xref: /linux/fs/libfs.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/mount.h>
9 #include <linux/vfs.h>
10 #include <linux/mutex.h>
11 
12 #include <asm/uaccess.h>
13 
14 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
15 		   struct kstat *stat)
16 {
17 	struct inode *inode = dentry->d_inode;
18 	generic_fillattr(inode, stat);
19 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
20 	return 0;
21 }
22 
23 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
24 {
25 	buf->f_type = dentry->d_sb->s_magic;
26 	buf->f_bsize = PAGE_CACHE_SIZE;
27 	buf->f_namelen = NAME_MAX;
28 	return 0;
29 }
30 
31 /*
32  * Retaining negative dentries for an in-memory filesystem just wastes
33  * memory and lookup time: arrange for them to be deleted immediately.
34  */
35 static int simple_delete_dentry(struct dentry *dentry)
36 {
37 	return 1;
38 }
39 
40 /*
41  * Lookup the data. This is trivial - if the dentry didn't already
42  * exist, we know it is negative.  Set d_op to delete negative dentries.
43  */
44 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
45 {
46 	static struct dentry_operations simple_dentry_operations = {
47 		.d_delete = simple_delete_dentry,
48 	};
49 
50 	if (dentry->d_name.len > NAME_MAX)
51 		return ERR_PTR(-ENAMETOOLONG);
52 	dentry->d_op = &simple_dentry_operations;
53 	d_add(dentry, NULL);
54 	return NULL;
55 }
56 
57 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
58 {
59 	return 0;
60 }
61 
62 int dcache_dir_open(struct inode *inode, struct file *file)
63 {
64 	static struct qstr cursor_name = {.len = 1, .name = "."};
65 
66 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
67 
68 	return file->private_data ? 0 : -ENOMEM;
69 }
70 
71 int dcache_dir_close(struct inode *inode, struct file *file)
72 {
73 	dput(file->private_data);
74 	return 0;
75 }
76 
77 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
78 {
79 	mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
80 	switch (origin) {
81 		case 1:
82 			offset += file->f_pos;
83 		case 0:
84 			if (offset >= 0)
85 				break;
86 		default:
87 			mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
88 			return -EINVAL;
89 	}
90 	if (offset != file->f_pos) {
91 		file->f_pos = offset;
92 		if (file->f_pos >= 2) {
93 			struct list_head *p;
94 			struct dentry *cursor = file->private_data;
95 			loff_t n = file->f_pos - 2;
96 
97 			spin_lock(&dcache_lock);
98 			list_del(&cursor->d_u.d_child);
99 			p = file->f_path.dentry->d_subdirs.next;
100 			while (n && p != &file->f_path.dentry->d_subdirs) {
101 				struct dentry *next;
102 				next = list_entry(p, struct dentry, d_u.d_child);
103 				if (!d_unhashed(next) && next->d_inode)
104 					n--;
105 				p = p->next;
106 			}
107 			list_add_tail(&cursor->d_u.d_child, p);
108 			spin_unlock(&dcache_lock);
109 		}
110 	}
111 	mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
112 	return offset;
113 }
114 
115 /* Relationship between i_mode and the DT_xxx types */
116 static inline unsigned char dt_type(struct inode *inode)
117 {
118 	return (inode->i_mode >> 12) & 15;
119 }
120 
121 /*
122  * Directory is locked and all positive dentries in it are safe, since
123  * for ramfs-type trees they can't go away without unlink() or rmdir(),
124  * both impossible due to the lock on directory.
125  */
126 
127 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
128 {
129 	struct dentry *dentry = filp->f_path.dentry;
130 	struct dentry *cursor = filp->private_data;
131 	struct list_head *p, *q = &cursor->d_u.d_child;
132 	ino_t ino;
133 	int i = filp->f_pos;
134 
135 	switch (i) {
136 		case 0:
137 			ino = dentry->d_inode->i_ino;
138 			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
139 				break;
140 			filp->f_pos++;
141 			i++;
142 			/* fallthrough */
143 		case 1:
144 			ino = parent_ino(dentry);
145 			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
146 				break;
147 			filp->f_pos++;
148 			i++;
149 			/* fallthrough */
150 		default:
151 			spin_lock(&dcache_lock);
152 			if (filp->f_pos == 2)
153 				list_move(q, &dentry->d_subdirs);
154 
155 			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
156 				struct dentry *next;
157 				next = list_entry(p, struct dentry, d_u.d_child);
158 				if (d_unhashed(next) || !next->d_inode)
159 					continue;
160 
161 				spin_unlock(&dcache_lock);
162 				if (filldir(dirent, next->d_name.name, next->d_name.len, filp->f_pos, next->d_inode->i_ino, dt_type(next->d_inode)) < 0)
163 					return 0;
164 				spin_lock(&dcache_lock);
165 				/* next is still alive */
166 				list_move(q, p);
167 				p = q;
168 				filp->f_pos++;
169 			}
170 			spin_unlock(&dcache_lock);
171 	}
172 	return 0;
173 }
174 
175 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
176 {
177 	return -EISDIR;
178 }
179 
180 const struct file_operations simple_dir_operations = {
181 	.open		= dcache_dir_open,
182 	.release	= dcache_dir_close,
183 	.llseek		= dcache_dir_lseek,
184 	.read		= generic_read_dir,
185 	.readdir	= dcache_readdir,
186 	.fsync		= simple_sync_file,
187 };
188 
189 const struct inode_operations simple_dir_inode_operations = {
190 	.lookup		= simple_lookup,
191 };
192 
193 static const struct super_operations simple_super_operations = {
194 	.statfs		= simple_statfs,
195 };
196 
197 /*
198  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
199  * will never be mountable)
200  */
201 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
202 	const struct super_operations *ops, unsigned long magic,
203 	struct vfsmount *mnt)
204 {
205 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
206 	struct dentry *dentry;
207 	struct inode *root;
208 	struct qstr d_name = {.name = name, .len = strlen(name)};
209 
210 	if (IS_ERR(s))
211 		return PTR_ERR(s);
212 
213 	s->s_flags = MS_NOUSER;
214 	s->s_maxbytes = ~0ULL;
215 	s->s_blocksize = 1024;
216 	s->s_blocksize_bits = 10;
217 	s->s_magic = magic;
218 	s->s_op = ops ? ops : &simple_super_operations;
219 	s->s_time_gran = 1;
220 	root = new_inode(s);
221 	if (!root)
222 		goto Enomem;
223 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
224 	root->i_uid = root->i_gid = 0;
225 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
226 	dentry = d_alloc(NULL, &d_name);
227 	if (!dentry) {
228 		iput(root);
229 		goto Enomem;
230 	}
231 	dentry->d_sb = s;
232 	dentry->d_parent = dentry;
233 	d_instantiate(dentry, root);
234 	s->s_root = dentry;
235 	s->s_flags |= MS_ACTIVE;
236 	return simple_set_mnt(mnt, s);
237 
238 Enomem:
239 	up_write(&s->s_umount);
240 	deactivate_super(s);
241 	return -ENOMEM;
242 }
243 
244 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
245 {
246 	struct inode *inode = old_dentry->d_inode;
247 
248 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
249 	inc_nlink(inode);
250 	atomic_inc(&inode->i_count);
251 	dget(dentry);
252 	d_instantiate(dentry, inode);
253 	return 0;
254 }
255 
256 static inline int simple_positive(struct dentry *dentry)
257 {
258 	return dentry->d_inode && !d_unhashed(dentry);
259 }
260 
261 int simple_empty(struct dentry *dentry)
262 {
263 	struct dentry *child;
264 	int ret = 0;
265 
266 	spin_lock(&dcache_lock);
267 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
268 		if (simple_positive(child))
269 			goto out;
270 	ret = 1;
271 out:
272 	spin_unlock(&dcache_lock);
273 	return ret;
274 }
275 
276 int simple_unlink(struct inode *dir, struct dentry *dentry)
277 {
278 	struct inode *inode = dentry->d_inode;
279 
280 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
281 	drop_nlink(inode);
282 	dput(dentry);
283 	return 0;
284 }
285 
286 int simple_rmdir(struct inode *dir, struct dentry *dentry)
287 {
288 	if (!simple_empty(dentry))
289 		return -ENOTEMPTY;
290 
291 	drop_nlink(dentry->d_inode);
292 	simple_unlink(dir, dentry);
293 	drop_nlink(dir);
294 	return 0;
295 }
296 
297 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
298 		struct inode *new_dir, struct dentry *new_dentry)
299 {
300 	struct inode *inode = old_dentry->d_inode;
301 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
302 
303 	if (!simple_empty(new_dentry))
304 		return -ENOTEMPTY;
305 
306 	if (new_dentry->d_inode) {
307 		simple_unlink(new_dir, new_dentry);
308 		if (they_are_dirs)
309 			drop_nlink(old_dir);
310 	} else if (they_are_dirs) {
311 		drop_nlink(old_dir);
312 		inc_nlink(new_dir);
313 	}
314 
315 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
316 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
317 
318 	return 0;
319 }
320 
321 int simple_readpage(struct file *file, struct page *page)
322 {
323 	clear_highpage(page);
324 	flush_dcache_page(page);
325 	SetPageUptodate(page);
326 	unlock_page(page);
327 	return 0;
328 }
329 
330 int simple_prepare_write(struct file *file, struct page *page,
331 			unsigned from, unsigned to)
332 {
333 	if (!PageUptodate(page)) {
334 		if (to - from != PAGE_CACHE_SIZE) {
335 			void *kaddr = kmap_atomic(page, KM_USER0);
336 			memset(kaddr, 0, from);
337 			memset(kaddr + to, 0, PAGE_CACHE_SIZE - to);
338 			flush_dcache_page(page);
339 			kunmap_atomic(kaddr, KM_USER0);
340 		}
341 	}
342 	return 0;
343 }
344 
345 int simple_commit_write(struct file *file, struct page *page,
346 			unsigned from, unsigned to)
347 {
348 	struct inode *inode = page->mapping->host;
349 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
350 
351 	if (!PageUptodate(page))
352 		SetPageUptodate(page);
353 	/*
354 	 * No need to use i_size_read() here, the i_size
355 	 * cannot change under us because we hold the i_mutex.
356 	 */
357 	if (pos > inode->i_size)
358 		i_size_write(inode, pos);
359 	set_page_dirty(page);
360 	return 0;
361 }
362 
363 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
364 {
365 	struct inode *inode;
366 	struct dentry *root;
367 	struct dentry *dentry;
368 	int i;
369 
370 	s->s_blocksize = PAGE_CACHE_SIZE;
371 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
372 	s->s_magic = magic;
373 	s->s_op = &simple_super_operations;
374 	s->s_time_gran = 1;
375 
376 	inode = new_inode(s);
377 	if (!inode)
378 		return -ENOMEM;
379 	inode->i_mode = S_IFDIR | 0755;
380 	inode->i_uid = inode->i_gid = 0;
381 	inode->i_blocks = 0;
382 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
383 	inode->i_op = &simple_dir_inode_operations;
384 	inode->i_fop = &simple_dir_operations;
385 	inode->i_nlink = 2;
386 	root = d_alloc_root(inode);
387 	if (!root) {
388 		iput(inode);
389 		return -ENOMEM;
390 	}
391 	for (i = 0; !files->name || files->name[0]; i++, files++) {
392 		if (!files->name)
393 			continue;
394 		dentry = d_alloc_name(root, files->name);
395 		if (!dentry)
396 			goto out;
397 		inode = new_inode(s);
398 		if (!inode)
399 			goto out;
400 		inode->i_mode = S_IFREG | files->mode;
401 		inode->i_uid = inode->i_gid = 0;
402 		inode->i_blocks = 0;
403 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
404 		inode->i_fop = files->ops;
405 		inode->i_ino = i;
406 		d_add(dentry, inode);
407 	}
408 	s->s_root = root;
409 	return 0;
410 out:
411 	d_genocide(root);
412 	dput(root);
413 	return -ENOMEM;
414 }
415 
416 static DEFINE_SPINLOCK(pin_fs_lock);
417 
418 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
419 {
420 	struct vfsmount *mnt = NULL;
421 	spin_lock(&pin_fs_lock);
422 	if (unlikely(!*mount)) {
423 		spin_unlock(&pin_fs_lock);
424 		mnt = vfs_kern_mount(type, 0, type->name, NULL);
425 		if (IS_ERR(mnt))
426 			return PTR_ERR(mnt);
427 		spin_lock(&pin_fs_lock);
428 		if (!*mount)
429 			*mount = mnt;
430 	}
431 	mntget(*mount);
432 	++*count;
433 	spin_unlock(&pin_fs_lock);
434 	mntput(mnt);
435 	return 0;
436 }
437 
438 void simple_release_fs(struct vfsmount **mount, int *count)
439 {
440 	struct vfsmount *mnt;
441 	spin_lock(&pin_fs_lock);
442 	mnt = *mount;
443 	if (!--*count)
444 		*mount = NULL;
445 	spin_unlock(&pin_fs_lock);
446 	mntput(mnt);
447 }
448 
449 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
450 				const void *from, size_t available)
451 {
452 	loff_t pos = *ppos;
453 	if (pos < 0)
454 		return -EINVAL;
455 	if (pos >= available)
456 		return 0;
457 	if (count > available - pos)
458 		count = available - pos;
459 	if (copy_to_user(to, from + pos, count))
460 		return -EFAULT;
461 	*ppos = pos + count;
462 	return count;
463 }
464 
465 /*
466  * Transaction based IO.
467  * The file expects a single write which triggers the transaction, and then
468  * possibly a read which collects the result - which is stored in a
469  * file-local buffer.
470  */
471 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
472 {
473 	struct simple_transaction_argresp *ar;
474 	static DEFINE_SPINLOCK(simple_transaction_lock);
475 
476 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
477 		return ERR_PTR(-EFBIG);
478 
479 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
480 	if (!ar)
481 		return ERR_PTR(-ENOMEM);
482 
483 	spin_lock(&simple_transaction_lock);
484 
485 	/* only one write allowed per open */
486 	if (file->private_data) {
487 		spin_unlock(&simple_transaction_lock);
488 		free_page((unsigned long)ar);
489 		return ERR_PTR(-EBUSY);
490 	}
491 
492 	file->private_data = ar;
493 
494 	spin_unlock(&simple_transaction_lock);
495 
496 	if (copy_from_user(ar->data, buf, size))
497 		return ERR_PTR(-EFAULT);
498 
499 	return ar->data;
500 }
501 
502 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
503 {
504 	struct simple_transaction_argresp *ar = file->private_data;
505 
506 	if (!ar)
507 		return 0;
508 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
509 }
510 
511 int simple_transaction_release(struct inode *inode, struct file *file)
512 {
513 	free_page((unsigned long)file->private_data);
514 	return 0;
515 }
516 
517 /* Simple attribute files */
518 
519 struct simple_attr {
520 	u64 (*get)(void *);
521 	void (*set)(void *, u64);
522 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
523 	char set_buf[24];
524 	void *data;
525 	const char *fmt;	/* format for read operation */
526 	struct mutex mutex;	/* protects access to these buffers */
527 };
528 
529 /* simple_attr_open is called by an actual attribute open file operation
530  * to set the attribute specific access operations. */
531 int simple_attr_open(struct inode *inode, struct file *file,
532 		     u64 (*get)(void *), void (*set)(void *, u64),
533 		     const char *fmt)
534 {
535 	struct simple_attr *attr;
536 
537 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
538 	if (!attr)
539 		return -ENOMEM;
540 
541 	attr->get = get;
542 	attr->set = set;
543 	attr->data = inode->i_private;
544 	attr->fmt = fmt;
545 	mutex_init(&attr->mutex);
546 
547 	file->private_data = attr;
548 
549 	return nonseekable_open(inode, file);
550 }
551 
552 int simple_attr_close(struct inode *inode, struct file *file)
553 {
554 	kfree(file->private_data);
555 	return 0;
556 }
557 
558 /* read from the buffer that is filled with the get function */
559 ssize_t simple_attr_read(struct file *file, char __user *buf,
560 			 size_t len, loff_t *ppos)
561 {
562 	struct simple_attr *attr;
563 	size_t size;
564 	ssize_t ret;
565 
566 	attr = file->private_data;
567 
568 	if (!attr->get)
569 		return -EACCES;
570 
571 	mutex_lock(&attr->mutex);
572 	if (*ppos) /* continued read */
573 		size = strlen(attr->get_buf);
574 	else	  /* first read */
575 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
576 				 attr->fmt,
577 				 (unsigned long long)attr->get(attr->data));
578 
579 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
580 	mutex_unlock(&attr->mutex);
581 	return ret;
582 }
583 
584 /* interpret the buffer as a number to call the set function with */
585 ssize_t simple_attr_write(struct file *file, const char __user *buf,
586 			  size_t len, loff_t *ppos)
587 {
588 	struct simple_attr *attr;
589 	u64 val;
590 	size_t size;
591 	ssize_t ret;
592 
593 	attr = file->private_data;
594 
595 	if (!attr->set)
596 		return -EACCES;
597 
598 	mutex_lock(&attr->mutex);
599 	ret = -EFAULT;
600 	size = min(sizeof(attr->set_buf) - 1, len);
601 	if (copy_from_user(attr->set_buf, buf, size))
602 		goto out;
603 
604 	ret = len; /* claim we got the whole input */
605 	attr->set_buf[size] = '\0';
606 	val = simple_strtol(attr->set_buf, NULL, 0);
607 	attr->set(attr->data, val);
608 out:
609 	mutex_unlock(&attr->mutex);
610 	return ret;
611 }
612 
613 EXPORT_SYMBOL(dcache_dir_close);
614 EXPORT_SYMBOL(dcache_dir_lseek);
615 EXPORT_SYMBOL(dcache_dir_open);
616 EXPORT_SYMBOL(dcache_readdir);
617 EXPORT_SYMBOL(generic_read_dir);
618 EXPORT_SYMBOL(get_sb_pseudo);
619 EXPORT_SYMBOL(simple_commit_write);
620 EXPORT_SYMBOL(simple_dir_inode_operations);
621 EXPORT_SYMBOL(simple_dir_operations);
622 EXPORT_SYMBOL(simple_empty);
623 EXPORT_SYMBOL(d_alloc_name);
624 EXPORT_SYMBOL(simple_fill_super);
625 EXPORT_SYMBOL(simple_getattr);
626 EXPORT_SYMBOL(simple_link);
627 EXPORT_SYMBOL(simple_lookup);
628 EXPORT_SYMBOL(simple_pin_fs);
629 EXPORT_SYMBOL(simple_prepare_write);
630 EXPORT_SYMBOL(simple_readpage);
631 EXPORT_SYMBOL(simple_release_fs);
632 EXPORT_SYMBOL(simple_rename);
633 EXPORT_SYMBOL(simple_rmdir);
634 EXPORT_SYMBOL(simple_statfs);
635 EXPORT_SYMBOL(simple_sync_file);
636 EXPORT_SYMBOL(simple_unlink);
637 EXPORT_SYMBOL(simple_read_from_buffer);
638 EXPORT_SYMBOL(simple_transaction_get);
639 EXPORT_SYMBOL(simple_transaction_read);
640 EXPORT_SYMBOL(simple_transaction_release);
641 EXPORT_SYMBOL_GPL(simple_attr_open);
642 EXPORT_SYMBOL_GPL(simple_attr_close);
643 EXPORT_SYMBOL_GPL(simple_attr_read);
644 EXPORT_SYMBOL_GPL(simple_attr_write);
645