xref: /linux/fs/libfs.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/mutex.h>
12 #include <linux/exportfs.h>
13 #include <linux/writeback.h>
14 #include <linux/buffer_head.h>
15 
16 #include <asm/uaccess.h>
17 
18 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
19 		   struct kstat *stat)
20 {
21 	struct inode *inode = dentry->d_inode;
22 	generic_fillattr(inode, stat);
23 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
24 	return 0;
25 }
26 
27 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
28 {
29 	buf->f_type = dentry->d_sb->s_magic;
30 	buf->f_bsize = PAGE_CACHE_SIZE;
31 	buf->f_namelen = NAME_MAX;
32 	return 0;
33 }
34 
35 /*
36  * Retaining negative dentries for an in-memory filesystem just wastes
37  * memory and lookup time: arrange for them to be deleted immediately.
38  */
39 static int simple_delete_dentry(struct dentry *dentry)
40 {
41 	return 1;
42 }
43 
44 /*
45  * Lookup the data. This is trivial - if the dentry didn't already
46  * exist, we know it is negative.  Set d_op to delete negative dentries.
47  */
48 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
49 {
50 	static const struct dentry_operations simple_dentry_operations = {
51 		.d_delete = simple_delete_dentry,
52 	};
53 
54 	if (dentry->d_name.len > NAME_MAX)
55 		return ERR_PTR(-ENAMETOOLONG);
56 	dentry->d_op = &simple_dentry_operations;
57 	d_add(dentry, NULL);
58 	return NULL;
59 }
60 
61 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
62 {
63 	return 0;
64 }
65 
66 int dcache_dir_open(struct inode *inode, struct file *file)
67 {
68 	static struct qstr cursor_name = {.len = 1, .name = "."};
69 
70 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
71 
72 	return file->private_data ? 0 : -ENOMEM;
73 }
74 
75 int dcache_dir_close(struct inode *inode, struct file *file)
76 {
77 	dput(file->private_data);
78 	return 0;
79 }
80 
81 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
82 {
83 	mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
84 	switch (origin) {
85 		case 1:
86 			offset += file->f_pos;
87 		case 0:
88 			if (offset >= 0)
89 				break;
90 		default:
91 			mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
92 			return -EINVAL;
93 	}
94 	if (offset != file->f_pos) {
95 		file->f_pos = offset;
96 		if (file->f_pos >= 2) {
97 			struct list_head *p;
98 			struct dentry *cursor = file->private_data;
99 			loff_t n = file->f_pos - 2;
100 
101 			spin_lock(&dcache_lock);
102 			list_del(&cursor->d_u.d_child);
103 			p = file->f_path.dentry->d_subdirs.next;
104 			while (n && p != &file->f_path.dentry->d_subdirs) {
105 				struct dentry *next;
106 				next = list_entry(p, struct dentry, d_u.d_child);
107 				if (!d_unhashed(next) && next->d_inode)
108 					n--;
109 				p = p->next;
110 			}
111 			list_add_tail(&cursor->d_u.d_child, p);
112 			spin_unlock(&dcache_lock);
113 		}
114 	}
115 	mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
116 	return offset;
117 }
118 
119 /* Relationship between i_mode and the DT_xxx types */
120 static inline unsigned char dt_type(struct inode *inode)
121 {
122 	return (inode->i_mode >> 12) & 15;
123 }
124 
125 /*
126  * Directory is locked and all positive dentries in it are safe, since
127  * for ramfs-type trees they can't go away without unlink() or rmdir(),
128  * both impossible due to the lock on directory.
129  */
130 
131 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
132 {
133 	struct dentry *dentry = filp->f_path.dentry;
134 	struct dentry *cursor = filp->private_data;
135 	struct list_head *p, *q = &cursor->d_u.d_child;
136 	ino_t ino;
137 	int i = filp->f_pos;
138 
139 	switch (i) {
140 		case 0:
141 			ino = dentry->d_inode->i_ino;
142 			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
143 				break;
144 			filp->f_pos++;
145 			i++;
146 			/* fallthrough */
147 		case 1:
148 			ino = parent_ino(dentry);
149 			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
150 				break;
151 			filp->f_pos++;
152 			i++;
153 			/* fallthrough */
154 		default:
155 			spin_lock(&dcache_lock);
156 			if (filp->f_pos == 2)
157 				list_move(q, &dentry->d_subdirs);
158 
159 			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
160 				struct dentry *next;
161 				next = list_entry(p, struct dentry, d_u.d_child);
162 				if (d_unhashed(next) || !next->d_inode)
163 					continue;
164 
165 				spin_unlock(&dcache_lock);
166 				if (filldir(dirent, next->d_name.name,
167 					    next->d_name.len, filp->f_pos,
168 					    next->d_inode->i_ino,
169 					    dt_type(next->d_inode)) < 0)
170 					return 0;
171 				spin_lock(&dcache_lock);
172 				/* next is still alive */
173 				list_move(q, p);
174 				p = q;
175 				filp->f_pos++;
176 			}
177 			spin_unlock(&dcache_lock);
178 	}
179 	return 0;
180 }
181 
182 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
183 {
184 	return -EISDIR;
185 }
186 
187 const struct file_operations simple_dir_operations = {
188 	.open		= dcache_dir_open,
189 	.release	= dcache_dir_close,
190 	.llseek		= dcache_dir_lseek,
191 	.read		= generic_read_dir,
192 	.readdir	= dcache_readdir,
193 	.fsync		= simple_sync_file,
194 };
195 
196 const struct inode_operations simple_dir_inode_operations = {
197 	.lookup		= simple_lookup,
198 };
199 
200 static const struct super_operations simple_super_operations = {
201 	.statfs		= simple_statfs,
202 };
203 
204 /*
205  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
206  * will never be mountable)
207  */
208 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
209 	const struct super_operations *ops, unsigned long magic,
210 	struct vfsmount *mnt)
211 {
212 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
213 	struct dentry *dentry;
214 	struct inode *root;
215 	struct qstr d_name = {.name = name, .len = strlen(name)};
216 
217 	if (IS_ERR(s))
218 		return PTR_ERR(s);
219 
220 	s->s_flags = MS_NOUSER;
221 	s->s_maxbytes = MAX_LFS_FILESIZE;
222 	s->s_blocksize = PAGE_SIZE;
223 	s->s_blocksize_bits = PAGE_SHIFT;
224 	s->s_magic = magic;
225 	s->s_op = ops ? ops : &simple_super_operations;
226 	s->s_time_gran = 1;
227 	root = new_inode(s);
228 	if (!root)
229 		goto Enomem;
230 	/*
231 	 * since this is the first inode, make it number 1. New inodes created
232 	 * after this must take care not to collide with it (by passing
233 	 * max_reserved of 1 to iunique).
234 	 */
235 	root->i_ino = 1;
236 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
237 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
238 	dentry = d_alloc(NULL, &d_name);
239 	if (!dentry) {
240 		iput(root);
241 		goto Enomem;
242 	}
243 	dentry->d_sb = s;
244 	dentry->d_parent = dentry;
245 	d_instantiate(dentry, root);
246 	s->s_root = dentry;
247 	s->s_flags |= MS_ACTIVE;
248 	simple_set_mnt(mnt, s);
249 	return 0;
250 
251 Enomem:
252 	deactivate_locked_super(s);
253 	return -ENOMEM;
254 }
255 
256 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
257 {
258 	struct inode *inode = old_dentry->d_inode;
259 
260 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
261 	inc_nlink(inode);
262 	atomic_inc(&inode->i_count);
263 	dget(dentry);
264 	d_instantiate(dentry, inode);
265 	return 0;
266 }
267 
268 static inline int simple_positive(struct dentry *dentry)
269 {
270 	return dentry->d_inode && !d_unhashed(dentry);
271 }
272 
273 int simple_empty(struct dentry *dentry)
274 {
275 	struct dentry *child;
276 	int ret = 0;
277 
278 	spin_lock(&dcache_lock);
279 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
280 		if (simple_positive(child))
281 			goto out;
282 	ret = 1;
283 out:
284 	spin_unlock(&dcache_lock);
285 	return ret;
286 }
287 
288 int simple_unlink(struct inode *dir, struct dentry *dentry)
289 {
290 	struct inode *inode = dentry->d_inode;
291 
292 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
293 	drop_nlink(inode);
294 	dput(dentry);
295 	return 0;
296 }
297 
298 int simple_rmdir(struct inode *dir, struct dentry *dentry)
299 {
300 	if (!simple_empty(dentry))
301 		return -ENOTEMPTY;
302 
303 	drop_nlink(dentry->d_inode);
304 	simple_unlink(dir, dentry);
305 	drop_nlink(dir);
306 	return 0;
307 }
308 
309 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
310 		struct inode *new_dir, struct dentry *new_dentry)
311 {
312 	struct inode *inode = old_dentry->d_inode;
313 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
314 
315 	if (!simple_empty(new_dentry))
316 		return -ENOTEMPTY;
317 
318 	if (new_dentry->d_inode) {
319 		simple_unlink(new_dir, new_dentry);
320 		if (they_are_dirs)
321 			drop_nlink(old_dir);
322 	} else if (they_are_dirs) {
323 		drop_nlink(old_dir);
324 		inc_nlink(new_dir);
325 	}
326 
327 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
328 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
329 
330 	return 0;
331 }
332 
333 int simple_readpage(struct file *file, struct page *page)
334 {
335 	clear_highpage(page);
336 	flush_dcache_page(page);
337 	SetPageUptodate(page);
338 	unlock_page(page);
339 	return 0;
340 }
341 
342 int simple_write_begin(struct file *file, struct address_space *mapping,
343 			loff_t pos, unsigned len, unsigned flags,
344 			struct page **pagep, void **fsdata)
345 {
346 	struct page *page;
347 	pgoff_t index;
348 
349 	index = pos >> PAGE_CACHE_SHIFT;
350 
351 	page = grab_cache_page_write_begin(mapping, index, flags);
352 	if (!page)
353 		return -ENOMEM;
354 
355 	*pagep = page;
356 
357 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
358 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
359 
360 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
361 	}
362 	return 0;
363 }
364 
365 /**
366  * simple_write_end - .write_end helper for non-block-device FSes
367  * @available: See .write_end of address_space_operations
368  * @file: 		"
369  * @mapping: 		"
370  * @pos: 		"
371  * @len: 		"
372  * @copied: 		"
373  * @page: 		"
374  * @fsdata: 		"
375  *
376  * simple_write_end does the minimum needed for updating a page after writing is
377  * done. It has the same API signature as the .write_end of
378  * address_space_operations vector. So it can just be set onto .write_end for
379  * FSes that don't need any other processing. i_mutex is assumed to be held.
380  * Block based filesystems should use generic_write_end().
381  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
382  * is not called, so a filesystem that actually does store data in .write_inode
383  * should extend on what's done here with a call to mark_inode_dirty() in the
384  * case that i_size has changed.
385  */
386 int simple_write_end(struct file *file, struct address_space *mapping,
387 			loff_t pos, unsigned len, unsigned copied,
388 			struct page *page, void *fsdata)
389 {
390 	struct inode *inode = page->mapping->host;
391 	loff_t last_pos = pos + copied;
392 
393 	/* zero the stale part of the page if we did a short copy */
394 	if (copied < len) {
395 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
396 
397 		zero_user(page, from + copied, len - copied);
398 	}
399 
400 	if (!PageUptodate(page))
401 		SetPageUptodate(page);
402 	/*
403 	 * No need to use i_size_read() here, the i_size
404 	 * cannot change under us because we hold the i_mutex.
405 	 */
406 	if (last_pos > inode->i_size)
407 		i_size_write(inode, last_pos);
408 
409 	set_page_dirty(page);
410 	unlock_page(page);
411 	page_cache_release(page);
412 
413 	return copied;
414 }
415 
416 /*
417  * the inodes created here are not hashed. If you use iunique to generate
418  * unique inode values later for this filesystem, then you must take care
419  * to pass it an appropriate max_reserved value to avoid collisions.
420  */
421 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
422 {
423 	struct inode *inode;
424 	struct dentry *root;
425 	struct dentry *dentry;
426 	int i;
427 
428 	s->s_blocksize = PAGE_CACHE_SIZE;
429 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
430 	s->s_magic = magic;
431 	s->s_op = &simple_super_operations;
432 	s->s_time_gran = 1;
433 
434 	inode = new_inode(s);
435 	if (!inode)
436 		return -ENOMEM;
437 	/*
438 	 * because the root inode is 1, the files array must not contain an
439 	 * entry at index 1
440 	 */
441 	inode->i_ino = 1;
442 	inode->i_mode = S_IFDIR | 0755;
443 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
444 	inode->i_op = &simple_dir_inode_operations;
445 	inode->i_fop = &simple_dir_operations;
446 	inode->i_nlink = 2;
447 	root = d_alloc_root(inode);
448 	if (!root) {
449 		iput(inode);
450 		return -ENOMEM;
451 	}
452 	for (i = 0; !files->name || files->name[0]; i++, files++) {
453 		if (!files->name)
454 			continue;
455 
456 		/* warn if it tries to conflict with the root inode */
457 		if (unlikely(i == 1))
458 			printk(KERN_WARNING "%s: %s passed in a files array"
459 				"with an index of 1!\n", __func__,
460 				s->s_type->name);
461 
462 		dentry = d_alloc_name(root, files->name);
463 		if (!dentry)
464 			goto out;
465 		inode = new_inode(s);
466 		if (!inode)
467 			goto out;
468 		inode->i_mode = S_IFREG | files->mode;
469 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
470 		inode->i_fop = files->ops;
471 		inode->i_ino = i;
472 		d_add(dentry, inode);
473 	}
474 	s->s_root = root;
475 	return 0;
476 out:
477 	d_genocide(root);
478 	dput(root);
479 	return -ENOMEM;
480 }
481 
482 static DEFINE_SPINLOCK(pin_fs_lock);
483 
484 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
485 {
486 	struct vfsmount *mnt = NULL;
487 	spin_lock(&pin_fs_lock);
488 	if (unlikely(!*mount)) {
489 		spin_unlock(&pin_fs_lock);
490 		mnt = vfs_kern_mount(type, 0, type->name, NULL);
491 		if (IS_ERR(mnt))
492 			return PTR_ERR(mnt);
493 		spin_lock(&pin_fs_lock);
494 		if (!*mount)
495 			*mount = mnt;
496 	}
497 	mntget(*mount);
498 	++*count;
499 	spin_unlock(&pin_fs_lock);
500 	mntput(mnt);
501 	return 0;
502 }
503 
504 void simple_release_fs(struct vfsmount **mount, int *count)
505 {
506 	struct vfsmount *mnt;
507 	spin_lock(&pin_fs_lock);
508 	mnt = *mount;
509 	if (!--*count)
510 		*mount = NULL;
511 	spin_unlock(&pin_fs_lock);
512 	mntput(mnt);
513 }
514 
515 /**
516  * simple_read_from_buffer - copy data from the buffer to user space
517  * @to: the user space buffer to read to
518  * @count: the maximum number of bytes to read
519  * @ppos: the current position in the buffer
520  * @from: the buffer to read from
521  * @available: the size of the buffer
522  *
523  * The simple_read_from_buffer() function reads up to @count bytes from the
524  * buffer @from at offset @ppos into the user space address starting at @to.
525  *
526  * On success, the number of bytes read is returned and the offset @ppos is
527  * advanced by this number, or negative value is returned on error.
528  **/
529 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
530 				const void *from, size_t available)
531 {
532 	loff_t pos = *ppos;
533 	size_t ret;
534 
535 	if (pos < 0)
536 		return -EINVAL;
537 	if (pos >= available || !count)
538 		return 0;
539 	if (count > available - pos)
540 		count = available - pos;
541 	ret = copy_to_user(to, from + pos, count);
542 	if (ret == count)
543 		return -EFAULT;
544 	count -= ret;
545 	*ppos = pos + count;
546 	return count;
547 }
548 
549 /**
550  * memory_read_from_buffer - copy data from the buffer
551  * @to: the kernel space buffer to read to
552  * @count: the maximum number of bytes to read
553  * @ppos: the current position in the buffer
554  * @from: the buffer to read from
555  * @available: the size of the buffer
556  *
557  * The memory_read_from_buffer() function reads up to @count bytes from the
558  * buffer @from at offset @ppos into the kernel space address starting at @to.
559  *
560  * On success, the number of bytes read is returned and the offset @ppos is
561  * advanced by this number, or negative value is returned on error.
562  **/
563 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
564 				const void *from, size_t available)
565 {
566 	loff_t pos = *ppos;
567 
568 	if (pos < 0)
569 		return -EINVAL;
570 	if (pos >= available)
571 		return 0;
572 	if (count > available - pos)
573 		count = available - pos;
574 	memcpy(to, from + pos, count);
575 	*ppos = pos + count;
576 
577 	return count;
578 }
579 
580 /*
581  * Transaction based IO.
582  * The file expects a single write which triggers the transaction, and then
583  * possibly a read which collects the result - which is stored in a
584  * file-local buffer.
585  */
586 
587 void simple_transaction_set(struct file *file, size_t n)
588 {
589 	struct simple_transaction_argresp *ar = file->private_data;
590 
591 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
592 
593 	/*
594 	 * The barrier ensures that ar->size will really remain zero until
595 	 * ar->data is ready for reading.
596 	 */
597 	smp_mb();
598 	ar->size = n;
599 }
600 
601 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
602 {
603 	struct simple_transaction_argresp *ar;
604 	static DEFINE_SPINLOCK(simple_transaction_lock);
605 
606 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
607 		return ERR_PTR(-EFBIG);
608 
609 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
610 	if (!ar)
611 		return ERR_PTR(-ENOMEM);
612 
613 	spin_lock(&simple_transaction_lock);
614 
615 	/* only one write allowed per open */
616 	if (file->private_data) {
617 		spin_unlock(&simple_transaction_lock);
618 		free_page((unsigned long)ar);
619 		return ERR_PTR(-EBUSY);
620 	}
621 
622 	file->private_data = ar;
623 
624 	spin_unlock(&simple_transaction_lock);
625 
626 	if (copy_from_user(ar->data, buf, size))
627 		return ERR_PTR(-EFAULT);
628 
629 	return ar->data;
630 }
631 
632 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
633 {
634 	struct simple_transaction_argresp *ar = file->private_data;
635 
636 	if (!ar)
637 		return 0;
638 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
639 }
640 
641 int simple_transaction_release(struct inode *inode, struct file *file)
642 {
643 	free_page((unsigned long)file->private_data);
644 	return 0;
645 }
646 
647 /* Simple attribute files */
648 
649 struct simple_attr {
650 	int (*get)(void *, u64 *);
651 	int (*set)(void *, u64);
652 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
653 	char set_buf[24];
654 	void *data;
655 	const char *fmt;	/* format for read operation */
656 	struct mutex mutex;	/* protects access to these buffers */
657 };
658 
659 /* simple_attr_open is called by an actual attribute open file operation
660  * to set the attribute specific access operations. */
661 int simple_attr_open(struct inode *inode, struct file *file,
662 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
663 		     const char *fmt)
664 {
665 	struct simple_attr *attr;
666 
667 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
668 	if (!attr)
669 		return -ENOMEM;
670 
671 	attr->get = get;
672 	attr->set = set;
673 	attr->data = inode->i_private;
674 	attr->fmt = fmt;
675 	mutex_init(&attr->mutex);
676 
677 	file->private_data = attr;
678 
679 	return nonseekable_open(inode, file);
680 }
681 
682 int simple_attr_release(struct inode *inode, struct file *file)
683 {
684 	kfree(file->private_data);
685 	return 0;
686 }
687 
688 /* read from the buffer that is filled with the get function */
689 ssize_t simple_attr_read(struct file *file, char __user *buf,
690 			 size_t len, loff_t *ppos)
691 {
692 	struct simple_attr *attr;
693 	size_t size;
694 	ssize_t ret;
695 
696 	attr = file->private_data;
697 
698 	if (!attr->get)
699 		return -EACCES;
700 
701 	ret = mutex_lock_interruptible(&attr->mutex);
702 	if (ret)
703 		return ret;
704 
705 	if (*ppos) {		/* continued read */
706 		size = strlen(attr->get_buf);
707 	} else {		/* first read */
708 		u64 val;
709 		ret = attr->get(attr->data, &val);
710 		if (ret)
711 			goto out;
712 
713 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
714 				 attr->fmt, (unsigned long long)val);
715 	}
716 
717 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
718 out:
719 	mutex_unlock(&attr->mutex);
720 	return ret;
721 }
722 
723 /* interpret the buffer as a number to call the set function with */
724 ssize_t simple_attr_write(struct file *file, const char __user *buf,
725 			  size_t len, loff_t *ppos)
726 {
727 	struct simple_attr *attr;
728 	u64 val;
729 	size_t size;
730 	ssize_t ret;
731 
732 	attr = file->private_data;
733 	if (!attr->set)
734 		return -EACCES;
735 
736 	ret = mutex_lock_interruptible(&attr->mutex);
737 	if (ret)
738 		return ret;
739 
740 	ret = -EFAULT;
741 	size = min(sizeof(attr->set_buf) - 1, len);
742 	if (copy_from_user(attr->set_buf, buf, size))
743 		goto out;
744 
745 	attr->set_buf[size] = '\0';
746 	val = simple_strtol(attr->set_buf, NULL, 0);
747 	ret = attr->set(attr->data, val);
748 	if (ret == 0)
749 		ret = len; /* on success, claim we got the whole input */
750 out:
751 	mutex_unlock(&attr->mutex);
752 	return ret;
753 }
754 
755 /**
756  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
757  * @sb:		filesystem to do the file handle conversion on
758  * @fid:	file handle to convert
759  * @fh_len:	length of the file handle in bytes
760  * @fh_type:	type of file handle
761  * @get_inode:	filesystem callback to retrieve inode
762  *
763  * This function decodes @fid as long as it has one of the well-known
764  * Linux filehandle types and calls @get_inode on it to retrieve the
765  * inode for the object specified in the file handle.
766  */
767 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
768 		int fh_len, int fh_type, struct inode *(*get_inode)
769 			(struct super_block *sb, u64 ino, u32 gen))
770 {
771 	struct inode *inode = NULL;
772 
773 	if (fh_len < 2)
774 		return NULL;
775 
776 	switch (fh_type) {
777 	case FILEID_INO32_GEN:
778 	case FILEID_INO32_GEN_PARENT:
779 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
780 		break;
781 	}
782 
783 	return d_obtain_alias(inode);
784 }
785 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
786 
787 /**
788  * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
789  * @sb:		filesystem to do the file handle conversion on
790  * @fid:	file handle to convert
791  * @fh_len:	length of the file handle in bytes
792  * @fh_type:	type of file handle
793  * @get_inode:	filesystem callback to retrieve inode
794  *
795  * This function decodes @fid as long as it has one of the well-known
796  * Linux filehandle types and calls @get_inode on it to retrieve the
797  * inode for the _parent_ object specified in the file handle if it
798  * is specified in the file handle, or NULL otherwise.
799  */
800 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
801 		int fh_len, int fh_type, struct inode *(*get_inode)
802 			(struct super_block *sb, u64 ino, u32 gen))
803 {
804 	struct inode *inode = NULL;
805 
806 	if (fh_len <= 2)
807 		return NULL;
808 
809 	switch (fh_type) {
810 	case FILEID_INO32_GEN_PARENT:
811 		inode = get_inode(sb, fid->i32.parent_ino,
812 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
813 		break;
814 	}
815 
816 	return d_obtain_alias(inode);
817 }
818 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
819 
820 int simple_fsync(struct file *file, struct dentry *dentry, int datasync)
821 {
822 	struct writeback_control wbc = {
823 		.sync_mode = WB_SYNC_ALL,
824 		.nr_to_write = 0, /* metadata-only; caller takes care of data */
825 	};
826 	struct inode *inode = dentry->d_inode;
827 	int err;
828 	int ret;
829 
830 	ret = sync_mapping_buffers(inode->i_mapping);
831 	if (!(inode->i_state & I_DIRTY))
832 		return ret;
833 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
834 		return ret;
835 
836 	err = sync_inode(inode, &wbc);
837 	if (ret == 0)
838 		ret = err;
839 	return ret;
840 }
841 EXPORT_SYMBOL(simple_fsync);
842 
843 EXPORT_SYMBOL(dcache_dir_close);
844 EXPORT_SYMBOL(dcache_dir_lseek);
845 EXPORT_SYMBOL(dcache_dir_open);
846 EXPORT_SYMBOL(dcache_readdir);
847 EXPORT_SYMBOL(generic_read_dir);
848 EXPORT_SYMBOL(get_sb_pseudo);
849 EXPORT_SYMBOL(simple_write_begin);
850 EXPORT_SYMBOL(simple_write_end);
851 EXPORT_SYMBOL(simple_dir_inode_operations);
852 EXPORT_SYMBOL(simple_dir_operations);
853 EXPORT_SYMBOL(simple_empty);
854 EXPORT_SYMBOL(simple_fill_super);
855 EXPORT_SYMBOL(simple_getattr);
856 EXPORT_SYMBOL(simple_link);
857 EXPORT_SYMBOL(simple_lookup);
858 EXPORT_SYMBOL(simple_pin_fs);
859 EXPORT_SYMBOL(simple_readpage);
860 EXPORT_SYMBOL(simple_release_fs);
861 EXPORT_SYMBOL(simple_rename);
862 EXPORT_SYMBOL(simple_rmdir);
863 EXPORT_SYMBOL(simple_statfs);
864 EXPORT_SYMBOL(simple_sync_file);
865 EXPORT_SYMBOL(simple_unlink);
866 EXPORT_SYMBOL(simple_read_from_buffer);
867 EXPORT_SYMBOL(memory_read_from_buffer);
868 EXPORT_SYMBOL(simple_transaction_set);
869 EXPORT_SYMBOL(simple_transaction_get);
870 EXPORT_SYMBOL(simple_transaction_read);
871 EXPORT_SYMBOL(simple_transaction_release);
872 EXPORT_SYMBOL_GPL(simple_attr_open);
873 EXPORT_SYMBOL_GPL(simple_attr_release);
874 EXPORT_SYMBOL_GPL(simple_attr_read);
875 EXPORT_SYMBOL_GPL(simple_attr_write);
876