xref: /linux/fs/libfs.c (revision a5c4300389bb33ade2515c082709217f0614cf15)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/mutex.h>
12 #include <linux/exportfs.h>
13 #include <linux/writeback.h>
14 #include <linux/buffer_head.h>
15 
16 #include <asm/uaccess.h>
17 
18 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
19 		   struct kstat *stat)
20 {
21 	struct inode *inode = dentry->d_inode;
22 	generic_fillattr(inode, stat);
23 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
24 	return 0;
25 }
26 
27 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
28 {
29 	buf->f_type = dentry->d_sb->s_magic;
30 	buf->f_bsize = PAGE_CACHE_SIZE;
31 	buf->f_namelen = NAME_MAX;
32 	return 0;
33 }
34 
35 /*
36  * Retaining negative dentries for an in-memory filesystem just wastes
37  * memory and lookup time: arrange for them to be deleted immediately.
38  */
39 static int simple_delete_dentry(struct dentry *dentry)
40 {
41 	return 1;
42 }
43 
44 /*
45  * Lookup the data. This is trivial - if the dentry didn't already
46  * exist, we know it is negative.  Set d_op to delete negative dentries.
47  */
48 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
49 {
50 	static const struct dentry_operations simple_dentry_operations = {
51 		.d_delete = simple_delete_dentry,
52 	};
53 
54 	if (dentry->d_name.len > NAME_MAX)
55 		return ERR_PTR(-ENAMETOOLONG);
56 	dentry->d_op = &simple_dentry_operations;
57 	d_add(dentry, NULL);
58 	return NULL;
59 }
60 
61 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
62 {
63 	return 0;
64 }
65 
66 int dcache_dir_open(struct inode *inode, struct file *file)
67 {
68 	static struct qstr cursor_name = {.len = 1, .name = "."};
69 
70 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
71 
72 	return file->private_data ? 0 : -ENOMEM;
73 }
74 
75 int dcache_dir_close(struct inode *inode, struct file *file)
76 {
77 	dput(file->private_data);
78 	return 0;
79 }
80 
81 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
82 {
83 	mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
84 	switch (origin) {
85 		case 1:
86 			offset += file->f_pos;
87 		case 0:
88 			if (offset >= 0)
89 				break;
90 		default:
91 			mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
92 			return -EINVAL;
93 	}
94 	if (offset != file->f_pos) {
95 		file->f_pos = offset;
96 		if (file->f_pos >= 2) {
97 			struct list_head *p;
98 			struct dentry *cursor = file->private_data;
99 			loff_t n = file->f_pos - 2;
100 
101 			spin_lock(&dcache_lock);
102 			list_del(&cursor->d_u.d_child);
103 			p = file->f_path.dentry->d_subdirs.next;
104 			while (n && p != &file->f_path.dentry->d_subdirs) {
105 				struct dentry *next;
106 				next = list_entry(p, struct dentry, d_u.d_child);
107 				if (!d_unhashed(next) && next->d_inode)
108 					n--;
109 				p = p->next;
110 			}
111 			list_add_tail(&cursor->d_u.d_child, p);
112 			spin_unlock(&dcache_lock);
113 		}
114 	}
115 	mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
116 	return offset;
117 }
118 
119 /* Relationship between i_mode and the DT_xxx types */
120 static inline unsigned char dt_type(struct inode *inode)
121 {
122 	return (inode->i_mode >> 12) & 15;
123 }
124 
125 /*
126  * Directory is locked and all positive dentries in it are safe, since
127  * for ramfs-type trees they can't go away without unlink() or rmdir(),
128  * both impossible due to the lock on directory.
129  */
130 
131 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
132 {
133 	struct dentry *dentry = filp->f_path.dentry;
134 	struct dentry *cursor = filp->private_data;
135 	struct list_head *p, *q = &cursor->d_u.d_child;
136 	ino_t ino;
137 	int i = filp->f_pos;
138 
139 	switch (i) {
140 		case 0:
141 			ino = dentry->d_inode->i_ino;
142 			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
143 				break;
144 			filp->f_pos++;
145 			i++;
146 			/* fallthrough */
147 		case 1:
148 			ino = parent_ino(dentry);
149 			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
150 				break;
151 			filp->f_pos++;
152 			i++;
153 			/* fallthrough */
154 		default:
155 			spin_lock(&dcache_lock);
156 			if (filp->f_pos == 2)
157 				list_move(q, &dentry->d_subdirs);
158 
159 			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
160 				struct dentry *next;
161 				next = list_entry(p, struct dentry, d_u.d_child);
162 				if (d_unhashed(next) || !next->d_inode)
163 					continue;
164 
165 				spin_unlock(&dcache_lock);
166 				if (filldir(dirent, next->d_name.name,
167 					    next->d_name.len, filp->f_pos,
168 					    next->d_inode->i_ino,
169 					    dt_type(next->d_inode)) < 0)
170 					return 0;
171 				spin_lock(&dcache_lock);
172 				/* next is still alive */
173 				list_move(q, p);
174 				p = q;
175 				filp->f_pos++;
176 			}
177 			spin_unlock(&dcache_lock);
178 	}
179 	return 0;
180 }
181 
182 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
183 {
184 	return -EISDIR;
185 }
186 
187 const struct file_operations simple_dir_operations = {
188 	.open		= dcache_dir_open,
189 	.release	= dcache_dir_close,
190 	.llseek		= dcache_dir_lseek,
191 	.read		= generic_read_dir,
192 	.readdir	= dcache_readdir,
193 	.fsync		= simple_sync_file,
194 };
195 
196 const struct inode_operations simple_dir_inode_operations = {
197 	.lookup		= simple_lookup,
198 };
199 
200 static const struct super_operations simple_super_operations = {
201 	.statfs		= simple_statfs,
202 };
203 
204 /*
205  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
206  * will never be mountable)
207  */
208 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
209 	const struct super_operations *ops, unsigned long magic,
210 	struct vfsmount *mnt)
211 {
212 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
213 	struct dentry *dentry;
214 	struct inode *root;
215 	struct qstr d_name = {.name = name, .len = strlen(name)};
216 
217 	if (IS_ERR(s))
218 		return PTR_ERR(s);
219 
220 	s->s_flags = MS_NOUSER;
221 	s->s_maxbytes = MAX_LFS_FILESIZE;
222 	s->s_blocksize = PAGE_SIZE;
223 	s->s_blocksize_bits = PAGE_SHIFT;
224 	s->s_magic = magic;
225 	s->s_op = ops ? ops : &simple_super_operations;
226 	s->s_time_gran = 1;
227 	root = new_inode(s);
228 	if (!root)
229 		goto Enomem;
230 	/*
231 	 * since this is the first inode, make it number 1. New inodes created
232 	 * after this must take care not to collide with it (by passing
233 	 * max_reserved of 1 to iunique).
234 	 */
235 	root->i_ino = 1;
236 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
237 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
238 	dentry = d_alloc(NULL, &d_name);
239 	if (!dentry) {
240 		iput(root);
241 		goto Enomem;
242 	}
243 	dentry->d_sb = s;
244 	dentry->d_parent = dentry;
245 	d_instantiate(dentry, root);
246 	s->s_root = dentry;
247 	s->s_flags |= MS_ACTIVE;
248 	simple_set_mnt(mnt, s);
249 	return 0;
250 
251 Enomem:
252 	deactivate_locked_super(s);
253 	return -ENOMEM;
254 }
255 
256 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
257 {
258 	struct inode *inode = old_dentry->d_inode;
259 
260 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
261 	inc_nlink(inode);
262 	atomic_inc(&inode->i_count);
263 	dget(dentry);
264 	d_instantiate(dentry, inode);
265 	return 0;
266 }
267 
268 static inline int simple_positive(struct dentry *dentry)
269 {
270 	return dentry->d_inode && !d_unhashed(dentry);
271 }
272 
273 int simple_empty(struct dentry *dentry)
274 {
275 	struct dentry *child;
276 	int ret = 0;
277 
278 	spin_lock(&dcache_lock);
279 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
280 		if (simple_positive(child))
281 			goto out;
282 	ret = 1;
283 out:
284 	spin_unlock(&dcache_lock);
285 	return ret;
286 }
287 
288 int simple_unlink(struct inode *dir, struct dentry *dentry)
289 {
290 	struct inode *inode = dentry->d_inode;
291 
292 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
293 	drop_nlink(inode);
294 	dput(dentry);
295 	return 0;
296 }
297 
298 int simple_rmdir(struct inode *dir, struct dentry *dentry)
299 {
300 	if (!simple_empty(dentry))
301 		return -ENOTEMPTY;
302 
303 	drop_nlink(dentry->d_inode);
304 	simple_unlink(dir, dentry);
305 	drop_nlink(dir);
306 	return 0;
307 }
308 
309 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
310 		struct inode *new_dir, struct dentry *new_dentry)
311 {
312 	struct inode *inode = old_dentry->d_inode;
313 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
314 
315 	if (!simple_empty(new_dentry))
316 		return -ENOTEMPTY;
317 
318 	if (new_dentry->d_inode) {
319 		simple_unlink(new_dir, new_dentry);
320 		if (they_are_dirs)
321 			drop_nlink(old_dir);
322 	} else if (they_are_dirs) {
323 		drop_nlink(old_dir);
324 		inc_nlink(new_dir);
325 	}
326 
327 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
328 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
329 
330 	return 0;
331 }
332 
333 int simple_readpage(struct file *file, struct page *page)
334 {
335 	clear_highpage(page);
336 	flush_dcache_page(page);
337 	SetPageUptodate(page);
338 	unlock_page(page);
339 	return 0;
340 }
341 
342 int simple_write_begin(struct file *file, struct address_space *mapping,
343 			loff_t pos, unsigned len, unsigned flags,
344 			struct page **pagep, void **fsdata)
345 {
346 	struct page *page;
347 	pgoff_t index;
348 
349 	index = pos >> PAGE_CACHE_SHIFT;
350 
351 	page = grab_cache_page_write_begin(mapping, index, flags);
352 	if (!page)
353 		return -ENOMEM;
354 
355 	*pagep = page;
356 
357 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
358 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
359 
360 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
361 	}
362 	return 0;
363 }
364 
365 /**
366  * simple_write_end - .write_end helper for non-block-device FSes
367  * @available: See .write_end of address_space_operations
368  * @file: 		"
369  * @mapping: 		"
370  * @pos: 		"
371  * @len: 		"
372  * @copied: 		"
373  * @page: 		"
374  * @fsdata: 		"
375  *
376  * simple_write_end does the minimum needed for updating a page after writing is
377  * done. It has the same API signature as the .write_end of
378  * address_space_operations vector. So it can just be set onto .write_end for
379  * FSes that don't need any other processing. i_mutex is assumed to be held.
380  * Block based filesystems should use generic_write_end().
381  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
382  * is not called, so a filesystem that actually does store data in .write_inode
383  * should extend on what's done here with a call to mark_inode_dirty() in the
384  * case that i_size has changed.
385  */
386 int simple_write_end(struct file *file, struct address_space *mapping,
387 			loff_t pos, unsigned len, unsigned copied,
388 			struct page *page, void *fsdata)
389 {
390 	struct inode *inode = page->mapping->host;
391 	loff_t last_pos = pos + copied;
392 
393 	/* zero the stale part of the page if we did a short copy */
394 	if (copied < len) {
395 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
396 
397 		zero_user(page, from + copied, len - copied);
398 	}
399 
400 	if (!PageUptodate(page))
401 		SetPageUptodate(page);
402 	/*
403 	 * No need to use i_size_read() here, the i_size
404 	 * cannot change under us because we hold the i_mutex.
405 	 */
406 	if (last_pos > inode->i_size)
407 		i_size_write(inode, last_pos);
408 
409 	set_page_dirty(page);
410 	unlock_page(page);
411 	page_cache_release(page);
412 
413 	return copied;
414 }
415 
416 /*
417  * the inodes created here are not hashed. If you use iunique to generate
418  * unique inode values later for this filesystem, then you must take care
419  * to pass it an appropriate max_reserved value to avoid collisions.
420  */
421 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
422 {
423 	struct inode *inode;
424 	struct dentry *root;
425 	struct dentry *dentry;
426 	int i;
427 
428 	s->s_blocksize = PAGE_CACHE_SIZE;
429 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
430 	s->s_magic = magic;
431 	s->s_op = &simple_super_operations;
432 	s->s_time_gran = 1;
433 
434 	inode = new_inode(s);
435 	if (!inode)
436 		return -ENOMEM;
437 	/*
438 	 * because the root inode is 1, the files array must not contain an
439 	 * entry at index 1
440 	 */
441 	inode->i_ino = 1;
442 	inode->i_mode = S_IFDIR | 0755;
443 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
444 	inode->i_op = &simple_dir_inode_operations;
445 	inode->i_fop = &simple_dir_operations;
446 	inode->i_nlink = 2;
447 	root = d_alloc_root(inode);
448 	if (!root) {
449 		iput(inode);
450 		return -ENOMEM;
451 	}
452 	for (i = 0; !files->name || files->name[0]; i++, files++) {
453 		if (!files->name)
454 			continue;
455 
456 		/* warn if it tries to conflict with the root inode */
457 		if (unlikely(i == 1))
458 			printk(KERN_WARNING "%s: %s passed in a files array"
459 				"with an index of 1!\n", __func__,
460 				s->s_type->name);
461 
462 		dentry = d_alloc_name(root, files->name);
463 		if (!dentry)
464 			goto out;
465 		inode = new_inode(s);
466 		if (!inode)
467 			goto out;
468 		inode->i_mode = S_IFREG | files->mode;
469 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
470 		inode->i_fop = files->ops;
471 		inode->i_ino = i;
472 		d_add(dentry, inode);
473 	}
474 	s->s_root = root;
475 	return 0;
476 out:
477 	d_genocide(root);
478 	dput(root);
479 	return -ENOMEM;
480 }
481 
482 static DEFINE_SPINLOCK(pin_fs_lock);
483 
484 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
485 {
486 	struct vfsmount *mnt = NULL;
487 	spin_lock(&pin_fs_lock);
488 	if (unlikely(!*mount)) {
489 		spin_unlock(&pin_fs_lock);
490 		mnt = vfs_kern_mount(type, 0, type->name, NULL);
491 		if (IS_ERR(mnt))
492 			return PTR_ERR(mnt);
493 		spin_lock(&pin_fs_lock);
494 		if (!*mount)
495 			*mount = mnt;
496 	}
497 	mntget(*mount);
498 	++*count;
499 	spin_unlock(&pin_fs_lock);
500 	mntput(mnt);
501 	return 0;
502 }
503 
504 void simple_release_fs(struct vfsmount **mount, int *count)
505 {
506 	struct vfsmount *mnt;
507 	spin_lock(&pin_fs_lock);
508 	mnt = *mount;
509 	if (!--*count)
510 		*mount = NULL;
511 	spin_unlock(&pin_fs_lock);
512 	mntput(mnt);
513 }
514 
515 /**
516  * simple_read_from_buffer - copy data from the buffer to user space
517  * @to: the user space buffer to read to
518  * @count: the maximum number of bytes to read
519  * @ppos: the current position in the buffer
520  * @from: the buffer to read from
521  * @available: the size of the buffer
522  *
523  * The simple_read_from_buffer() function reads up to @count bytes from the
524  * buffer @from at offset @ppos into the user space address starting at @to.
525  *
526  * On success, the number of bytes read is returned and the offset @ppos is
527  * advanced by this number, or negative value is returned on error.
528  **/
529 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
530 				const void *from, size_t available)
531 {
532 	loff_t pos = *ppos;
533 	size_t ret;
534 
535 	if (pos < 0)
536 		return -EINVAL;
537 	if (pos >= available || !count)
538 		return 0;
539 	if (count > available - pos)
540 		count = available - pos;
541 	ret = copy_to_user(to, from + pos, count);
542 	if (ret == count)
543 		return -EFAULT;
544 	count -= ret;
545 	*ppos = pos + count;
546 	return count;
547 }
548 
549 /**
550  * simple_write_to_buffer - copy data from user space to the buffer
551  * @to: the buffer to write to
552  * @available: the size of the buffer
553  * @ppos: the current position in the buffer
554  * @from: the user space buffer to read from
555  * @count: the maximum number of bytes to read
556  *
557  * The simple_write_to_buffer() function reads up to @count bytes from the user
558  * space address starting at @from into the buffer @to at offset @ppos.
559  *
560  * On success, the number of bytes written is returned and the offset @ppos is
561  * advanced by this number, or negative value is returned on error.
562  **/
563 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
564 		const void __user *from, size_t count)
565 {
566 	loff_t pos = *ppos;
567 	size_t res;
568 
569 	if (pos < 0)
570 		return -EINVAL;
571 	if (pos >= available || !count)
572 		return 0;
573 	if (count > available - pos)
574 		count = available - pos;
575 	res = copy_from_user(to + pos, from, count);
576 	if (res == count)
577 		return -EFAULT;
578 	count -= res;
579 	*ppos = pos + count;
580 	return count;
581 }
582 
583 /**
584  * memory_read_from_buffer - copy data from the buffer
585  * @to: the kernel space buffer to read to
586  * @count: the maximum number of bytes to read
587  * @ppos: the current position in the buffer
588  * @from: the buffer to read from
589  * @available: the size of the buffer
590  *
591  * The memory_read_from_buffer() function reads up to @count bytes from the
592  * buffer @from at offset @ppos into the kernel space address starting at @to.
593  *
594  * On success, the number of bytes read is returned and the offset @ppos is
595  * advanced by this number, or negative value is returned on error.
596  **/
597 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
598 				const void *from, size_t available)
599 {
600 	loff_t pos = *ppos;
601 
602 	if (pos < 0)
603 		return -EINVAL;
604 	if (pos >= available)
605 		return 0;
606 	if (count > available - pos)
607 		count = available - pos;
608 	memcpy(to, from + pos, count);
609 	*ppos = pos + count;
610 
611 	return count;
612 }
613 
614 /*
615  * Transaction based IO.
616  * The file expects a single write which triggers the transaction, and then
617  * possibly a read which collects the result - which is stored in a
618  * file-local buffer.
619  */
620 
621 void simple_transaction_set(struct file *file, size_t n)
622 {
623 	struct simple_transaction_argresp *ar = file->private_data;
624 
625 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
626 
627 	/*
628 	 * The barrier ensures that ar->size will really remain zero until
629 	 * ar->data is ready for reading.
630 	 */
631 	smp_mb();
632 	ar->size = n;
633 }
634 
635 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
636 {
637 	struct simple_transaction_argresp *ar;
638 	static DEFINE_SPINLOCK(simple_transaction_lock);
639 
640 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
641 		return ERR_PTR(-EFBIG);
642 
643 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
644 	if (!ar)
645 		return ERR_PTR(-ENOMEM);
646 
647 	spin_lock(&simple_transaction_lock);
648 
649 	/* only one write allowed per open */
650 	if (file->private_data) {
651 		spin_unlock(&simple_transaction_lock);
652 		free_page((unsigned long)ar);
653 		return ERR_PTR(-EBUSY);
654 	}
655 
656 	file->private_data = ar;
657 
658 	spin_unlock(&simple_transaction_lock);
659 
660 	if (copy_from_user(ar->data, buf, size))
661 		return ERR_PTR(-EFAULT);
662 
663 	return ar->data;
664 }
665 
666 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
667 {
668 	struct simple_transaction_argresp *ar = file->private_data;
669 
670 	if (!ar)
671 		return 0;
672 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
673 }
674 
675 int simple_transaction_release(struct inode *inode, struct file *file)
676 {
677 	free_page((unsigned long)file->private_data);
678 	return 0;
679 }
680 
681 /* Simple attribute files */
682 
683 struct simple_attr {
684 	int (*get)(void *, u64 *);
685 	int (*set)(void *, u64);
686 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
687 	char set_buf[24];
688 	void *data;
689 	const char *fmt;	/* format for read operation */
690 	struct mutex mutex;	/* protects access to these buffers */
691 };
692 
693 /* simple_attr_open is called by an actual attribute open file operation
694  * to set the attribute specific access operations. */
695 int simple_attr_open(struct inode *inode, struct file *file,
696 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
697 		     const char *fmt)
698 {
699 	struct simple_attr *attr;
700 
701 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
702 	if (!attr)
703 		return -ENOMEM;
704 
705 	attr->get = get;
706 	attr->set = set;
707 	attr->data = inode->i_private;
708 	attr->fmt = fmt;
709 	mutex_init(&attr->mutex);
710 
711 	file->private_data = attr;
712 
713 	return nonseekable_open(inode, file);
714 }
715 
716 int simple_attr_release(struct inode *inode, struct file *file)
717 {
718 	kfree(file->private_data);
719 	return 0;
720 }
721 
722 /* read from the buffer that is filled with the get function */
723 ssize_t simple_attr_read(struct file *file, char __user *buf,
724 			 size_t len, loff_t *ppos)
725 {
726 	struct simple_attr *attr;
727 	size_t size;
728 	ssize_t ret;
729 
730 	attr = file->private_data;
731 
732 	if (!attr->get)
733 		return -EACCES;
734 
735 	ret = mutex_lock_interruptible(&attr->mutex);
736 	if (ret)
737 		return ret;
738 
739 	if (*ppos) {		/* continued read */
740 		size = strlen(attr->get_buf);
741 	} else {		/* first read */
742 		u64 val;
743 		ret = attr->get(attr->data, &val);
744 		if (ret)
745 			goto out;
746 
747 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
748 				 attr->fmt, (unsigned long long)val);
749 	}
750 
751 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
752 out:
753 	mutex_unlock(&attr->mutex);
754 	return ret;
755 }
756 
757 /* interpret the buffer as a number to call the set function with */
758 ssize_t simple_attr_write(struct file *file, const char __user *buf,
759 			  size_t len, loff_t *ppos)
760 {
761 	struct simple_attr *attr;
762 	u64 val;
763 	size_t size;
764 	ssize_t ret;
765 
766 	attr = file->private_data;
767 	if (!attr->set)
768 		return -EACCES;
769 
770 	ret = mutex_lock_interruptible(&attr->mutex);
771 	if (ret)
772 		return ret;
773 
774 	ret = -EFAULT;
775 	size = min(sizeof(attr->set_buf) - 1, len);
776 	if (copy_from_user(attr->set_buf, buf, size))
777 		goto out;
778 
779 	attr->set_buf[size] = '\0';
780 	val = simple_strtol(attr->set_buf, NULL, 0);
781 	ret = attr->set(attr->data, val);
782 	if (ret == 0)
783 		ret = len; /* on success, claim we got the whole input */
784 out:
785 	mutex_unlock(&attr->mutex);
786 	return ret;
787 }
788 
789 /**
790  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
791  * @sb:		filesystem to do the file handle conversion on
792  * @fid:	file handle to convert
793  * @fh_len:	length of the file handle in bytes
794  * @fh_type:	type of file handle
795  * @get_inode:	filesystem callback to retrieve inode
796  *
797  * This function decodes @fid as long as it has one of the well-known
798  * Linux filehandle types and calls @get_inode on it to retrieve the
799  * inode for the object specified in the file handle.
800  */
801 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
802 		int fh_len, int fh_type, struct inode *(*get_inode)
803 			(struct super_block *sb, u64 ino, u32 gen))
804 {
805 	struct inode *inode = NULL;
806 
807 	if (fh_len < 2)
808 		return NULL;
809 
810 	switch (fh_type) {
811 	case FILEID_INO32_GEN:
812 	case FILEID_INO32_GEN_PARENT:
813 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
814 		break;
815 	}
816 
817 	return d_obtain_alias(inode);
818 }
819 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
820 
821 /**
822  * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
823  * @sb:		filesystem to do the file handle conversion on
824  * @fid:	file handle to convert
825  * @fh_len:	length of the file handle in bytes
826  * @fh_type:	type of file handle
827  * @get_inode:	filesystem callback to retrieve inode
828  *
829  * This function decodes @fid as long as it has one of the well-known
830  * Linux filehandle types and calls @get_inode on it to retrieve the
831  * inode for the _parent_ object specified in the file handle if it
832  * is specified in the file handle, or NULL otherwise.
833  */
834 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
835 		int fh_len, int fh_type, struct inode *(*get_inode)
836 			(struct super_block *sb, u64 ino, u32 gen))
837 {
838 	struct inode *inode = NULL;
839 
840 	if (fh_len <= 2)
841 		return NULL;
842 
843 	switch (fh_type) {
844 	case FILEID_INO32_GEN_PARENT:
845 		inode = get_inode(sb, fid->i32.parent_ino,
846 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
847 		break;
848 	}
849 
850 	return d_obtain_alias(inode);
851 }
852 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
853 
854 int simple_fsync(struct file *file, struct dentry *dentry, int datasync)
855 {
856 	struct writeback_control wbc = {
857 		.sync_mode = WB_SYNC_ALL,
858 		.nr_to_write = 0, /* metadata-only; caller takes care of data */
859 	};
860 	struct inode *inode = dentry->d_inode;
861 	int err;
862 	int ret;
863 
864 	ret = sync_mapping_buffers(inode->i_mapping);
865 	if (!(inode->i_state & I_DIRTY))
866 		return ret;
867 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
868 		return ret;
869 
870 	err = sync_inode(inode, &wbc);
871 	if (ret == 0)
872 		ret = err;
873 	return ret;
874 }
875 EXPORT_SYMBOL(simple_fsync);
876 
877 EXPORT_SYMBOL(dcache_dir_close);
878 EXPORT_SYMBOL(dcache_dir_lseek);
879 EXPORT_SYMBOL(dcache_dir_open);
880 EXPORT_SYMBOL(dcache_readdir);
881 EXPORT_SYMBOL(generic_read_dir);
882 EXPORT_SYMBOL(get_sb_pseudo);
883 EXPORT_SYMBOL(simple_write_begin);
884 EXPORT_SYMBOL(simple_write_end);
885 EXPORT_SYMBOL(simple_dir_inode_operations);
886 EXPORT_SYMBOL(simple_dir_operations);
887 EXPORT_SYMBOL(simple_empty);
888 EXPORT_SYMBOL(simple_fill_super);
889 EXPORT_SYMBOL(simple_getattr);
890 EXPORT_SYMBOL(simple_link);
891 EXPORT_SYMBOL(simple_lookup);
892 EXPORT_SYMBOL(simple_pin_fs);
893 EXPORT_SYMBOL(simple_readpage);
894 EXPORT_SYMBOL(simple_release_fs);
895 EXPORT_SYMBOL(simple_rename);
896 EXPORT_SYMBOL(simple_rmdir);
897 EXPORT_SYMBOL(simple_statfs);
898 EXPORT_SYMBOL(simple_sync_file);
899 EXPORT_SYMBOL(simple_unlink);
900 EXPORT_SYMBOL(simple_read_from_buffer);
901 EXPORT_SYMBOL(simple_write_to_buffer);
902 EXPORT_SYMBOL(memory_read_from_buffer);
903 EXPORT_SYMBOL(simple_transaction_set);
904 EXPORT_SYMBOL(simple_transaction_get);
905 EXPORT_SYMBOL(simple_transaction_read);
906 EXPORT_SYMBOL(simple_transaction_release);
907 EXPORT_SYMBOL_GPL(simple_attr_open);
908 EXPORT_SYMBOL_GPL(simple_attr_release);
909 EXPORT_SYMBOL_GPL(simple_attr_read);
910 EXPORT_SYMBOL_GPL(simple_attr_write);
911