir)) 1803 return 1; 1804 1805 qstr.len = len; 1806 qstr.name = str; 1807 /* 1808 * If the dentry name is stored in-line, then it may be concurrently 1809 * modified by a rename. If this happens, the VFS will eventually retry 1810 * the lookup, so it doesn't matter what ->d_compare() returns. 1811 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1812 * string. Therefore, we have to copy the name into a temporary buffer. 1813 * As above, len is guaranteed to match str, so the shortname case 1814 * is exactly when str points to ->d_shortname. 1815 */ 1816 if (qstr.name == dentry->d_shortname.string) { 1817 strbuf = dentry->d_shortname; // NUL is guaranteed to be in there 1818 qstr.name = strbuf.string; 1819 /* prevent compiler from optimizing out the temporary buffer */ 1820 barrier(); 1821 } 1822 1823 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr); 1824 } 1825 EXPORT_SYMBOL(generic_ci_d_compare); 1826 1827 /** 1828 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1829 * @dentry: dentry of the parent directory 1830 * @str: qstr of name whose hash we should fill in 1831 * 1832 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1833 */ 1834 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1835 { 1836 const struct inode *dir = READ_ONCE(dentry->d_inode); 1837 struct super_block *sb = dentry->d_sb; 1838 const struct unicode_map *um = sb->s_encoding; 1839 int ret; 1840 1841 if (!dir || !IS_CASEFOLDED(dir)) 1842 return 0; 1843 1844 ret = utf8_casefold_hash(um, dentry, str); 1845 if (ret < 0 && sb_has_strict_encoding(sb)) 1846 return -EINVAL; 1847 return 0; 1848 } 1849 EXPORT_SYMBOL(generic_ci_d_hash); 1850 1851 static const struct dentry_operations generic_ci_dentry_ops = { 1852 .d_hash = generic_ci_d_hash, 1853 .d_compare = generic_ci_d_compare, 1854 #ifdef CONFIG_FS_ENCRYPTION 1855 .d_revalidate = fscrypt_d_revalidate, 1856 #endif 1857 }; 1858 1859 /** 1860 * generic_ci_match() - Match a name (case-insensitively) with a dirent. 1861 * This is a filesystem helper for comparison with directory entries. 1862 * generic_ci_d_compare should be used in VFS' ->d_compare instead. 1863 * 1864 * @parent: Inode of the parent of the dirent under comparison 1865 * @name: name under lookup. 1866 * @folded_name: Optional pre-folded name under lookup 1867 * @de_name: Dirent name. 1868 * @de_name_len: dirent name length. 1869 * 1870 * Test whether a case-insensitive directory entry matches the filename 1871 * being searched. If @folded_name is provided, it is used instead of 1872 * recalculating the casefold of @name. 1873 * 1874 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or 1875 * < 0 on error. 1876 */ 1877 int generic_ci_match(const struct inode *parent, 1878 const struct qstr *name, 1879 const struct qstr *folded_name, 1880 const u8 *de_name, u32 de_name_len) 1881 { 1882 const struct super_block *sb = parent->i_sb; 1883 const struct unicode_map *um = sb->s_encoding; 1884 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len); 1885 struct qstr dirent = QSTR_INIT(de_name, de_name_len); 1886 int res = 0; 1887 1888 if (IS_ENCRYPTED(parent)) { 1889 const struct fscrypt_str encrypted_name = 1890 FSTR_INIT((u8 *) de_name, de_name_len); 1891 1892 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent))) 1893 return -EINVAL; 1894 1895 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL); 1896 if (!decrypted_name.name) 1897 return -ENOMEM; 1898 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name, 1899 &decrypted_name); 1900 if (res < 0) { 1901 kfree(decrypted_name.name); 1902 return res; 1903 } 1904 dirent.name = decrypted_name.name; 1905 dirent.len = decrypted_name.len; 1906 } 1907 1908 /* 1909 * Attempt a case-sensitive match first. It is cheaper and 1910 * should cover most lookups, including all the sane 1911 * applications that expect a case-sensitive filesystem. 1912 */ 1913 1914 if (dirent.len == name->len && 1915 !memcmp(name->name, dirent.name, dirent.len)) 1916 goto out; 1917 1918 if (folded_name->name) 1919 res = utf8_strncasecmp_folded(um, folded_name, &dirent); 1920 else 1921 res = utf8_strncasecmp(um, name, &dirent); 1922 1923 out: 1924 kfree(decrypted_name.name); 1925 if (res < 0 && sb_has_strict_encoding(sb)) { 1926 pr_err_ratelimited("Directory contains filename that is invalid UTF-8"); 1927 return 0; 1928 } 1929 return !res; 1930 } 1931 EXPORT_SYMBOL(generic_ci_match); 1932 #endif 1933 1934 #ifdef CONFIG_FS_ENCRYPTION 1935 static const struct dentry_operations generic_encrypted_dentry_ops = { 1936 .d_revalidate = fscrypt_d_revalidate, 1937 }; 1938 #endif 1939 1940 /** 1941 * generic_set_sb_d_ops - helper for choosing the set of 1942 * filesystem-wide dentry operations for the enabled features 1943 * @sb: superblock to be configured 1944 * 1945 * Filesystems supporting casefolding and/or fscrypt can call this 1946 * helper at mount-time to configure sb->s_d_op to best set of dentry 1947 * operations required for the enabled features. The helper must be 1948 * called after these have been configured, but before the root dentry 1949 * is created. 1950 */ 1951 void generic_set_sb_d_ops(struct super_block *sb) 1952 { 1953 #if IS_ENABLED(CONFIG_UNICODE) 1954 if (sb->s_encoding) { 1955 sb->s_d_op = &generic_ci_dentry_ops; 1956 return; 1957 } 1958 #endif 1959 #ifdef CONFIG_FS_ENCRYPTION 1960 if (sb->s_cop) { 1961 sb->s_d_op = &generic_encrypted_dentry_ops; 1962 return; 1963 } 1964 #endif 1965 } 1966 EXPORT_SYMBOL(generic_set_sb_d_ops); 1967 1968 /** 1969 * inode_maybe_inc_iversion - increments i_version 1970 * @inode: inode with the i_version that should be updated 1971 * @force: increment the counter even if it's not necessary? 1972 * 1973 * Every time the inode is modified, the i_version field must be seen to have 1974 * changed by any observer. 1975 * 1976 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1977 * the value, and clear the queried flag. 1978 * 1979 * In the common case where neither is set, then we can return "false" without 1980 * updating i_version. 1981 * 1982 * If this function returns false, and no other metadata has changed, then we 1983 * can avoid logging the metadata. 1984 */ 1985 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1986 { 1987 u64 cur, new; 1988 1989 /* 1990 * The i_version field is not strictly ordered with any other inode 1991 * information, but the legacy inode_inc_iversion code used a spinlock 1992 * to serialize increments. 1993 * 1994 * We add a full memory barrier to ensure that any de facto ordering 1995 * with other state is preserved (either implicitly coming from cmpxchg 1996 * or explicitly from smp_mb if we don't know upfront if we will execute 1997 * the former). 1998 * 1999 * These barriers pair with inode_query_iversion(). 2000 */ 2001 cur = inode_peek_iversion_raw(inode); 2002 if (!force && !(cur & I_VERSION_QUERIED)) { 2003 smp_mb(); 2004 cur = inode_peek_iversion_raw(inode); 2005 } 2006 2007 do { 2008 /* If flag is clear then we needn't do anything */ 2009 if (!force && !(cur & I_VERSION_QUERIED)) 2010 return false; 2011 2012 /* Since lowest bit is flag, add 2 to avoid it */ 2013 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 2014 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 2015 return true; 2016 } 2017 EXPORT_SYMBOL(inode_maybe_inc_iversion); 2018 2019 /** 2020 * inode_query_iversion - read i_version for later use 2021 * @inode: inode from which i_version should be read 2022 * 2023 * Read the inode i_version counter. This should be used by callers that wish 2024 * to store the returned i_version for later comparison. This will guarantee 2025 * that a later query of the i_version will result in a different value if 2026 * anything has changed. 2027 * 2028 * In this implementation, we fetch the current value, set the QUERIED flag and 2029 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 2030 * that fails, we try again with the newly fetched value from the cmpxchg. 2031 */ 2032 u64 inode_query_iversion(struct inode *inode) 2033 { 2034 u64 cur, new; 2035 bool fenced = false; 2036 2037 /* 2038 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with 2039 * inode_maybe_inc_iversion(), see that routine for more details. 2040 */ 2041 cur = inode_peek_iversion_raw(inode); 2042 do { 2043 /* If flag is already set, then no need to swap */ 2044 if (cur & I_VERSION_QUERIED) { 2045 if (!fenced) 2046 smp_mb(); 2047 break; 2048 } 2049 2050 fenced = true; 2051 new = cur | I_VERSION_QUERIED; 2052 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 2053 return cur >> I_VERSION_QUERIED_SHIFT; 2054 } 2055 EXPORT_SYMBOL(inode_query_iversion); 2056 2057 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 2058 ssize_t direct_written, ssize_t buffered_written) 2059 { 2060 struct address_space *mapping = iocb->ki_filp->f_mapping; 2061 loff_t pos = iocb->ki_pos - buffered_written; 2062 loff_t end = iocb->ki_pos - 1; 2063 int err; 2064 2065 /* 2066 * If the buffered write fallback returned an error, we want to return 2067 * the number of bytes which were written by direct I/O, or the error 2068 * code if that was zero. 2069 * 2070 * Note that this differs from normal direct-io semantics, which will 2071 * return -EFOO even if some bytes were written. 2072 */ 2073 if (unlikely(buffered_written < 0)) { 2074 if (direct_written) 2075 return direct_written; 2076 return buffered_written; 2077 } 2078 2079 /* 2080 * We need to ensure that the page cache pages are written to disk and 2081 * invalidated to preserve the expected O_DIRECT semantics. 2082 */ 2083 err = filemap_write_and_wait_range(mapping, pos, end); 2084 if (err < 0) { 2085 /* 2086 * We don't know how much we wrote, so just return the number of 2087 * bytes which were direct-written 2088 */ 2089 iocb->ki_pos -= buffered_written; 2090 if (direct_written) 2091 return direct_written; 2092 return err; 2093 } 2094 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 2095 return direct_written + buffered_written; 2096 } 2097 EXPORT_SYMBOL_GPL(direct_write_fallback); 2098 2099 /** 2100 * simple_inode_init_ts - initialize the timestamps for a new inode 2101 * @inode: inode to be initialized 2102 * 2103 * When a new inode is created, most filesystems set the timestamps to the 2104 * current time. Add a helper to do this. 2105 */ 2106 struct timespec64 simple_inode_init_ts(struct inode *inode) 2107 { 2108 struct timespec64 ts = inode_set_ctime_current(inode); 2109 2110 inode_set_atime_to_ts(inode, ts); 2111 inode_set_mtime_to_ts(inode, ts); 2112 return ts; 2113 } 2114 EXPORT_SYMBOL(simple_inode_init_ts); 2115 2116 static inline struct dentry *get_stashed_dentry(struct dentry **stashed) 2117 { 2118 struct dentry *dentry; 2119 2120 guard(rcu)(); 2121 dentry = rcu_dereference(*stashed); 2122 if (!dentry) 2123 return NULL; 2124 if (!lockref_get_not_dead(&dentry->d_lockref)) 2125 return NULL; 2126 return dentry; 2127 } 2128 2129 static struct dentry *prepare_anon_dentry(struct dentry **stashed, 2130 struct super_block *sb, 2131 void *data) 2132 { 2133 struct dentry *dentry; 2134 struct inode *inode; 2135 const struct stashed_operations *sops = sb->s_fs_info; 2136 int ret; 2137 2138 inode = new_inode_pseudo(sb); 2139 if (!inode) { 2140 sops->put_data(data); 2141 return ERR_PTR(-ENOMEM); 2142 } 2143 2144 inode->i_flags |= S_IMMUTABLE; 2145 inode->i_mode = S_IFREG; 2146 simple_inode_init_ts(inode); 2147 2148 ret = sops->init_inode(inode, data); 2149 if (ret < 0) { 2150 iput(inode); 2151 return ERR_PTR(ret); 2152 } 2153 2154 /* Notice when this is changed. */ 2155 WARN_ON_ONCE(!S_ISREG(inode->i_mode)); 2156 WARN_ON_ONCE(!IS_IMMUTABLE(inode)); 2157 2158 dentry = d_alloc_anon(sb); 2159 if (!dentry) { 2160 iput(inode); 2161 return ERR_PTR(-ENOMEM); 2162 } 2163 2164 /* Store address of location where dentry's supposed to be stashed. */ 2165 dentry->d_fsdata = stashed; 2166 2167 /* @data is now owned by the fs */ 2168 d_instantiate(dentry, inode); 2169 return dentry; 2170 } 2171 2172 static struct dentry *stash_dentry(struct dentry **stashed, 2173 struct dentry *dentry) 2174 { 2175 guard(rcu)(); 2176 for (;;) { 2177 struct dentry *old; 2178 2179 /* Assume any old dentry was cleared out. */ 2180 old = cmpxchg(stashed, NULL, dentry); 2181 if (likely(!old)) 2182 return dentry; 2183 2184 /* Check if somebody else installed a reusable dentry. */ 2185 if (lockref_get_not_dead(&old->d_lockref)) 2186 return old; 2187 2188 /* There's an old dead dentry there, try to take it over. */ 2189 if (likely(try_cmpxchg(stashed, &old, dentry))) 2190 return dentry; 2191 } 2192 } 2193 2194 /** 2195 * path_from_stashed - create path from stashed or new dentry 2196 * @stashed: where to retrieve or stash dentry 2197 * @mnt: mnt of the filesystems to use 2198 * @data: data to store in inode->i_private 2199 * @path: path to create 2200 * 2201 * The function tries to retrieve a stashed dentry from @stashed. If the dentry 2202 * is still valid then it will be reused. If the dentry isn't able the function 2203 * will allocate a new dentry and inode. It will then check again whether it 2204 * can reuse an existing dentry in case one has been added in the meantime or 2205 * update @stashed with the newly added dentry. 2206 * 2207 * Special-purpose helper for nsfs and pidfs. 2208 * 2209 * Return: On success zero and on failure a negative error is returned. 2210 */ 2211 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data, 2212 struct path *path) 2213 { 2214 struct dentry *dentry; 2215 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info; 2216 2217 /* See if dentry can be reused. */ 2218 path->dentry = get_stashed_dentry(stashed); 2219 if (path->dentry) { 2220 sops->put_data(data); 2221 goto out_path; 2222 } 2223 2224 /* Allocate a new dentry. */ 2225 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data); 2226 if (IS_ERR(dentry)) 2227 return PTR_ERR(dentry); 2228 2229 /* Added a new dentry. @data is now owned by the filesystem. */ 2230 path->dentry = stash_dentry(stashed, dentry); 2231 if (path->dentry != dentry) 2232 dput(dentry); 2233 2234 out_path: 2235 WARN_ON_ONCE(path->dentry->d_fsdata != stashed); 2236 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data); 2237 path->mnt = mntget(mnt); 2238 return 0; 2239 } 2240 2241 void stashed_dentry_prune(struct dentry *dentry) 2242 { 2243 struct dentry **stashed = dentry->d_fsdata; 2244 struct inode *inode = d_inode(dentry); 2245 2246 if (WARN_ON_ONCE(!stashed)) 2247 return; 2248 2249 if (!inode) 2250 return; 2251 2252 /* 2253 * Only replace our own @dentry as someone else might've 2254 * already cleared out @dentry and stashed their own 2255 * dentry in there. 2256 */ 2257 cmpxchg(stashed, dentry, NULL); 2258 } 2259