xref: /linux/fs/libfs.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/unicode.h>
24 #include <linux/fscrypt.h>
25 
26 #include <linux/uaccess.h>
27 
28 #include "internal.h"
29 
30 int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
31 		   struct kstat *stat, u32 request_mask,
32 		   unsigned int query_flags)
33 {
34 	struct inode *inode = d_inode(path->dentry);
35 	generic_fillattr(&init_user_ns, inode, stat);
36 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
37 	return 0;
38 }
39 EXPORT_SYMBOL(simple_getattr);
40 
41 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
42 {
43 	buf->f_type = dentry->d_sb->s_magic;
44 	buf->f_bsize = PAGE_SIZE;
45 	buf->f_namelen = NAME_MAX;
46 	return 0;
47 }
48 EXPORT_SYMBOL(simple_statfs);
49 
50 /*
51  * Retaining negative dentries for an in-memory filesystem just wastes
52  * memory and lookup time: arrange for them to be deleted immediately.
53  */
54 int always_delete_dentry(const struct dentry *dentry)
55 {
56 	return 1;
57 }
58 EXPORT_SYMBOL(always_delete_dentry);
59 
60 const struct dentry_operations simple_dentry_operations = {
61 	.d_delete = always_delete_dentry,
62 };
63 EXPORT_SYMBOL(simple_dentry_operations);
64 
65 /*
66  * Lookup the data. This is trivial - if the dentry didn't already
67  * exist, we know it is negative.  Set d_op to delete negative dentries.
68  */
69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 	if (dentry->d_name.len > NAME_MAX)
72 		return ERR_PTR(-ENAMETOOLONG);
73 	if (!dentry->d_sb->s_d_op)
74 		d_set_d_op(dentry, &simple_dentry_operations);
75 	d_add(dentry, NULL);
76 	return NULL;
77 }
78 EXPORT_SYMBOL(simple_lookup);
79 
80 int dcache_dir_open(struct inode *inode, struct file *file)
81 {
82 	file->private_data = d_alloc_cursor(file->f_path.dentry);
83 
84 	return file->private_data ? 0 : -ENOMEM;
85 }
86 EXPORT_SYMBOL(dcache_dir_open);
87 
88 int dcache_dir_close(struct inode *inode, struct file *file)
89 {
90 	dput(file->private_data);
91 	return 0;
92 }
93 EXPORT_SYMBOL(dcache_dir_close);
94 
95 /* parent is locked at least shared */
96 /*
97  * Returns an element of siblings' list.
98  * We are looking for <count>th positive after <p>; if
99  * found, dentry is grabbed and returned to caller.
100  * If no such element exists, NULL is returned.
101  */
102 static struct dentry *scan_positives(struct dentry *cursor,
103 					struct list_head *p,
104 					loff_t count,
105 					struct dentry *last)
106 {
107 	struct dentry *dentry = cursor->d_parent, *found = NULL;
108 
109 	spin_lock(&dentry->d_lock);
110 	while ((p = p->next) != &dentry->d_subdirs) {
111 		struct dentry *d = list_entry(p, struct dentry, d_child);
112 		// we must at least skip cursors, to avoid livelocks
113 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
114 			continue;
115 		if (simple_positive(d) && !--count) {
116 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
117 			if (simple_positive(d))
118 				found = dget_dlock(d);
119 			spin_unlock(&d->d_lock);
120 			if (likely(found))
121 				break;
122 			count = 1;
123 		}
124 		if (need_resched()) {
125 			list_move(&cursor->d_child, p);
126 			p = &cursor->d_child;
127 			spin_unlock(&dentry->d_lock);
128 			cond_resched();
129 			spin_lock(&dentry->d_lock);
130 		}
131 	}
132 	spin_unlock(&dentry->d_lock);
133 	dput(last);
134 	return found;
135 }
136 
137 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
138 {
139 	struct dentry *dentry = file->f_path.dentry;
140 	switch (whence) {
141 		case 1:
142 			offset += file->f_pos;
143 			fallthrough;
144 		case 0:
145 			if (offset >= 0)
146 				break;
147 			fallthrough;
148 		default:
149 			return -EINVAL;
150 	}
151 	if (offset != file->f_pos) {
152 		struct dentry *cursor = file->private_data;
153 		struct dentry *to = NULL;
154 
155 		inode_lock_shared(dentry->d_inode);
156 
157 		if (offset > 2)
158 			to = scan_positives(cursor, &dentry->d_subdirs,
159 					    offset - 2, NULL);
160 		spin_lock(&dentry->d_lock);
161 		if (to)
162 			list_move(&cursor->d_child, &to->d_child);
163 		else
164 			list_del_init(&cursor->d_child);
165 		spin_unlock(&dentry->d_lock);
166 		dput(to);
167 
168 		file->f_pos = offset;
169 
170 		inode_unlock_shared(dentry->d_inode);
171 	}
172 	return offset;
173 }
174 EXPORT_SYMBOL(dcache_dir_lseek);
175 
176 /* Relationship between i_mode and the DT_xxx types */
177 static inline unsigned char dt_type(struct inode *inode)
178 {
179 	return (inode->i_mode >> 12) & 15;
180 }
181 
182 /*
183  * Directory is locked and all positive dentries in it are safe, since
184  * for ramfs-type trees they can't go away without unlink() or rmdir(),
185  * both impossible due to the lock on directory.
186  */
187 
188 int dcache_readdir(struct file *file, struct dir_context *ctx)
189 {
190 	struct dentry *dentry = file->f_path.dentry;
191 	struct dentry *cursor = file->private_data;
192 	struct list_head *anchor = &dentry->d_subdirs;
193 	struct dentry *next = NULL;
194 	struct list_head *p;
195 
196 	if (!dir_emit_dots(file, ctx))
197 		return 0;
198 
199 	if (ctx->pos == 2)
200 		p = anchor;
201 	else if (!list_empty(&cursor->d_child))
202 		p = &cursor->d_child;
203 	else
204 		return 0;
205 
206 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
207 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
208 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
209 			break;
210 		ctx->pos++;
211 		p = &next->d_child;
212 	}
213 	spin_lock(&dentry->d_lock);
214 	if (next)
215 		list_move_tail(&cursor->d_child, &next->d_child);
216 	else
217 		list_del_init(&cursor->d_child);
218 	spin_unlock(&dentry->d_lock);
219 	dput(next);
220 
221 	return 0;
222 }
223 EXPORT_SYMBOL(dcache_readdir);
224 
225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
226 {
227 	return -EISDIR;
228 }
229 EXPORT_SYMBOL(generic_read_dir);
230 
231 const struct file_operations simple_dir_operations = {
232 	.open		= dcache_dir_open,
233 	.release	= dcache_dir_close,
234 	.llseek		= dcache_dir_lseek,
235 	.read		= generic_read_dir,
236 	.iterate_shared	= dcache_readdir,
237 	.fsync		= noop_fsync,
238 };
239 EXPORT_SYMBOL(simple_dir_operations);
240 
241 const struct inode_operations simple_dir_inode_operations = {
242 	.lookup		= simple_lookup,
243 };
244 EXPORT_SYMBOL(simple_dir_inode_operations);
245 
246 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
247 {
248 	struct dentry *child = NULL;
249 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
250 
251 	spin_lock(&parent->d_lock);
252 	while ((p = p->next) != &parent->d_subdirs) {
253 		struct dentry *d = container_of(p, struct dentry, d_child);
254 		if (simple_positive(d)) {
255 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
256 			if (simple_positive(d))
257 				child = dget_dlock(d);
258 			spin_unlock(&d->d_lock);
259 			if (likely(child))
260 				break;
261 		}
262 	}
263 	spin_unlock(&parent->d_lock);
264 	dput(prev);
265 	return child;
266 }
267 
268 void simple_recursive_removal(struct dentry *dentry,
269                               void (*callback)(struct dentry *))
270 {
271 	struct dentry *this = dget(dentry);
272 	while (true) {
273 		struct dentry *victim = NULL, *child;
274 		struct inode *inode = this->d_inode;
275 
276 		inode_lock(inode);
277 		if (d_is_dir(this))
278 			inode->i_flags |= S_DEAD;
279 		while ((child = find_next_child(this, victim)) == NULL) {
280 			// kill and ascend
281 			// update metadata while it's still locked
282 			inode->i_ctime = current_time(inode);
283 			clear_nlink(inode);
284 			inode_unlock(inode);
285 			victim = this;
286 			this = this->d_parent;
287 			inode = this->d_inode;
288 			inode_lock(inode);
289 			if (simple_positive(victim)) {
290 				d_invalidate(victim);	// avoid lost mounts
291 				if (d_is_dir(victim))
292 					fsnotify_rmdir(inode, victim);
293 				else
294 					fsnotify_unlink(inode, victim);
295 				if (callback)
296 					callback(victim);
297 				dput(victim);		// unpin it
298 			}
299 			if (victim == dentry) {
300 				inode->i_ctime = inode->i_mtime =
301 					current_time(inode);
302 				if (d_is_dir(dentry))
303 					drop_nlink(inode);
304 				inode_unlock(inode);
305 				dput(dentry);
306 				return;
307 			}
308 		}
309 		inode_unlock(inode);
310 		this = child;
311 	}
312 }
313 EXPORT_SYMBOL(simple_recursive_removal);
314 
315 static const struct super_operations simple_super_operations = {
316 	.statfs		= simple_statfs,
317 };
318 
319 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
320 {
321 	struct pseudo_fs_context *ctx = fc->fs_private;
322 	struct inode *root;
323 
324 	s->s_maxbytes = MAX_LFS_FILESIZE;
325 	s->s_blocksize = PAGE_SIZE;
326 	s->s_blocksize_bits = PAGE_SHIFT;
327 	s->s_magic = ctx->magic;
328 	s->s_op = ctx->ops ?: &simple_super_operations;
329 	s->s_xattr = ctx->xattr;
330 	s->s_time_gran = 1;
331 	root = new_inode(s);
332 	if (!root)
333 		return -ENOMEM;
334 
335 	/*
336 	 * since this is the first inode, make it number 1. New inodes created
337 	 * after this must take care not to collide with it (by passing
338 	 * max_reserved of 1 to iunique).
339 	 */
340 	root->i_ino = 1;
341 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
342 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
343 	s->s_root = d_make_root(root);
344 	if (!s->s_root)
345 		return -ENOMEM;
346 	s->s_d_op = ctx->dops;
347 	return 0;
348 }
349 
350 static int pseudo_fs_get_tree(struct fs_context *fc)
351 {
352 	return get_tree_nodev(fc, pseudo_fs_fill_super);
353 }
354 
355 static void pseudo_fs_free(struct fs_context *fc)
356 {
357 	kfree(fc->fs_private);
358 }
359 
360 static const struct fs_context_operations pseudo_fs_context_ops = {
361 	.free		= pseudo_fs_free,
362 	.get_tree	= pseudo_fs_get_tree,
363 };
364 
365 /*
366  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
367  * will never be mountable)
368  */
369 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
370 					unsigned long magic)
371 {
372 	struct pseudo_fs_context *ctx;
373 
374 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
375 	if (likely(ctx)) {
376 		ctx->magic = magic;
377 		fc->fs_private = ctx;
378 		fc->ops = &pseudo_fs_context_ops;
379 		fc->sb_flags |= SB_NOUSER;
380 		fc->global = true;
381 	}
382 	return ctx;
383 }
384 EXPORT_SYMBOL(init_pseudo);
385 
386 int simple_open(struct inode *inode, struct file *file)
387 {
388 	if (inode->i_private)
389 		file->private_data = inode->i_private;
390 	return 0;
391 }
392 EXPORT_SYMBOL(simple_open);
393 
394 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
395 {
396 	struct inode *inode = d_inode(old_dentry);
397 
398 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
399 	inc_nlink(inode);
400 	ihold(inode);
401 	dget(dentry);
402 	d_instantiate(dentry, inode);
403 	return 0;
404 }
405 EXPORT_SYMBOL(simple_link);
406 
407 int simple_empty(struct dentry *dentry)
408 {
409 	struct dentry *child;
410 	int ret = 0;
411 
412 	spin_lock(&dentry->d_lock);
413 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
414 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
415 		if (simple_positive(child)) {
416 			spin_unlock(&child->d_lock);
417 			goto out;
418 		}
419 		spin_unlock(&child->d_lock);
420 	}
421 	ret = 1;
422 out:
423 	spin_unlock(&dentry->d_lock);
424 	return ret;
425 }
426 EXPORT_SYMBOL(simple_empty);
427 
428 int simple_unlink(struct inode *dir, struct dentry *dentry)
429 {
430 	struct inode *inode = d_inode(dentry);
431 
432 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
433 	drop_nlink(inode);
434 	dput(dentry);
435 	return 0;
436 }
437 EXPORT_SYMBOL(simple_unlink);
438 
439 int simple_rmdir(struct inode *dir, struct dentry *dentry)
440 {
441 	if (!simple_empty(dentry))
442 		return -ENOTEMPTY;
443 
444 	drop_nlink(d_inode(dentry));
445 	simple_unlink(dir, dentry);
446 	drop_nlink(dir);
447 	return 0;
448 }
449 EXPORT_SYMBOL(simple_rmdir);
450 
451 int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
452 		  struct dentry *old_dentry, struct inode *new_dir,
453 		  struct dentry *new_dentry, unsigned int flags)
454 {
455 	struct inode *inode = d_inode(old_dentry);
456 	int they_are_dirs = d_is_dir(old_dentry);
457 
458 	if (flags & ~RENAME_NOREPLACE)
459 		return -EINVAL;
460 
461 	if (!simple_empty(new_dentry))
462 		return -ENOTEMPTY;
463 
464 	if (d_really_is_positive(new_dentry)) {
465 		simple_unlink(new_dir, new_dentry);
466 		if (they_are_dirs) {
467 			drop_nlink(d_inode(new_dentry));
468 			drop_nlink(old_dir);
469 		}
470 	} else if (they_are_dirs) {
471 		drop_nlink(old_dir);
472 		inc_nlink(new_dir);
473 	}
474 
475 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
476 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
477 
478 	return 0;
479 }
480 EXPORT_SYMBOL(simple_rename);
481 
482 /**
483  * simple_setattr - setattr for simple filesystem
484  * @mnt_userns: user namespace of the target mount
485  * @dentry: dentry
486  * @iattr: iattr structure
487  *
488  * Returns 0 on success, -error on failure.
489  *
490  * simple_setattr is a simple ->setattr implementation without a proper
491  * implementation of size changes.
492  *
493  * It can either be used for in-memory filesystems or special files
494  * on simple regular filesystems.  Anything that needs to change on-disk
495  * or wire state on size changes needs its own setattr method.
496  */
497 int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
498 		   struct iattr *iattr)
499 {
500 	struct inode *inode = d_inode(dentry);
501 	int error;
502 
503 	error = setattr_prepare(mnt_userns, dentry, iattr);
504 	if (error)
505 		return error;
506 
507 	if (iattr->ia_valid & ATTR_SIZE)
508 		truncate_setsize(inode, iattr->ia_size);
509 	setattr_copy(mnt_userns, inode, iattr);
510 	mark_inode_dirty(inode);
511 	return 0;
512 }
513 EXPORT_SYMBOL(simple_setattr);
514 
515 static int simple_readpage(struct file *file, struct page *page)
516 {
517 	clear_highpage(page);
518 	flush_dcache_page(page);
519 	SetPageUptodate(page);
520 	unlock_page(page);
521 	return 0;
522 }
523 
524 int simple_write_begin(struct file *file, struct address_space *mapping,
525 			loff_t pos, unsigned len, unsigned flags,
526 			struct page **pagep, void **fsdata)
527 {
528 	struct page *page;
529 	pgoff_t index;
530 
531 	index = pos >> PAGE_SHIFT;
532 
533 	page = grab_cache_page_write_begin(mapping, index, flags);
534 	if (!page)
535 		return -ENOMEM;
536 
537 	*pagep = page;
538 
539 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
540 		unsigned from = pos & (PAGE_SIZE - 1);
541 
542 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
543 	}
544 	return 0;
545 }
546 EXPORT_SYMBOL(simple_write_begin);
547 
548 /**
549  * simple_write_end - .write_end helper for non-block-device FSes
550  * @file: See .write_end of address_space_operations
551  * @mapping: 		"
552  * @pos: 		"
553  * @len: 		"
554  * @copied: 		"
555  * @page: 		"
556  * @fsdata: 		"
557  *
558  * simple_write_end does the minimum needed for updating a page after writing is
559  * done. It has the same API signature as the .write_end of
560  * address_space_operations vector. So it can just be set onto .write_end for
561  * FSes that don't need any other processing. i_mutex is assumed to be held.
562  * Block based filesystems should use generic_write_end().
563  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
564  * is not called, so a filesystem that actually does store data in .write_inode
565  * should extend on what's done here with a call to mark_inode_dirty() in the
566  * case that i_size has changed.
567  *
568  * Use *ONLY* with simple_readpage()
569  */
570 static int simple_write_end(struct file *file, struct address_space *mapping,
571 			loff_t pos, unsigned len, unsigned copied,
572 			struct page *page, void *fsdata)
573 {
574 	struct inode *inode = page->mapping->host;
575 	loff_t last_pos = pos + copied;
576 
577 	/* zero the stale part of the page if we did a short copy */
578 	if (!PageUptodate(page)) {
579 		if (copied < len) {
580 			unsigned from = pos & (PAGE_SIZE - 1);
581 
582 			zero_user(page, from + copied, len - copied);
583 		}
584 		SetPageUptodate(page);
585 	}
586 	/*
587 	 * No need to use i_size_read() here, the i_size
588 	 * cannot change under us because we hold the i_mutex.
589 	 */
590 	if (last_pos > inode->i_size)
591 		i_size_write(inode, last_pos);
592 
593 	set_page_dirty(page);
594 	unlock_page(page);
595 	put_page(page);
596 
597 	return copied;
598 }
599 
600 /*
601  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
602  */
603 const struct address_space_operations ram_aops = {
604 	.readpage	= simple_readpage,
605 	.write_begin	= simple_write_begin,
606 	.write_end	= simple_write_end,
607 	.set_page_dirty	= __set_page_dirty_no_writeback,
608 };
609 EXPORT_SYMBOL(ram_aops);
610 
611 /*
612  * the inodes created here are not hashed. If you use iunique to generate
613  * unique inode values later for this filesystem, then you must take care
614  * to pass it an appropriate max_reserved value to avoid collisions.
615  */
616 int simple_fill_super(struct super_block *s, unsigned long magic,
617 		      const struct tree_descr *files)
618 {
619 	struct inode *inode;
620 	struct dentry *root;
621 	struct dentry *dentry;
622 	int i;
623 
624 	s->s_blocksize = PAGE_SIZE;
625 	s->s_blocksize_bits = PAGE_SHIFT;
626 	s->s_magic = magic;
627 	s->s_op = &simple_super_operations;
628 	s->s_time_gran = 1;
629 
630 	inode = new_inode(s);
631 	if (!inode)
632 		return -ENOMEM;
633 	/*
634 	 * because the root inode is 1, the files array must not contain an
635 	 * entry at index 1
636 	 */
637 	inode->i_ino = 1;
638 	inode->i_mode = S_IFDIR | 0755;
639 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
640 	inode->i_op = &simple_dir_inode_operations;
641 	inode->i_fop = &simple_dir_operations;
642 	set_nlink(inode, 2);
643 	root = d_make_root(inode);
644 	if (!root)
645 		return -ENOMEM;
646 	for (i = 0; !files->name || files->name[0]; i++, files++) {
647 		if (!files->name)
648 			continue;
649 
650 		/* warn if it tries to conflict with the root inode */
651 		if (unlikely(i == 1))
652 			printk(KERN_WARNING "%s: %s passed in a files array"
653 				"with an index of 1!\n", __func__,
654 				s->s_type->name);
655 
656 		dentry = d_alloc_name(root, files->name);
657 		if (!dentry)
658 			goto out;
659 		inode = new_inode(s);
660 		if (!inode) {
661 			dput(dentry);
662 			goto out;
663 		}
664 		inode->i_mode = S_IFREG | files->mode;
665 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
666 		inode->i_fop = files->ops;
667 		inode->i_ino = i;
668 		d_add(dentry, inode);
669 	}
670 	s->s_root = root;
671 	return 0;
672 out:
673 	d_genocide(root);
674 	shrink_dcache_parent(root);
675 	dput(root);
676 	return -ENOMEM;
677 }
678 EXPORT_SYMBOL(simple_fill_super);
679 
680 static DEFINE_SPINLOCK(pin_fs_lock);
681 
682 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
683 {
684 	struct vfsmount *mnt = NULL;
685 	spin_lock(&pin_fs_lock);
686 	if (unlikely(!*mount)) {
687 		spin_unlock(&pin_fs_lock);
688 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
689 		if (IS_ERR(mnt))
690 			return PTR_ERR(mnt);
691 		spin_lock(&pin_fs_lock);
692 		if (!*mount)
693 			*mount = mnt;
694 	}
695 	mntget(*mount);
696 	++*count;
697 	spin_unlock(&pin_fs_lock);
698 	mntput(mnt);
699 	return 0;
700 }
701 EXPORT_SYMBOL(simple_pin_fs);
702 
703 void simple_release_fs(struct vfsmount **mount, int *count)
704 {
705 	struct vfsmount *mnt;
706 	spin_lock(&pin_fs_lock);
707 	mnt = *mount;
708 	if (!--*count)
709 		*mount = NULL;
710 	spin_unlock(&pin_fs_lock);
711 	mntput(mnt);
712 }
713 EXPORT_SYMBOL(simple_release_fs);
714 
715 /**
716  * simple_read_from_buffer - copy data from the buffer to user space
717  * @to: the user space buffer to read to
718  * @count: the maximum number of bytes to read
719  * @ppos: the current position in the buffer
720  * @from: the buffer to read from
721  * @available: the size of the buffer
722  *
723  * The simple_read_from_buffer() function reads up to @count bytes from the
724  * buffer @from at offset @ppos into the user space address starting at @to.
725  *
726  * On success, the number of bytes read is returned and the offset @ppos is
727  * advanced by this number, or negative value is returned on error.
728  **/
729 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
730 				const void *from, size_t available)
731 {
732 	loff_t pos = *ppos;
733 	size_t ret;
734 
735 	if (pos < 0)
736 		return -EINVAL;
737 	if (pos >= available || !count)
738 		return 0;
739 	if (count > available - pos)
740 		count = available - pos;
741 	ret = copy_to_user(to, from + pos, count);
742 	if (ret == count)
743 		return -EFAULT;
744 	count -= ret;
745 	*ppos = pos + count;
746 	return count;
747 }
748 EXPORT_SYMBOL(simple_read_from_buffer);
749 
750 /**
751  * simple_write_to_buffer - copy data from user space to the buffer
752  * @to: the buffer to write to
753  * @available: the size of the buffer
754  * @ppos: the current position in the buffer
755  * @from: the user space buffer to read from
756  * @count: the maximum number of bytes to read
757  *
758  * The simple_write_to_buffer() function reads up to @count bytes from the user
759  * space address starting at @from into the buffer @to at offset @ppos.
760  *
761  * On success, the number of bytes written is returned and the offset @ppos is
762  * advanced by this number, or negative value is returned on error.
763  **/
764 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
765 		const void __user *from, size_t count)
766 {
767 	loff_t pos = *ppos;
768 	size_t res;
769 
770 	if (pos < 0)
771 		return -EINVAL;
772 	if (pos >= available || !count)
773 		return 0;
774 	if (count > available - pos)
775 		count = available - pos;
776 	res = copy_from_user(to + pos, from, count);
777 	if (res == count)
778 		return -EFAULT;
779 	count -= res;
780 	*ppos = pos + count;
781 	return count;
782 }
783 EXPORT_SYMBOL(simple_write_to_buffer);
784 
785 /**
786  * memory_read_from_buffer - copy data from the buffer
787  * @to: the kernel space buffer to read to
788  * @count: the maximum number of bytes to read
789  * @ppos: the current position in the buffer
790  * @from: the buffer to read from
791  * @available: the size of the buffer
792  *
793  * The memory_read_from_buffer() function reads up to @count bytes from the
794  * buffer @from at offset @ppos into the kernel space address starting at @to.
795  *
796  * On success, the number of bytes read is returned and the offset @ppos is
797  * advanced by this number, or negative value is returned on error.
798  **/
799 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
800 				const void *from, size_t available)
801 {
802 	loff_t pos = *ppos;
803 
804 	if (pos < 0)
805 		return -EINVAL;
806 	if (pos >= available)
807 		return 0;
808 	if (count > available - pos)
809 		count = available - pos;
810 	memcpy(to, from + pos, count);
811 	*ppos = pos + count;
812 
813 	return count;
814 }
815 EXPORT_SYMBOL(memory_read_from_buffer);
816 
817 /*
818  * Transaction based IO.
819  * The file expects a single write which triggers the transaction, and then
820  * possibly a read which collects the result - which is stored in a
821  * file-local buffer.
822  */
823 
824 void simple_transaction_set(struct file *file, size_t n)
825 {
826 	struct simple_transaction_argresp *ar = file->private_data;
827 
828 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
829 
830 	/*
831 	 * The barrier ensures that ar->size will really remain zero until
832 	 * ar->data is ready for reading.
833 	 */
834 	smp_mb();
835 	ar->size = n;
836 }
837 EXPORT_SYMBOL(simple_transaction_set);
838 
839 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
840 {
841 	struct simple_transaction_argresp *ar;
842 	static DEFINE_SPINLOCK(simple_transaction_lock);
843 
844 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
845 		return ERR_PTR(-EFBIG);
846 
847 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
848 	if (!ar)
849 		return ERR_PTR(-ENOMEM);
850 
851 	spin_lock(&simple_transaction_lock);
852 
853 	/* only one write allowed per open */
854 	if (file->private_data) {
855 		spin_unlock(&simple_transaction_lock);
856 		free_page((unsigned long)ar);
857 		return ERR_PTR(-EBUSY);
858 	}
859 
860 	file->private_data = ar;
861 
862 	spin_unlock(&simple_transaction_lock);
863 
864 	if (copy_from_user(ar->data, buf, size))
865 		return ERR_PTR(-EFAULT);
866 
867 	return ar->data;
868 }
869 EXPORT_SYMBOL(simple_transaction_get);
870 
871 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
872 {
873 	struct simple_transaction_argresp *ar = file->private_data;
874 
875 	if (!ar)
876 		return 0;
877 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
878 }
879 EXPORT_SYMBOL(simple_transaction_read);
880 
881 int simple_transaction_release(struct inode *inode, struct file *file)
882 {
883 	free_page((unsigned long)file->private_data);
884 	return 0;
885 }
886 EXPORT_SYMBOL(simple_transaction_release);
887 
888 /* Simple attribute files */
889 
890 struct simple_attr {
891 	int (*get)(void *, u64 *);
892 	int (*set)(void *, u64);
893 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
894 	char set_buf[24];
895 	void *data;
896 	const char *fmt;	/* format for read operation */
897 	struct mutex mutex;	/* protects access to these buffers */
898 };
899 
900 /* simple_attr_open is called by an actual attribute open file operation
901  * to set the attribute specific access operations. */
902 int simple_attr_open(struct inode *inode, struct file *file,
903 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
904 		     const char *fmt)
905 {
906 	struct simple_attr *attr;
907 
908 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
909 	if (!attr)
910 		return -ENOMEM;
911 
912 	attr->get = get;
913 	attr->set = set;
914 	attr->data = inode->i_private;
915 	attr->fmt = fmt;
916 	mutex_init(&attr->mutex);
917 
918 	file->private_data = attr;
919 
920 	return nonseekable_open(inode, file);
921 }
922 EXPORT_SYMBOL_GPL(simple_attr_open);
923 
924 int simple_attr_release(struct inode *inode, struct file *file)
925 {
926 	kfree(file->private_data);
927 	return 0;
928 }
929 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
930 
931 /* read from the buffer that is filled with the get function */
932 ssize_t simple_attr_read(struct file *file, char __user *buf,
933 			 size_t len, loff_t *ppos)
934 {
935 	struct simple_attr *attr;
936 	size_t size;
937 	ssize_t ret;
938 
939 	attr = file->private_data;
940 
941 	if (!attr->get)
942 		return -EACCES;
943 
944 	ret = mutex_lock_interruptible(&attr->mutex);
945 	if (ret)
946 		return ret;
947 
948 	if (*ppos && attr->get_buf[0]) {
949 		/* continued read */
950 		size = strlen(attr->get_buf);
951 	} else {
952 		/* first read */
953 		u64 val;
954 		ret = attr->get(attr->data, &val);
955 		if (ret)
956 			goto out;
957 
958 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
959 				 attr->fmt, (unsigned long long)val);
960 	}
961 
962 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
963 out:
964 	mutex_unlock(&attr->mutex);
965 	return ret;
966 }
967 EXPORT_SYMBOL_GPL(simple_attr_read);
968 
969 /* interpret the buffer as a number to call the set function with */
970 ssize_t simple_attr_write(struct file *file, const char __user *buf,
971 			  size_t len, loff_t *ppos)
972 {
973 	struct simple_attr *attr;
974 	unsigned long long val;
975 	size_t size;
976 	ssize_t ret;
977 
978 	attr = file->private_data;
979 	if (!attr->set)
980 		return -EACCES;
981 
982 	ret = mutex_lock_interruptible(&attr->mutex);
983 	if (ret)
984 		return ret;
985 
986 	ret = -EFAULT;
987 	size = min(sizeof(attr->set_buf) - 1, len);
988 	if (copy_from_user(attr->set_buf, buf, size))
989 		goto out;
990 
991 	attr->set_buf[size] = '\0';
992 	ret = kstrtoull(attr->set_buf, 0, &val);
993 	if (ret)
994 		goto out;
995 	ret = attr->set(attr->data, val);
996 	if (ret == 0)
997 		ret = len; /* on success, claim we got the whole input */
998 out:
999 	mutex_unlock(&attr->mutex);
1000 	return ret;
1001 }
1002 EXPORT_SYMBOL_GPL(simple_attr_write);
1003 
1004 /**
1005  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1006  * @sb:		filesystem to do the file handle conversion on
1007  * @fid:	file handle to convert
1008  * @fh_len:	length of the file handle in bytes
1009  * @fh_type:	type of file handle
1010  * @get_inode:	filesystem callback to retrieve inode
1011  *
1012  * This function decodes @fid as long as it has one of the well-known
1013  * Linux filehandle types and calls @get_inode on it to retrieve the
1014  * inode for the object specified in the file handle.
1015  */
1016 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1017 		int fh_len, int fh_type, struct inode *(*get_inode)
1018 			(struct super_block *sb, u64 ino, u32 gen))
1019 {
1020 	struct inode *inode = NULL;
1021 
1022 	if (fh_len < 2)
1023 		return NULL;
1024 
1025 	switch (fh_type) {
1026 	case FILEID_INO32_GEN:
1027 	case FILEID_INO32_GEN_PARENT:
1028 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1029 		break;
1030 	}
1031 
1032 	return d_obtain_alias(inode);
1033 }
1034 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1035 
1036 /**
1037  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1038  * @sb:		filesystem to do the file handle conversion on
1039  * @fid:	file handle to convert
1040  * @fh_len:	length of the file handle in bytes
1041  * @fh_type:	type of file handle
1042  * @get_inode:	filesystem callback to retrieve inode
1043  *
1044  * This function decodes @fid as long as it has one of the well-known
1045  * Linux filehandle types and calls @get_inode on it to retrieve the
1046  * inode for the _parent_ object specified in the file handle if it
1047  * is specified in the file handle, or NULL otherwise.
1048  */
1049 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1050 		int fh_len, int fh_type, struct inode *(*get_inode)
1051 			(struct super_block *sb, u64 ino, u32 gen))
1052 {
1053 	struct inode *inode = NULL;
1054 
1055 	if (fh_len <= 2)
1056 		return NULL;
1057 
1058 	switch (fh_type) {
1059 	case FILEID_INO32_GEN_PARENT:
1060 		inode = get_inode(sb, fid->i32.parent_ino,
1061 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1062 		break;
1063 	}
1064 
1065 	return d_obtain_alias(inode);
1066 }
1067 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1068 
1069 /**
1070  * __generic_file_fsync - generic fsync implementation for simple filesystems
1071  *
1072  * @file:	file to synchronize
1073  * @start:	start offset in bytes
1074  * @end:	end offset in bytes (inclusive)
1075  * @datasync:	only synchronize essential metadata if true
1076  *
1077  * This is a generic implementation of the fsync method for simple
1078  * filesystems which track all non-inode metadata in the buffers list
1079  * hanging off the address_space structure.
1080  */
1081 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1082 				 int datasync)
1083 {
1084 	struct inode *inode = file->f_mapping->host;
1085 	int err;
1086 	int ret;
1087 
1088 	err = file_write_and_wait_range(file, start, end);
1089 	if (err)
1090 		return err;
1091 
1092 	inode_lock(inode);
1093 	ret = sync_mapping_buffers(inode->i_mapping);
1094 	if (!(inode->i_state & I_DIRTY_ALL))
1095 		goto out;
1096 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1097 		goto out;
1098 
1099 	err = sync_inode_metadata(inode, 1);
1100 	if (ret == 0)
1101 		ret = err;
1102 
1103 out:
1104 	inode_unlock(inode);
1105 	/* check and advance again to catch errors after syncing out buffers */
1106 	err = file_check_and_advance_wb_err(file);
1107 	if (ret == 0)
1108 		ret = err;
1109 	return ret;
1110 }
1111 EXPORT_SYMBOL(__generic_file_fsync);
1112 
1113 /**
1114  * generic_file_fsync - generic fsync implementation for simple filesystems
1115  *			with flush
1116  * @file:	file to synchronize
1117  * @start:	start offset in bytes
1118  * @end:	end offset in bytes (inclusive)
1119  * @datasync:	only synchronize essential metadata if true
1120  *
1121  */
1122 
1123 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1124 		       int datasync)
1125 {
1126 	struct inode *inode = file->f_mapping->host;
1127 	int err;
1128 
1129 	err = __generic_file_fsync(file, start, end, datasync);
1130 	if (err)
1131 		return err;
1132 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1133 }
1134 EXPORT_SYMBOL(generic_file_fsync);
1135 
1136 /**
1137  * generic_check_addressable - Check addressability of file system
1138  * @blocksize_bits:	log of file system block size
1139  * @num_blocks:		number of blocks in file system
1140  *
1141  * Determine whether a file system with @num_blocks blocks (and a
1142  * block size of 2**@blocksize_bits) is addressable by the sector_t
1143  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1144  */
1145 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1146 {
1147 	u64 last_fs_block = num_blocks - 1;
1148 	u64 last_fs_page =
1149 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1150 
1151 	if (unlikely(num_blocks == 0))
1152 		return 0;
1153 
1154 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1155 		return -EINVAL;
1156 
1157 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1158 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1159 		return -EFBIG;
1160 	}
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(generic_check_addressable);
1164 
1165 /*
1166  * No-op implementation of ->fsync for in-memory filesystems.
1167  */
1168 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1169 {
1170 	return 0;
1171 }
1172 EXPORT_SYMBOL(noop_fsync);
1173 
1174 void noop_invalidatepage(struct page *page, unsigned int offset,
1175 		unsigned int length)
1176 {
1177 	/*
1178 	 * There is no page cache to invalidate in the dax case, however
1179 	 * we need this callback defined to prevent falling back to
1180 	 * block_invalidatepage() in do_invalidatepage().
1181 	 */
1182 }
1183 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1184 
1185 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1186 {
1187 	/*
1188 	 * iomap based filesystems support direct I/O without need for
1189 	 * this callback. However, it still needs to be set in
1190 	 * inode->a_ops so that open/fcntl know that direct I/O is
1191 	 * generally supported.
1192 	 */
1193 	return -EINVAL;
1194 }
1195 EXPORT_SYMBOL_GPL(noop_direct_IO);
1196 
1197 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1198 void kfree_link(void *p)
1199 {
1200 	kfree(p);
1201 }
1202 EXPORT_SYMBOL(kfree_link);
1203 
1204 struct inode *alloc_anon_inode(struct super_block *s)
1205 {
1206 	static const struct address_space_operations anon_aops = {
1207 		.set_page_dirty = __set_page_dirty_no_writeback,
1208 	};
1209 	struct inode *inode = new_inode_pseudo(s);
1210 
1211 	if (!inode)
1212 		return ERR_PTR(-ENOMEM);
1213 
1214 	inode->i_ino = get_next_ino();
1215 	inode->i_mapping->a_ops = &anon_aops;
1216 
1217 	/*
1218 	 * Mark the inode dirty from the very beginning,
1219 	 * that way it will never be moved to the dirty
1220 	 * list because mark_inode_dirty() will think
1221 	 * that it already _is_ on the dirty list.
1222 	 */
1223 	inode->i_state = I_DIRTY;
1224 	inode->i_mode = S_IRUSR | S_IWUSR;
1225 	inode->i_uid = current_fsuid();
1226 	inode->i_gid = current_fsgid();
1227 	inode->i_flags |= S_PRIVATE;
1228 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1229 	return inode;
1230 }
1231 EXPORT_SYMBOL(alloc_anon_inode);
1232 
1233 /**
1234  * simple_nosetlease - generic helper for prohibiting leases
1235  * @filp: file pointer
1236  * @arg: type of lease to obtain
1237  * @flp: new lease supplied for insertion
1238  * @priv: private data for lm_setup operation
1239  *
1240  * Generic helper for filesystems that do not wish to allow leases to be set.
1241  * All arguments are ignored and it just returns -EINVAL.
1242  */
1243 int
1244 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1245 		  void **priv)
1246 {
1247 	return -EINVAL;
1248 }
1249 EXPORT_SYMBOL(simple_nosetlease);
1250 
1251 /**
1252  * simple_get_link - generic helper to get the target of "fast" symlinks
1253  * @dentry: not used here
1254  * @inode: the symlink inode
1255  * @done: not used here
1256  *
1257  * Generic helper for filesystems to use for symlink inodes where a pointer to
1258  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1259  * since as an optimization the path lookup code uses any non-NULL ->i_link
1260  * directly, without calling ->get_link().  But ->get_link() still must be set,
1261  * to mark the inode_operations as being for a symlink.
1262  *
1263  * Return: the symlink target
1264  */
1265 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1266 			    struct delayed_call *done)
1267 {
1268 	return inode->i_link;
1269 }
1270 EXPORT_SYMBOL(simple_get_link);
1271 
1272 const struct inode_operations simple_symlink_inode_operations = {
1273 	.get_link = simple_get_link,
1274 };
1275 EXPORT_SYMBOL(simple_symlink_inode_operations);
1276 
1277 /*
1278  * Operations for a permanently empty directory.
1279  */
1280 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1281 {
1282 	return ERR_PTR(-ENOENT);
1283 }
1284 
1285 static int empty_dir_getattr(struct user_namespace *mnt_userns,
1286 			     const struct path *path, struct kstat *stat,
1287 			     u32 request_mask, unsigned int query_flags)
1288 {
1289 	struct inode *inode = d_inode(path->dentry);
1290 	generic_fillattr(&init_user_ns, inode, stat);
1291 	return 0;
1292 }
1293 
1294 static int empty_dir_setattr(struct user_namespace *mnt_userns,
1295 			     struct dentry *dentry, struct iattr *attr)
1296 {
1297 	return -EPERM;
1298 }
1299 
1300 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1301 {
1302 	return -EOPNOTSUPP;
1303 }
1304 
1305 static const struct inode_operations empty_dir_inode_operations = {
1306 	.lookup		= empty_dir_lookup,
1307 	.permission	= generic_permission,
1308 	.setattr	= empty_dir_setattr,
1309 	.getattr	= empty_dir_getattr,
1310 	.listxattr	= empty_dir_listxattr,
1311 };
1312 
1313 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1314 {
1315 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1316 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1317 }
1318 
1319 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1320 {
1321 	dir_emit_dots(file, ctx);
1322 	return 0;
1323 }
1324 
1325 static const struct file_operations empty_dir_operations = {
1326 	.llseek		= empty_dir_llseek,
1327 	.read		= generic_read_dir,
1328 	.iterate_shared	= empty_dir_readdir,
1329 	.fsync		= noop_fsync,
1330 };
1331 
1332 
1333 void make_empty_dir_inode(struct inode *inode)
1334 {
1335 	set_nlink(inode, 2);
1336 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1337 	inode->i_uid = GLOBAL_ROOT_UID;
1338 	inode->i_gid = GLOBAL_ROOT_GID;
1339 	inode->i_rdev = 0;
1340 	inode->i_size = 0;
1341 	inode->i_blkbits = PAGE_SHIFT;
1342 	inode->i_blocks = 0;
1343 
1344 	inode->i_op = &empty_dir_inode_operations;
1345 	inode->i_opflags &= ~IOP_XATTR;
1346 	inode->i_fop = &empty_dir_operations;
1347 }
1348 
1349 bool is_empty_dir_inode(struct inode *inode)
1350 {
1351 	return (inode->i_fop == &empty_dir_operations) &&
1352 		(inode->i_op == &empty_dir_inode_operations);
1353 }
1354 
1355 #ifdef CONFIG_UNICODE
1356 /*
1357  * Determine if the name of a dentry should be casefolded.
1358  *
1359  * Return: if names will need casefolding
1360  */
1361 static bool needs_casefold(const struct inode *dir)
1362 {
1363 	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1364 }
1365 
1366 /**
1367  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1368  * @dentry:	dentry whose name we are checking against
1369  * @len:	len of name of dentry
1370  * @str:	str pointer to name of dentry
1371  * @name:	Name to compare against
1372  *
1373  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1374  */
1375 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1376 				const char *str, const struct qstr *name)
1377 {
1378 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1379 	const struct inode *dir = READ_ONCE(parent->d_inode);
1380 	const struct super_block *sb = dentry->d_sb;
1381 	const struct unicode_map *um = sb->s_encoding;
1382 	struct qstr qstr = QSTR_INIT(str, len);
1383 	char strbuf[DNAME_INLINE_LEN];
1384 	int ret;
1385 
1386 	if (!dir || !needs_casefold(dir))
1387 		goto fallback;
1388 	/*
1389 	 * If the dentry name is stored in-line, then it may be concurrently
1390 	 * modified by a rename.  If this happens, the VFS will eventually retry
1391 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1392 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1393 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1394 	 */
1395 	if (len <= DNAME_INLINE_LEN - 1) {
1396 		memcpy(strbuf, str, len);
1397 		strbuf[len] = 0;
1398 		qstr.name = strbuf;
1399 		/* prevent compiler from optimizing out the temporary buffer */
1400 		barrier();
1401 	}
1402 	ret = utf8_strncasecmp(um, name, &qstr);
1403 	if (ret >= 0)
1404 		return ret;
1405 
1406 	if (sb_has_strict_encoding(sb))
1407 		return -EINVAL;
1408 fallback:
1409 	if (len != name->len)
1410 		return 1;
1411 	return !!memcmp(str, name->name, len);
1412 }
1413 
1414 /**
1415  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1416  * @dentry:	dentry of the parent directory
1417  * @str:	qstr of name whose hash we should fill in
1418  *
1419  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1420  */
1421 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1422 {
1423 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1424 	struct super_block *sb = dentry->d_sb;
1425 	const struct unicode_map *um = sb->s_encoding;
1426 	int ret = 0;
1427 
1428 	if (!dir || !needs_casefold(dir))
1429 		return 0;
1430 
1431 	ret = utf8_casefold_hash(um, dentry, str);
1432 	if (ret < 0 && sb_has_strict_encoding(sb))
1433 		return -EINVAL;
1434 	return 0;
1435 }
1436 
1437 static const struct dentry_operations generic_ci_dentry_ops = {
1438 	.d_hash = generic_ci_d_hash,
1439 	.d_compare = generic_ci_d_compare,
1440 };
1441 #endif
1442 
1443 #ifdef CONFIG_FS_ENCRYPTION
1444 static const struct dentry_operations generic_encrypted_dentry_ops = {
1445 	.d_revalidate = fscrypt_d_revalidate,
1446 };
1447 #endif
1448 
1449 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1450 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1451 	.d_hash = generic_ci_d_hash,
1452 	.d_compare = generic_ci_d_compare,
1453 	.d_revalidate = fscrypt_d_revalidate,
1454 };
1455 #endif
1456 
1457 /**
1458  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1459  * @dentry:	dentry to set ops on
1460  *
1461  * Casefolded directories need d_hash and d_compare set, so that the dentries
1462  * contained in them are handled case-insensitively.  Note that these operations
1463  * are needed on the parent directory rather than on the dentries in it, and
1464  * while the casefolding flag can be toggled on and off on an empty directory,
1465  * dentry_operations can't be changed later.  As a result, if the filesystem has
1466  * casefolding support enabled at all, we have to give all dentries the
1467  * casefolding operations even if their inode doesn't have the casefolding flag
1468  * currently (and thus the casefolding ops would be no-ops for now).
1469  *
1470  * Encryption works differently in that the only dentry operation it needs is
1471  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1472  * The no-key flag can't be set "later", so we don't have to worry about that.
1473  *
1474  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1475  * with certain dentry operations) and to avoid taking an unnecessary
1476  * performance hit, we use custom dentry_operations for each possible
1477  * combination rather than always installing all operations.
1478  */
1479 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1480 {
1481 #ifdef CONFIG_FS_ENCRYPTION
1482 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1483 #endif
1484 #ifdef CONFIG_UNICODE
1485 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1486 #endif
1487 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1488 	if (needs_encrypt_ops && needs_ci_ops) {
1489 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1490 		return;
1491 	}
1492 #endif
1493 #ifdef CONFIG_FS_ENCRYPTION
1494 	if (needs_encrypt_ops) {
1495 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1496 		return;
1497 	}
1498 #endif
1499 #ifdef CONFIG_UNICODE
1500 	if (needs_ci_ops) {
1501 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1502 		return;
1503 	}
1504 #endif
1505 }
1506 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1507