1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/pagemap.h> 8 #include <linux/mount.h> 9 #include <linux/vfs.h> 10 #include <linux/mutex.h> 11 #include <linux/exportfs.h> 12 #include <linux/writeback.h> 13 #include <linux/buffer_head.h> 14 15 #include <asm/uaccess.h> 16 17 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 18 struct kstat *stat) 19 { 20 struct inode *inode = dentry->d_inode; 21 generic_fillattr(inode, stat); 22 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 23 return 0; 24 } 25 26 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 27 { 28 buf->f_type = dentry->d_sb->s_magic; 29 buf->f_bsize = PAGE_CACHE_SIZE; 30 buf->f_namelen = NAME_MAX; 31 return 0; 32 } 33 34 /* 35 * Retaining negative dentries for an in-memory filesystem just wastes 36 * memory and lookup time: arrange for them to be deleted immediately. 37 */ 38 static int simple_delete_dentry(struct dentry *dentry) 39 { 40 return 1; 41 } 42 43 /* 44 * Lookup the data. This is trivial - if the dentry didn't already 45 * exist, we know it is negative. Set d_op to delete negative dentries. 46 */ 47 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 48 { 49 static const struct dentry_operations simple_dentry_operations = { 50 .d_delete = simple_delete_dentry, 51 }; 52 53 if (dentry->d_name.len > NAME_MAX) 54 return ERR_PTR(-ENAMETOOLONG); 55 dentry->d_op = &simple_dentry_operations; 56 d_add(dentry, NULL); 57 return NULL; 58 } 59 60 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync) 61 { 62 return 0; 63 } 64 65 int dcache_dir_open(struct inode *inode, struct file *file) 66 { 67 static struct qstr cursor_name = {.len = 1, .name = "."}; 68 69 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 70 71 return file->private_data ? 0 : -ENOMEM; 72 } 73 74 int dcache_dir_close(struct inode *inode, struct file *file) 75 { 76 dput(file->private_data); 77 return 0; 78 } 79 80 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin) 81 { 82 mutex_lock(&file->f_path.dentry->d_inode->i_mutex); 83 switch (origin) { 84 case 1: 85 offset += file->f_pos; 86 case 0: 87 if (offset >= 0) 88 break; 89 default: 90 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 91 return -EINVAL; 92 } 93 if (offset != file->f_pos) { 94 file->f_pos = offset; 95 if (file->f_pos >= 2) { 96 struct list_head *p; 97 struct dentry *cursor = file->private_data; 98 loff_t n = file->f_pos - 2; 99 100 spin_lock(&dcache_lock); 101 list_del(&cursor->d_u.d_child); 102 p = file->f_path.dentry->d_subdirs.next; 103 while (n && p != &file->f_path.dentry->d_subdirs) { 104 struct dentry *next; 105 next = list_entry(p, struct dentry, d_u.d_child); 106 if (!d_unhashed(next) && next->d_inode) 107 n--; 108 p = p->next; 109 } 110 list_add_tail(&cursor->d_u.d_child, p); 111 spin_unlock(&dcache_lock); 112 } 113 } 114 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 115 return offset; 116 } 117 118 /* Relationship between i_mode and the DT_xxx types */ 119 static inline unsigned char dt_type(struct inode *inode) 120 { 121 return (inode->i_mode >> 12) & 15; 122 } 123 124 /* 125 * Directory is locked and all positive dentries in it are safe, since 126 * for ramfs-type trees they can't go away without unlink() or rmdir(), 127 * both impossible due to the lock on directory. 128 */ 129 130 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir) 131 { 132 struct dentry *dentry = filp->f_path.dentry; 133 struct dentry *cursor = filp->private_data; 134 struct list_head *p, *q = &cursor->d_u.d_child; 135 ino_t ino; 136 int i = filp->f_pos; 137 138 switch (i) { 139 case 0: 140 ino = dentry->d_inode->i_ino; 141 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 142 break; 143 filp->f_pos++; 144 i++; 145 /* fallthrough */ 146 case 1: 147 ino = parent_ino(dentry); 148 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 149 break; 150 filp->f_pos++; 151 i++; 152 /* fallthrough */ 153 default: 154 spin_lock(&dcache_lock); 155 if (filp->f_pos == 2) 156 list_move(q, &dentry->d_subdirs); 157 158 for (p=q->next; p != &dentry->d_subdirs; p=p->next) { 159 struct dentry *next; 160 next = list_entry(p, struct dentry, d_u.d_child); 161 if (d_unhashed(next) || !next->d_inode) 162 continue; 163 164 spin_unlock(&dcache_lock); 165 if (filldir(dirent, next->d_name.name, 166 next->d_name.len, filp->f_pos, 167 next->d_inode->i_ino, 168 dt_type(next->d_inode)) < 0) 169 return 0; 170 spin_lock(&dcache_lock); 171 /* next is still alive */ 172 list_move(q, p); 173 p = q; 174 filp->f_pos++; 175 } 176 spin_unlock(&dcache_lock); 177 } 178 return 0; 179 } 180 181 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 182 { 183 return -EISDIR; 184 } 185 186 const struct file_operations simple_dir_operations = { 187 .open = dcache_dir_open, 188 .release = dcache_dir_close, 189 .llseek = dcache_dir_lseek, 190 .read = generic_read_dir, 191 .readdir = dcache_readdir, 192 .fsync = simple_sync_file, 193 }; 194 195 const struct inode_operations simple_dir_inode_operations = { 196 .lookup = simple_lookup, 197 }; 198 199 static const struct super_operations simple_super_operations = { 200 .statfs = simple_statfs, 201 }; 202 203 /* 204 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 205 * will never be mountable) 206 */ 207 int get_sb_pseudo(struct file_system_type *fs_type, char *name, 208 const struct super_operations *ops, unsigned long magic, 209 struct vfsmount *mnt) 210 { 211 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 212 struct dentry *dentry; 213 struct inode *root; 214 struct qstr d_name = {.name = name, .len = strlen(name)}; 215 216 if (IS_ERR(s)) 217 return PTR_ERR(s); 218 219 s->s_flags = MS_NOUSER; 220 s->s_maxbytes = MAX_LFS_FILESIZE; 221 s->s_blocksize = PAGE_SIZE; 222 s->s_blocksize_bits = PAGE_SHIFT; 223 s->s_magic = magic; 224 s->s_op = ops ? ops : &simple_super_operations; 225 s->s_time_gran = 1; 226 root = new_inode(s); 227 if (!root) 228 goto Enomem; 229 /* 230 * since this is the first inode, make it number 1. New inodes created 231 * after this must take care not to collide with it (by passing 232 * max_reserved of 1 to iunique). 233 */ 234 root->i_ino = 1; 235 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 236 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 237 dentry = d_alloc(NULL, &d_name); 238 if (!dentry) { 239 iput(root); 240 goto Enomem; 241 } 242 dentry->d_sb = s; 243 dentry->d_parent = dentry; 244 d_instantiate(dentry, root); 245 s->s_root = dentry; 246 s->s_flags |= MS_ACTIVE; 247 simple_set_mnt(mnt, s); 248 return 0; 249 250 Enomem: 251 deactivate_locked_super(s); 252 return -ENOMEM; 253 } 254 255 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 256 { 257 struct inode *inode = old_dentry->d_inode; 258 259 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 260 inc_nlink(inode); 261 atomic_inc(&inode->i_count); 262 dget(dentry); 263 d_instantiate(dentry, inode); 264 return 0; 265 } 266 267 static inline int simple_positive(struct dentry *dentry) 268 { 269 return dentry->d_inode && !d_unhashed(dentry); 270 } 271 272 int simple_empty(struct dentry *dentry) 273 { 274 struct dentry *child; 275 int ret = 0; 276 277 spin_lock(&dcache_lock); 278 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) 279 if (simple_positive(child)) 280 goto out; 281 ret = 1; 282 out: 283 spin_unlock(&dcache_lock); 284 return ret; 285 } 286 287 int simple_unlink(struct inode *dir, struct dentry *dentry) 288 { 289 struct inode *inode = dentry->d_inode; 290 291 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 292 drop_nlink(inode); 293 dput(dentry); 294 return 0; 295 } 296 297 int simple_rmdir(struct inode *dir, struct dentry *dentry) 298 { 299 if (!simple_empty(dentry)) 300 return -ENOTEMPTY; 301 302 drop_nlink(dentry->d_inode); 303 simple_unlink(dir, dentry); 304 drop_nlink(dir); 305 return 0; 306 } 307 308 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 309 struct inode *new_dir, struct dentry *new_dentry) 310 { 311 struct inode *inode = old_dentry->d_inode; 312 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode); 313 314 if (!simple_empty(new_dentry)) 315 return -ENOTEMPTY; 316 317 if (new_dentry->d_inode) { 318 simple_unlink(new_dir, new_dentry); 319 if (they_are_dirs) 320 drop_nlink(old_dir); 321 } else if (they_are_dirs) { 322 drop_nlink(old_dir); 323 inc_nlink(new_dir); 324 } 325 326 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 327 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 328 329 return 0; 330 } 331 332 int simple_readpage(struct file *file, struct page *page) 333 { 334 clear_highpage(page); 335 flush_dcache_page(page); 336 SetPageUptodate(page); 337 unlock_page(page); 338 return 0; 339 } 340 341 int simple_write_begin(struct file *file, struct address_space *mapping, 342 loff_t pos, unsigned len, unsigned flags, 343 struct page **pagep, void **fsdata) 344 { 345 struct page *page; 346 pgoff_t index; 347 348 index = pos >> PAGE_CACHE_SHIFT; 349 350 page = grab_cache_page_write_begin(mapping, index, flags); 351 if (!page) 352 return -ENOMEM; 353 354 *pagep = page; 355 356 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) { 357 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 358 359 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE); 360 } 361 return 0; 362 } 363 364 /** 365 * simple_write_end - .write_end helper for non-block-device FSes 366 * @available: See .write_end of address_space_operations 367 * @file: " 368 * @mapping: " 369 * @pos: " 370 * @len: " 371 * @copied: " 372 * @page: " 373 * @fsdata: " 374 * 375 * simple_write_end does the minimum needed for updating a page after writing is 376 * done. It has the same API signature as the .write_end of 377 * address_space_operations vector. So it can just be set onto .write_end for 378 * FSes that don't need any other processing. i_mutex is assumed to be held. 379 * Block based filesystems should use generic_write_end(). 380 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 381 * is not called, so a filesystem that actually does store data in .write_inode 382 * should extend on what's done here with a call to mark_inode_dirty() in the 383 * case that i_size has changed. 384 */ 385 int simple_write_end(struct file *file, struct address_space *mapping, 386 loff_t pos, unsigned len, unsigned copied, 387 struct page *page, void *fsdata) 388 { 389 struct inode *inode = page->mapping->host; 390 loff_t last_pos = pos + copied; 391 392 /* zero the stale part of the page if we did a short copy */ 393 if (copied < len) { 394 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 395 396 zero_user(page, from + copied, len - copied); 397 } 398 399 if (!PageUptodate(page)) 400 SetPageUptodate(page); 401 /* 402 * No need to use i_size_read() here, the i_size 403 * cannot change under us because we hold the i_mutex. 404 */ 405 if (last_pos > inode->i_size) 406 i_size_write(inode, last_pos); 407 408 set_page_dirty(page); 409 unlock_page(page); 410 page_cache_release(page); 411 412 return copied; 413 } 414 415 /* 416 * the inodes created here are not hashed. If you use iunique to generate 417 * unique inode values later for this filesystem, then you must take care 418 * to pass it an appropriate max_reserved value to avoid collisions. 419 */ 420 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files) 421 { 422 struct inode *inode; 423 struct dentry *root; 424 struct dentry *dentry; 425 int i; 426 427 s->s_blocksize = PAGE_CACHE_SIZE; 428 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 429 s->s_magic = magic; 430 s->s_op = &simple_super_operations; 431 s->s_time_gran = 1; 432 433 inode = new_inode(s); 434 if (!inode) 435 return -ENOMEM; 436 /* 437 * because the root inode is 1, the files array must not contain an 438 * entry at index 1 439 */ 440 inode->i_ino = 1; 441 inode->i_mode = S_IFDIR | 0755; 442 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 443 inode->i_op = &simple_dir_inode_operations; 444 inode->i_fop = &simple_dir_operations; 445 inode->i_nlink = 2; 446 root = d_alloc_root(inode); 447 if (!root) { 448 iput(inode); 449 return -ENOMEM; 450 } 451 for (i = 0; !files->name || files->name[0]; i++, files++) { 452 if (!files->name) 453 continue; 454 455 /* warn if it tries to conflict with the root inode */ 456 if (unlikely(i == 1)) 457 printk(KERN_WARNING "%s: %s passed in a files array" 458 "with an index of 1!\n", __func__, 459 s->s_type->name); 460 461 dentry = d_alloc_name(root, files->name); 462 if (!dentry) 463 goto out; 464 inode = new_inode(s); 465 if (!inode) 466 goto out; 467 inode->i_mode = S_IFREG | files->mode; 468 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 469 inode->i_fop = files->ops; 470 inode->i_ino = i; 471 d_add(dentry, inode); 472 } 473 s->s_root = root; 474 return 0; 475 out: 476 d_genocide(root); 477 dput(root); 478 return -ENOMEM; 479 } 480 481 static DEFINE_SPINLOCK(pin_fs_lock); 482 483 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 484 { 485 struct vfsmount *mnt = NULL; 486 spin_lock(&pin_fs_lock); 487 if (unlikely(!*mount)) { 488 spin_unlock(&pin_fs_lock); 489 mnt = vfs_kern_mount(type, 0, type->name, NULL); 490 if (IS_ERR(mnt)) 491 return PTR_ERR(mnt); 492 spin_lock(&pin_fs_lock); 493 if (!*mount) 494 *mount = mnt; 495 } 496 mntget(*mount); 497 ++*count; 498 spin_unlock(&pin_fs_lock); 499 mntput(mnt); 500 return 0; 501 } 502 503 void simple_release_fs(struct vfsmount **mount, int *count) 504 { 505 struct vfsmount *mnt; 506 spin_lock(&pin_fs_lock); 507 mnt = *mount; 508 if (!--*count) 509 *mount = NULL; 510 spin_unlock(&pin_fs_lock); 511 mntput(mnt); 512 } 513 514 /** 515 * simple_read_from_buffer - copy data from the buffer to user space 516 * @to: the user space buffer to read to 517 * @count: the maximum number of bytes to read 518 * @ppos: the current position in the buffer 519 * @from: the buffer to read from 520 * @available: the size of the buffer 521 * 522 * The simple_read_from_buffer() function reads up to @count bytes from the 523 * buffer @from at offset @ppos into the user space address starting at @to. 524 * 525 * On success, the number of bytes read is returned and the offset @ppos is 526 * advanced by this number, or negative value is returned on error. 527 **/ 528 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 529 const void *from, size_t available) 530 { 531 loff_t pos = *ppos; 532 size_t ret; 533 534 if (pos < 0) 535 return -EINVAL; 536 if (pos >= available || !count) 537 return 0; 538 if (count > available - pos) 539 count = available - pos; 540 ret = copy_to_user(to, from + pos, count); 541 if (ret == count) 542 return -EFAULT; 543 count -= ret; 544 *ppos = pos + count; 545 return count; 546 } 547 548 /** 549 * memory_read_from_buffer - copy data from the buffer 550 * @to: the kernel space buffer to read to 551 * @count: the maximum number of bytes to read 552 * @ppos: the current position in the buffer 553 * @from: the buffer to read from 554 * @available: the size of the buffer 555 * 556 * The memory_read_from_buffer() function reads up to @count bytes from the 557 * buffer @from at offset @ppos into the kernel space address starting at @to. 558 * 559 * On success, the number of bytes read is returned and the offset @ppos is 560 * advanced by this number, or negative value is returned on error. 561 **/ 562 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 563 const void *from, size_t available) 564 { 565 loff_t pos = *ppos; 566 567 if (pos < 0) 568 return -EINVAL; 569 if (pos >= available) 570 return 0; 571 if (count > available - pos) 572 count = available - pos; 573 memcpy(to, from + pos, count); 574 *ppos = pos + count; 575 576 return count; 577 } 578 579 /* 580 * Transaction based IO. 581 * The file expects a single write which triggers the transaction, and then 582 * possibly a read which collects the result - which is stored in a 583 * file-local buffer. 584 */ 585 586 void simple_transaction_set(struct file *file, size_t n) 587 { 588 struct simple_transaction_argresp *ar = file->private_data; 589 590 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 591 592 /* 593 * The barrier ensures that ar->size will really remain zero until 594 * ar->data is ready for reading. 595 */ 596 smp_mb(); 597 ar->size = n; 598 } 599 600 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 601 { 602 struct simple_transaction_argresp *ar; 603 static DEFINE_SPINLOCK(simple_transaction_lock); 604 605 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 606 return ERR_PTR(-EFBIG); 607 608 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 609 if (!ar) 610 return ERR_PTR(-ENOMEM); 611 612 spin_lock(&simple_transaction_lock); 613 614 /* only one write allowed per open */ 615 if (file->private_data) { 616 spin_unlock(&simple_transaction_lock); 617 free_page((unsigned long)ar); 618 return ERR_PTR(-EBUSY); 619 } 620 621 file->private_data = ar; 622 623 spin_unlock(&simple_transaction_lock); 624 625 if (copy_from_user(ar->data, buf, size)) 626 return ERR_PTR(-EFAULT); 627 628 return ar->data; 629 } 630 631 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 632 { 633 struct simple_transaction_argresp *ar = file->private_data; 634 635 if (!ar) 636 return 0; 637 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 638 } 639 640 int simple_transaction_release(struct inode *inode, struct file *file) 641 { 642 free_page((unsigned long)file->private_data); 643 return 0; 644 } 645 646 /* Simple attribute files */ 647 648 struct simple_attr { 649 int (*get)(void *, u64 *); 650 int (*set)(void *, u64); 651 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 652 char set_buf[24]; 653 void *data; 654 const char *fmt; /* format for read operation */ 655 struct mutex mutex; /* protects access to these buffers */ 656 }; 657 658 /* simple_attr_open is called by an actual attribute open file operation 659 * to set the attribute specific access operations. */ 660 int simple_attr_open(struct inode *inode, struct file *file, 661 int (*get)(void *, u64 *), int (*set)(void *, u64), 662 const char *fmt) 663 { 664 struct simple_attr *attr; 665 666 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 667 if (!attr) 668 return -ENOMEM; 669 670 attr->get = get; 671 attr->set = set; 672 attr->data = inode->i_private; 673 attr->fmt = fmt; 674 mutex_init(&attr->mutex); 675 676 file->private_data = attr; 677 678 return nonseekable_open(inode, file); 679 } 680 681 int simple_attr_release(struct inode *inode, struct file *file) 682 { 683 kfree(file->private_data); 684 return 0; 685 } 686 687 /* read from the buffer that is filled with the get function */ 688 ssize_t simple_attr_read(struct file *file, char __user *buf, 689 size_t len, loff_t *ppos) 690 { 691 struct simple_attr *attr; 692 size_t size; 693 ssize_t ret; 694 695 attr = file->private_data; 696 697 if (!attr->get) 698 return -EACCES; 699 700 ret = mutex_lock_interruptible(&attr->mutex); 701 if (ret) 702 return ret; 703 704 if (*ppos) { /* continued read */ 705 size = strlen(attr->get_buf); 706 } else { /* first read */ 707 u64 val; 708 ret = attr->get(attr->data, &val); 709 if (ret) 710 goto out; 711 712 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 713 attr->fmt, (unsigned long long)val); 714 } 715 716 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 717 out: 718 mutex_unlock(&attr->mutex); 719 return ret; 720 } 721 722 /* interpret the buffer as a number to call the set function with */ 723 ssize_t simple_attr_write(struct file *file, const char __user *buf, 724 size_t len, loff_t *ppos) 725 { 726 struct simple_attr *attr; 727 u64 val; 728 size_t size; 729 ssize_t ret; 730 731 attr = file->private_data; 732 if (!attr->set) 733 return -EACCES; 734 735 ret = mutex_lock_interruptible(&attr->mutex); 736 if (ret) 737 return ret; 738 739 ret = -EFAULT; 740 size = min(sizeof(attr->set_buf) - 1, len); 741 if (copy_from_user(attr->set_buf, buf, size)) 742 goto out; 743 744 attr->set_buf[size] = '\0'; 745 val = simple_strtol(attr->set_buf, NULL, 0); 746 ret = attr->set(attr->data, val); 747 if (ret == 0) 748 ret = len; /* on success, claim we got the whole input */ 749 out: 750 mutex_unlock(&attr->mutex); 751 return ret; 752 } 753 754 /** 755 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 756 * @sb: filesystem to do the file handle conversion on 757 * @fid: file handle to convert 758 * @fh_len: length of the file handle in bytes 759 * @fh_type: type of file handle 760 * @get_inode: filesystem callback to retrieve inode 761 * 762 * This function decodes @fid as long as it has one of the well-known 763 * Linux filehandle types and calls @get_inode on it to retrieve the 764 * inode for the object specified in the file handle. 765 */ 766 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 767 int fh_len, int fh_type, struct inode *(*get_inode) 768 (struct super_block *sb, u64 ino, u32 gen)) 769 { 770 struct inode *inode = NULL; 771 772 if (fh_len < 2) 773 return NULL; 774 775 switch (fh_type) { 776 case FILEID_INO32_GEN: 777 case FILEID_INO32_GEN_PARENT: 778 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 779 break; 780 } 781 782 return d_obtain_alias(inode); 783 } 784 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 785 786 /** 787 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation 788 * @sb: filesystem to do the file handle conversion on 789 * @fid: file handle to convert 790 * @fh_len: length of the file handle in bytes 791 * @fh_type: type of file handle 792 * @get_inode: filesystem callback to retrieve inode 793 * 794 * This function decodes @fid as long as it has one of the well-known 795 * Linux filehandle types and calls @get_inode on it to retrieve the 796 * inode for the _parent_ object specified in the file handle if it 797 * is specified in the file handle, or NULL otherwise. 798 */ 799 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 800 int fh_len, int fh_type, struct inode *(*get_inode) 801 (struct super_block *sb, u64 ino, u32 gen)) 802 { 803 struct inode *inode = NULL; 804 805 if (fh_len <= 2) 806 return NULL; 807 808 switch (fh_type) { 809 case FILEID_INO32_GEN_PARENT: 810 inode = get_inode(sb, fid->i32.parent_ino, 811 (fh_len > 3 ? fid->i32.parent_gen : 0)); 812 break; 813 } 814 815 return d_obtain_alias(inode); 816 } 817 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 818 819 int simple_fsync(struct file *file, struct dentry *dentry, int datasync) 820 { 821 struct writeback_control wbc = { 822 .sync_mode = WB_SYNC_ALL, 823 .nr_to_write = 0, /* metadata-only; caller takes care of data */ 824 }; 825 struct inode *inode = dentry->d_inode; 826 int err; 827 int ret; 828 829 ret = sync_mapping_buffers(inode->i_mapping); 830 if (!(inode->i_state & I_DIRTY)) 831 return ret; 832 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 833 return ret; 834 835 err = sync_inode(inode, &wbc); 836 if (ret == 0) 837 ret = err; 838 return ret; 839 } 840 EXPORT_SYMBOL(simple_fsync); 841 842 EXPORT_SYMBOL(dcache_dir_close); 843 EXPORT_SYMBOL(dcache_dir_lseek); 844 EXPORT_SYMBOL(dcache_dir_open); 845 EXPORT_SYMBOL(dcache_readdir); 846 EXPORT_SYMBOL(generic_read_dir); 847 EXPORT_SYMBOL(get_sb_pseudo); 848 EXPORT_SYMBOL(simple_write_begin); 849 EXPORT_SYMBOL(simple_write_end); 850 EXPORT_SYMBOL(simple_dir_inode_operations); 851 EXPORT_SYMBOL(simple_dir_operations); 852 EXPORT_SYMBOL(simple_empty); 853 EXPORT_SYMBOL(simple_fill_super); 854 EXPORT_SYMBOL(simple_getattr); 855 EXPORT_SYMBOL(simple_link); 856 EXPORT_SYMBOL(simple_lookup); 857 EXPORT_SYMBOL(simple_pin_fs); 858 EXPORT_SYMBOL(simple_readpage); 859 EXPORT_SYMBOL(simple_release_fs); 860 EXPORT_SYMBOL(simple_rename); 861 EXPORT_SYMBOL(simple_rmdir); 862 EXPORT_SYMBOL(simple_statfs); 863 EXPORT_SYMBOL(simple_sync_file); 864 EXPORT_SYMBOL(simple_unlink); 865 EXPORT_SYMBOL(simple_read_from_buffer); 866 EXPORT_SYMBOL(memory_read_from_buffer); 867 EXPORT_SYMBOL(simple_transaction_set); 868 EXPORT_SYMBOL(simple_transaction_get); 869 EXPORT_SYMBOL(simple_transaction_read); 870 EXPORT_SYMBOL(simple_transaction_release); 871 EXPORT_SYMBOL_GPL(simple_attr_open); 872 EXPORT_SYMBOL_GPL(simple_attr_release); 873 EXPORT_SYMBOL_GPL(simple_attr_read); 874 EXPORT_SYMBOL_GPL(simple_attr_write); 875