1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/pagemap.h> 8 #include <linux/slab.h> 9 #include <linux/mount.h> 10 #include <linux/vfs.h> 11 #include <linux/quotaops.h> 12 #include <linux/mutex.h> 13 #include <linux/exportfs.h> 14 #include <linux/writeback.h> 15 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 16 17 #include <asm/uaccess.h> 18 19 #include "internal.h" 20 21 static inline int simple_positive(struct dentry *dentry) 22 { 23 return dentry->d_inode && !d_unhashed(dentry); 24 } 25 26 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 27 struct kstat *stat) 28 { 29 struct inode *inode = dentry->d_inode; 30 generic_fillattr(inode, stat); 31 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 32 return 0; 33 } 34 35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 36 { 37 buf->f_type = dentry->d_sb->s_magic; 38 buf->f_bsize = PAGE_CACHE_SIZE; 39 buf->f_namelen = NAME_MAX; 40 return 0; 41 } 42 43 /* 44 * Retaining negative dentries for an in-memory filesystem just wastes 45 * memory and lookup time: arrange for them to be deleted immediately. 46 */ 47 static int simple_delete_dentry(const struct dentry *dentry) 48 { 49 return 1; 50 } 51 52 /* 53 * Lookup the data. This is trivial - if the dentry didn't already 54 * exist, we know it is negative. Set d_op to delete negative dentries. 55 */ 56 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 57 { 58 static const struct dentry_operations simple_dentry_operations = { 59 .d_delete = simple_delete_dentry, 60 }; 61 62 if (dentry->d_name.len > NAME_MAX) 63 return ERR_PTR(-ENAMETOOLONG); 64 d_set_d_op(dentry, &simple_dentry_operations); 65 d_add(dentry, NULL); 66 return NULL; 67 } 68 69 int dcache_dir_open(struct inode *inode, struct file *file) 70 { 71 static struct qstr cursor_name = {.len = 1, .name = "."}; 72 73 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 74 75 return file->private_data ? 0 : -ENOMEM; 76 } 77 78 int dcache_dir_close(struct inode *inode, struct file *file) 79 { 80 dput(file->private_data); 81 return 0; 82 } 83 84 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin) 85 { 86 struct dentry *dentry = file->f_path.dentry; 87 mutex_lock(&dentry->d_inode->i_mutex); 88 switch (origin) { 89 case 1: 90 offset += file->f_pos; 91 case 0: 92 if (offset >= 0) 93 break; 94 default: 95 mutex_unlock(&dentry->d_inode->i_mutex); 96 return -EINVAL; 97 } 98 if (offset != file->f_pos) { 99 file->f_pos = offset; 100 if (file->f_pos >= 2) { 101 struct list_head *p; 102 struct dentry *cursor = file->private_data; 103 loff_t n = file->f_pos - 2; 104 105 spin_lock(&dentry->d_lock); 106 /* d_lock not required for cursor */ 107 list_del(&cursor->d_u.d_child); 108 p = dentry->d_subdirs.next; 109 while (n && p != &dentry->d_subdirs) { 110 struct dentry *next; 111 next = list_entry(p, struct dentry, d_u.d_child); 112 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 113 if (simple_positive(next)) 114 n--; 115 spin_unlock(&next->d_lock); 116 p = p->next; 117 } 118 list_add_tail(&cursor->d_u.d_child, p); 119 spin_unlock(&dentry->d_lock); 120 } 121 } 122 mutex_unlock(&dentry->d_inode->i_mutex); 123 return offset; 124 } 125 126 /* Relationship between i_mode and the DT_xxx types */ 127 static inline unsigned char dt_type(struct inode *inode) 128 { 129 return (inode->i_mode >> 12) & 15; 130 } 131 132 /* 133 * Directory is locked and all positive dentries in it are safe, since 134 * for ramfs-type trees they can't go away without unlink() or rmdir(), 135 * both impossible due to the lock on directory. 136 */ 137 138 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir) 139 { 140 struct dentry *dentry = filp->f_path.dentry; 141 struct dentry *cursor = filp->private_data; 142 struct list_head *p, *q = &cursor->d_u.d_child; 143 ino_t ino; 144 int i = filp->f_pos; 145 146 switch (i) { 147 case 0: 148 ino = dentry->d_inode->i_ino; 149 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 150 break; 151 filp->f_pos++; 152 i++; 153 /* fallthrough */ 154 case 1: 155 ino = parent_ino(dentry); 156 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 157 break; 158 filp->f_pos++; 159 i++; 160 /* fallthrough */ 161 default: 162 spin_lock(&dentry->d_lock); 163 if (filp->f_pos == 2) 164 list_move(q, &dentry->d_subdirs); 165 166 for (p=q->next; p != &dentry->d_subdirs; p=p->next) { 167 struct dentry *next; 168 next = list_entry(p, struct dentry, d_u.d_child); 169 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 170 if (!simple_positive(next)) { 171 spin_unlock(&next->d_lock); 172 continue; 173 } 174 175 spin_unlock(&next->d_lock); 176 spin_unlock(&dentry->d_lock); 177 if (filldir(dirent, next->d_name.name, 178 next->d_name.len, filp->f_pos, 179 next->d_inode->i_ino, 180 dt_type(next->d_inode)) < 0) 181 return 0; 182 spin_lock(&dentry->d_lock); 183 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 184 /* next is still alive */ 185 list_move(q, p); 186 spin_unlock(&next->d_lock); 187 p = q; 188 filp->f_pos++; 189 } 190 spin_unlock(&dentry->d_lock); 191 } 192 return 0; 193 } 194 195 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 196 { 197 return -EISDIR; 198 } 199 200 const struct file_operations simple_dir_operations = { 201 .open = dcache_dir_open, 202 .release = dcache_dir_close, 203 .llseek = dcache_dir_lseek, 204 .read = generic_read_dir, 205 .readdir = dcache_readdir, 206 .fsync = noop_fsync, 207 }; 208 209 const struct inode_operations simple_dir_inode_operations = { 210 .lookup = simple_lookup, 211 }; 212 213 static const struct super_operations simple_super_operations = { 214 .statfs = simple_statfs, 215 }; 216 217 /* 218 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 219 * will never be mountable) 220 */ 221 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name, 222 const struct super_operations *ops, 223 const struct dentry_operations *dops, unsigned long magic) 224 { 225 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 226 struct dentry *dentry; 227 struct inode *root; 228 struct qstr d_name = {.name = name, .len = strlen(name)}; 229 230 if (IS_ERR(s)) 231 return ERR_CAST(s); 232 233 s->s_flags = MS_NOUSER; 234 s->s_maxbytes = MAX_LFS_FILESIZE; 235 s->s_blocksize = PAGE_SIZE; 236 s->s_blocksize_bits = PAGE_SHIFT; 237 s->s_magic = magic; 238 s->s_op = ops ? ops : &simple_super_operations; 239 s->s_time_gran = 1; 240 root = new_inode(s); 241 if (!root) 242 goto Enomem; 243 /* 244 * since this is the first inode, make it number 1. New inodes created 245 * after this must take care not to collide with it (by passing 246 * max_reserved of 1 to iunique). 247 */ 248 root->i_ino = 1; 249 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 250 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 251 dentry = __d_alloc(s, &d_name); 252 if (!dentry) { 253 iput(root); 254 goto Enomem; 255 } 256 d_instantiate(dentry, root); 257 s->s_root = dentry; 258 s->s_d_op = dops; 259 s->s_flags |= MS_ACTIVE; 260 return dget(s->s_root); 261 262 Enomem: 263 deactivate_locked_super(s); 264 return ERR_PTR(-ENOMEM); 265 } 266 267 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 268 { 269 struct inode *inode = old_dentry->d_inode; 270 271 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 272 inc_nlink(inode); 273 ihold(inode); 274 dget(dentry); 275 d_instantiate(dentry, inode); 276 return 0; 277 } 278 279 int simple_empty(struct dentry *dentry) 280 { 281 struct dentry *child; 282 int ret = 0; 283 284 spin_lock(&dentry->d_lock); 285 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) { 286 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 287 if (simple_positive(child)) { 288 spin_unlock(&child->d_lock); 289 goto out; 290 } 291 spin_unlock(&child->d_lock); 292 } 293 ret = 1; 294 out: 295 spin_unlock(&dentry->d_lock); 296 return ret; 297 } 298 299 int simple_unlink(struct inode *dir, struct dentry *dentry) 300 { 301 struct inode *inode = dentry->d_inode; 302 303 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 304 drop_nlink(inode); 305 dput(dentry); 306 return 0; 307 } 308 309 int simple_rmdir(struct inode *dir, struct dentry *dentry) 310 { 311 if (!simple_empty(dentry)) 312 return -ENOTEMPTY; 313 314 drop_nlink(dentry->d_inode); 315 simple_unlink(dir, dentry); 316 drop_nlink(dir); 317 return 0; 318 } 319 320 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 321 struct inode *new_dir, struct dentry *new_dentry) 322 { 323 struct inode *inode = old_dentry->d_inode; 324 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode); 325 326 if (!simple_empty(new_dentry)) 327 return -ENOTEMPTY; 328 329 if (new_dentry->d_inode) { 330 simple_unlink(new_dir, new_dentry); 331 if (they_are_dirs) { 332 drop_nlink(new_dentry->d_inode); 333 drop_nlink(old_dir); 334 } 335 } else if (they_are_dirs) { 336 drop_nlink(old_dir); 337 inc_nlink(new_dir); 338 } 339 340 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 341 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 342 343 return 0; 344 } 345 346 /** 347 * simple_setattr - setattr for simple filesystem 348 * @dentry: dentry 349 * @iattr: iattr structure 350 * 351 * Returns 0 on success, -error on failure. 352 * 353 * simple_setattr is a simple ->setattr implementation without a proper 354 * implementation of size changes. 355 * 356 * It can either be used for in-memory filesystems or special files 357 * on simple regular filesystems. Anything that needs to change on-disk 358 * or wire state on size changes needs its own setattr method. 359 */ 360 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 361 { 362 struct inode *inode = dentry->d_inode; 363 int error; 364 365 WARN_ON_ONCE(inode->i_op->truncate); 366 367 error = inode_change_ok(inode, iattr); 368 if (error) 369 return error; 370 371 if (iattr->ia_valid & ATTR_SIZE) 372 truncate_setsize(inode, iattr->ia_size); 373 setattr_copy(inode, iattr); 374 mark_inode_dirty(inode); 375 return 0; 376 } 377 EXPORT_SYMBOL(simple_setattr); 378 379 int simple_readpage(struct file *file, struct page *page) 380 { 381 clear_highpage(page); 382 flush_dcache_page(page); 383 SetPageUptodate(page); 384 unlock_page(page); 385 return 0; 386 } 387 388 int simple_write_begin(struct file *file, struct address_space *mapping, 389 loff_t pos, unsigned len, unsigned flags, 390 struct page **pagep, void **fsdata) 391 { 392 struct page *page; 393 pgoff_t index; 394 395 index = pos >> PAGE_CACHE_SHIFT; 396 397 page = grab_cache_page_write_begin(mapping, index, flags); 398 if (!page) 399 return -ENOMEM; 400 401 *pagep = page; 402 403 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) { 404 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 405 406 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE); 407 } 408 return 0; 409 } 410 411 /** 412 * simple_write_end - .write_end helper for non-block-device FSes 413 * @available: See .write_end of address_space_operations 414 * @file: " 415 * @mapping: " 416 * @pos: " 417 * @len: " 418 * @copied: " 419 * @page: " 420 * @fsdata: " 421 * 422 * simple_write_end does the minimum needed for updating a page after writing is 423 * done. It has the same API signature as the .write_end of 424 * address_space_operations vector. So it can just be set onto .write_end for 425 * FSes that don't need any other processing. i_mutex is assumed to be held. 426 * Block based filesystems should use generic_write_end(). 427 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 428 * is not called, so a filesystem that actually does store data in .write_inode 429 * should extend on what's done here with a call to mark_inode_dirty() in the 430 * case that i_size has changed. 431 */ 432 int simple_write_end(struct file *file, struct address_space *mapping, 433 loff_t pos, unsigned len, unsigned copied, 434 struct page *page, void *fsdata) 435 { 436 struct inode *inode = page->mapping->host; 437 loff_t last_pos = pos + copied; 438 439 /* zero the stale part of the page if we did a short copy */ 440 if (copied < len) { 441 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 442 443 zero_user(page, from + copied, len - copied); 444 } 445 446 if (!PageUptodate(page)) 447 SetPageUptodate(page); 448 /* 449 * No need to use i_size_read() here, the i_size 450 * cannot change under us because we hold the i_mutex. 451 */ 452 if (last_pos > inode->i_size) 453 i_size_write(inode, last_pos); 454 455 set_page_dirty(page); 456 unlock_page(page); 457 page_cache_release(page); 458 459 return copied; 460 } 461 462 /* 463 * the inodes created here are not hashed. If you use iunique to generate 464 * unique inode values later for this filesystem, then you must take care 465 * to pass it an appropriate max_reserved value to avoid collisions. 466 */ 467 int simple_fill_super(struct super_block *s, unsigned long magic, 468 struct tree_descr *files) 469 { 470 struct inode *inode; 471 struct dentry *root; 472 struct dentry *dentry; 473 int i; 474 475 s->s_blocksize = PAGE_CACHE_SIZE; 476 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 477 s->s_magic = magic; 478 s->s_op = &simple_super_operations; 479 s->s_time_gran = 1; 480 481 inode = new_inode(s); 482 if (!inode) 483 return -ENOMEM; 484 /* 485 * because the root inode is 1, the files array must not contain an 486 * entry at index 1 487 */ 488 inode->i_ino = 1; 489 inode->i_mode = S_IFDIR | 0755; 490 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 491 inode->i_op = &simple_dir_inode_operations; 492 inode->i_fop = &simple_dir_operations; 493 set_nlink(inode, 2); 494 root = d_alloc_root(inode); 495 if (!root) { 496 iput(inode); 497 return -ENOMEM; 498 } 499 for (i = 0; !files->name || files->name[0]; i++, files++) { 500 if (!files->name) 501 continue; 502 503 /* warn if it tries to conflict with the root inode */ 504 if (unlikely(i == 1)) 505 printk(KERN_WARNING "%s: %s passed in a files array" 506 "with an index of 1!\n", __func__, 507 s->s_type->name); 508 509 dentry = d_alloc_name(root, files->name); 510 if (!dentry) 511 goto out; 512 inode = new_inode(s); 513 if (!inode) { 514 dput(dentry); 515 goto out; 516 } 517 inode->i_mode = S_IFREG | files->mode; 518 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 519 inode->i_fop = files->ops; 520 inode->i_ino = i; 521 d_add(dentry, inode); 522 } 523 s->s_root = root; 524 return 0; 525 out: 526 d_genocide(root); 527 dput(root); 528 return -ENOMEM; 529 } 530 531 static DEFINE_SPINLOCK(pin_fs_lock); 532 533 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 534 { 535 struct vfsmount *mnt = NULL; 536 spin_lock(&pin_fs_lock); 537 if (unlikely(!*mount)) { 538 spin_unlock(&pin_fs_lock); 539 mnt = vfs_kern_mount(type, 0, type->name, NULL); 540 if (IS_ERR(mnt)) 541 return PTR_ERR(mnt); 542 spin_lock(&pin_fs_lock); 543 if (!*mount) 544 *mount = mnt; 545 } 546 mntget(*mount); 547 ++*count; 548 spin_unlock(&pin_fs_lock); 549 mntput(mnt); 550 return 0; 551 } 552 553 void simple_release_fs(struct vfsmount **mount, int *count) 554 { 555 struct vfsmount *mnt; 556 spin_lock(&pin_fs_lock); 557 mnt = *mount; 558 if (!--*count) 559 *mount = NULL; 560 spin_unlock(&pin_fs_lock); 561 mntput(mnt); 562 } 563 564 /** 565 * simple_read_from_buffer - copy data from the buffer to user space 566 * @to: the user space buffer to read to 567 * @count: the maximum number of bytes to read 568 * @ppos: the current position in the buffer 569 * @from: the buffer to read from 570 * @available: the size of the buffer 571 * 572 * The simple_read_from_buffer() function reads up to @count bytes from the 573 * buffer @from at offset @ppos into the user space address starting at @to. 574 * 575 * On success, the number of bytes read is returned and the offset @ppos is 576 * advanced by this number, or negative value is returned on error. 577 **/ 578 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 579 const void *from, size_t available) 580 { 581 loff_t pos = *ppos; 582 size_t ret; 583 584 if (pos < 0) 585 return -EINVAL; 586 if (pos >= available || !count) 587 return 0; 588 if (count > available - pos) 589 count = available - pos; 590 ret = copy_to_user(to, from + pos, count); 591 if (ret == count) 592 return -EFAULT; 593 count -= ret; 594 *ppos = pos + count; 595 return count; 596 } 597 598 /** 599 * simple_write_to_buffer - copy data from user space to the buffer 600 * @to: the buffer to write to 601 * @available: the size of the buffer 602 * @ppos: the current position in the buffer 603 * @from: the user space buffer to read from 604 * @count: the maximum number of bytes to read 605 * 606 * The simple_write_to_buffer() function reads up to @count bytes from the user 607 * space address starting at @from into the buffer @to at offset @ppos. 608 * 609 * On success, the number of bytes written is returned and the offset @ppos is 610 * advanced by this number, or negative value is returned on error. 611 **/ 612 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 613 const void __user *from, size_t count) 614 { 615 loff_t pos = *ppos; 616 size_t res; 617 618 if (pos < 0) 619 return -EINVAL; 620 if (pos >= available || !count) 621 return 0; 622 if (count > available - pos) 623 count = available - pos; 624 res = copy_from_user(to + pos, from, count); 625 if (res == count) 626 return -EFAULT; 627 count -= res; 628 *ppos = pos + count; 629 return count; 630 } 631 632 /** 633 * memory_read_from_buffer - copy data from the buffer 634 * @to: the kernel space buffer to read to 635 * @count: the maximum number of bytes to read 636 * @ppos: the current position in the buffer 637 * @from: the buffer to read from 638 * @available: the size of the buffer 639 * 640 * The memory_read_from_buffer() function reads up to @count bytes from the 641 * buffer @from at offset @ppos into the kernel space address starting at @to. 642 * 643 * On success, the number of bytes read is returned and the offset @ppos is 644 * advanced by this number, or negative value is returned on error. 645 **/ 646 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 647 const void *from, size_t available) 648 { 649 loff_t pos = *ppos; 650 651 if (pos < 0) 652 return -EINVAL; 653 if (pos >= available) 654 return 0; 655 if (count > available - pos) 656 count = available - pos; 657 memcpy(to, from + pos, count); 658 *ppos = pos + count; 659 660 return count; 661 } 662 663 /* 664 * Transaction based IO. 665 * The file expects a single write which triggers the transaction, and then 666 * possibly a read which collects the result - which is stored in a 667 * file-local buffer. 668 */ 669 670 void simple_transaction_set(struct file *file, size_t n) 671 { 672 struct simple_transaction_argresp *ar = file->private_data; 673 674 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 675 676 /* 677 * The barrier ensures that ar->size will really remain zero until 678 * ar->data is ready for reading. 679 */ 680 smp_mb(); 681 ar->size = n; 682 } 683 684 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 685 { 686 struct simple_transaction_argresp *ar; 687 static DEFINE_SPINLOCK(simple_transaction_lock); 688 689 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 690 return ERR_PTR(-EFBIG); 691 692 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 693 if (!ar) 694 return ERR_PTR(-ENOMEM); 695 696 spin_lock(&simple_transaction_lock); 697 698 /* only one write allowed per open */ 699 if (file->private_data) { 700 spin_unlock(&simple_transaction_lock); 701 free_page((unsigned long)ar); 702 return ERR_PTR(-EBUSY); 703 } 704 705 file->private_data = ar; 706 707 spin_unlock(&simple_transaction_lock); 708 709 if (copy_from_user(ar->data, buf, size)) 710 return ERR_PTR(-EFAULT); 711 712 return ar->data; 713 } 714 715 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 716 { 717 struct simple_transaction_argresp *ar = file->private_data; 718 719 if (!ar) 720 return 0; 721 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 722 } 723 724 int simple_transaction_release(struct inode *inode, struct file *file) 725 { 726 free_page((unsigned long)file->private_data); 727 return 0; 728 } 729 730 /* Simple attribute files */ 731 732 struct simple_attr { 733 int (*get)(void *, u64 *); 734 int (*set)(void *, u64); 735 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 736 char set_buf[24]; 737 void *data; 738 const char *fmt; /* format for read operation */ 739 struct mutex mutex; /* protects access to these buffers */ 740 }; 741 742 /* simple_attr_open is called by an actual attribute open file operation 743 * to set the attribute specific access operations. */ 744 int simple_attr_open(struct inode *inode, struct file *file, 745 int (*get)(void *, u64 *), int (*set)(void *, u64), 746 const char *fmt) 747 { 748 struct simple_attr *attr; 749 750 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 751 if (!attr) 752 return -ENOMEM; 753 754 attr->get = get; 755 attr->set = set; 756 attr->data = inode->i_private; 757 attr->fmt = fmt; 758 mutex_init(&attr->mutex); 759 760 file->private_data = attr; 761 762 return nonseekable_open(inode, file); 763 } 764 765 int simple_attr_release(struct inode *inode, struct file *file) 766 { 767 kfree(file->private_data); 768 return 0; 769 } 770 771 /* read from the buffer that is filled with the get function */ 772 ssize_t simple_attr_read(struct file *file, char __user *buf, 773 size_t len, loff_t *ppos) 774 { 775 struct simple_attr *attr; 776 size_t size; 777 ssize_t ret; 778 779 attr = file->private_data; 780 781 if (!attr->get) 782 return -EACCES; 783 784 ret = mutex_lock_interruptible(&attr->mutex); 785 if (ret) 786 return ret; 787 788 if (*ppos) { /* continued read */ 789 size = strlen(attr->get_buf); 790 } else { /* first read */ 791 u64 val; 792 ret = attr->get(attr->data, &val); 793 if (ret) 794 goto out; 795 796 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 797 attr->fmt, (unsigned long long)val); 798 } 799 800 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 801 out: 802 mutex_unlock(&attr->mutex); 803 return ret; 804 } 805 806 /* interpret the buffer as a number to call the set function with */ 807 ssize_t simple_attr_write(struct file *file, const char __user *buf, 808 size_t len, loff_t *ppos) 809 { 810 struct simple_attr *attr; 811 u64 val; 812 size_t size; 813 ssize_t ret; 814 815 attr = file->private_data; 816 if (!attr->set) 817 return -EACCES; 818 819 ret = mutex_lock_interruptible(&attr->mutex); 820 if (ret) 821 return ret; 822 823 ret = -EFAULT; 824 size = min(sizeof(attr->set_buf) - 1, len); 825 if (copy_from_user(attr->set_buf, buf, size)) 826 goto out; 827 828 attr->set_buf[size] = '\0'; 829 val = simple_strtoll(attr->set_buf, NULL, 0); 830 ret = attr->set(attr->data, val); 831 if (ret == 0) 832 ret = len; /* on success, claim we got the whole input */ 833 out: 834 mutex_unlock(&attr->mutex); 835 return ret; 836 } 837 838 /** 839 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 840 * @sb: filesystem to do the file handle conversion on 841 * @fid: file handle to convert 842 * @fh_len: length of the file handle in bytes 843 * @fh_type: type of file handle 844 * @get_inode: filesystem callback to retrieve inode 845 * 846 * This function decodes @fid as long as it has one of the well-known 847 * Linux filehandle types and calls @get_inode on it to retrieve the 848 * inode for the object specified in the file handle. 849 */ 850 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 851 int fh_len, int fh_type, struct inode *(*get_inode) 852 (struct super_block *sb, u64 ino, u32 gen)) 853 { 854 struct inode *inode = NULL; 855 856 if (fh_len < 2) 857 return NULL; 858 859 switch (fh_type) { 860 case FILEID_INO32_GEN: 861 case FILEID_INO32_GEN_PARENT: 862 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 863 break; 864 } 865 866 return d_obtain_alias(inode); 867 } 868 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 869 870 /** 871 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation 872 * @sb: filesystem to do the file handle conversion on 873 * @fid: file handle to convert 874 * @fh_len: length of the file handle in bytes 875 * @fh_type: type of file handle 876 * @get_inode: filesystem callback to retrieve inode 877 * 878 * This function decodes @fid as long as it has one of the well-known 879 * Linux filehandle types and calls @get_inode on it to retrieve the 880 * inode for the _parent_ object specified in the file handle if it 881 * is specified in the file handle, or NULL otherwise. 882 */ 883 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 884 int fh_len, int fh_type, struct inode *(*get_inode) 885 (struct super_block *sb, u64 ino, u32 gen)) 886 { 887 struct inode *inode = NULL; 888 889 if (fh_len <= 2) 890 return NULL; 891 892 switch (fh_type) { 893 case FILEID_INO32_GEN_PARENT: 894 inode = get_inode(sb, fid->i32.parent_ino, 895 (fh_len > 3 ? fid->i32.parent_gen : 0)); 896 break; 897 } 898 899 return d_obtain_alias(inode); 900 } 901 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 902 903 /** 904 * generic_file_fsync - generic fsync implementation for simple filesystems 905 * @file: file to synchronize 906 * @datasync: only synchronize essential metadata if true 907 * 908 * This is a generic implementation of the fsync method for simple 909 * filesystems which track all non-inode metadata in the buffers list 910 * hanging off the address_space structure. 911 */ 912 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 913 int datasync) 914 { 915 struct inode *inode = file->f_mapping->host; 916 int err; 917 int ret; 918 919 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 920 if (err) 921 return err; 922 923 mutex_lock(&inode->i_mutex); 924 ret = sync_mapping_buffers(inode->i_mapping); 925 if (!(inode->i_state & I_DIRTY)) 926 goto out; 927 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 928 goto out; 929 930 err = sync_inode_metadata(inode, 1); 931 if (ret == 0) 932 ret = err; 933 out: 934 mutex_unlock(&inode->i_mutex); 935 return ret; 936 } 937 EXPORT_SYMBOL(generic_file_fsync); 938 939 /** 940 * generic_check_addressable - Check addressability of file system 941 * @blocksize_bits: log of file system block size 942 * @num_blocks: number of blocks in file system 943 * 944 * Determine whether a file system with @num_blocks blocks (and a 945 * block size of 2**@blocksize_bits) is addressable by the sector_t 946 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 947 */ 948 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 949 { 950 u64 last_fs_block = num_blocks - 1; 951 u64 last_fs_page = 952 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits); 953 954 if (unlikely(num_blocks == 0)) 955 return 0; 956 957 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT)) 958 return -EINVAL; 959 960 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 961 (last_fs_page > (pgoff_t)(~0ULL))) { 962 return -EFBIG; 963 } 964 return 0; 965 } 966 EXPORT_SYMBOL(generic_check_addressable); 967 968 /* 969 * No-op implementation of ->fsync for in-memory filesystems. 970 */ 971 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 972 { 973 return 0; 974 } 975 976 EXPORT_SYMBOL(dcache_dir_close); 977 EXPORT_SYMBOL(dcache_dir_lseek); 978 EXPORT_SYMBOL(dcache_dir_open); 979 EXPORT_SYMBOL(dcache_readdir); 980 EXPORT_SYMBOL(generic_read_dir); 981 EXPORT_SYMBOL(mount_pseudo); 982 EXPORT_SYMBOL(simple_write_begin); 983 EXPORT_SYMBOL(simple_write_end); 984 EXPORT_SYMBOL(simple_dir_inode_operations); 985 EXPORT_SYMBOL(simple_dir_operations); 986 EXPORT_SYMBOL(simple_empty); 987 EXPORT_SYMBOL(simple_fill_super); 988 EXPORT_SYMBOL(simple_getattr); 989 EXPORT_SYMBOL(simple_link); 990 EXPORT_SYMBOL(simple_lookup); 991 EXPORT_SYMBOL(simple_pin_fs); 992 EXPORT_SYMBOL(simple_readpage); 993 EXPORT_SYMBOL(simple_release_fs); 994 EXPORT_SYMBOL(simple_rename); 995 EXPORT_SYMBOL(simple_rmdir); 996 EXPORT_SYMBOL(simple_statfs); 997 EXPORT_SYMBOL(noop_fsync); 998 EXPORT_SYMBOL(simple_unlink); 999 EXPORT_SYMBOL(simple_read_from_buffer); 1000 EXPORT_SYMBOL(simple_write_to_buffer); 1001 EXPORT_SYMBOL(memory_read_from_buffer); 1002 EXPORT_SYMBOL(simple_transaction_set); 1003 EXPORT_SYMBOL(simple_transaction_get); 1004 EXPORT_SYMBOL(simple_transaction_read); 1005 EXPORT_SYMBOL(simple_transaction_release); 1006 EXPORT_SYMBOL_GPL(simple_attr_open); 1007 EXPORT_SYMBOL_GPL(simple_attr_release); 1008 EXPORT_SYMBOL_GPL(simple_attr_read); 1009 EXPORT_SYMBOL_GPL(simple_attr_write); 1010