xref: /linux/fs/libfs.c (revision 9c3d6497fbfa0911d4cd6f261762a0a7af29566a)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *	fs/libfs.c
4   *	Library for filesystems writers.
5   */
6  
7  #include <linux/blkdev.h>
8  #include <linux/export.h>
9  #include <linux/pagemap.h>
10  #include <linux/slab.h>
11  #include <linux/cred.h>
12  #include <linux/mount.h>
13  #include <linux/vfs.h>
14  #include <linux/quotaops.h>
15  #include <linux/mutex.h>
16  #include <linux/namei.h>
17  #include <linux/exportfs.h>
18  #include <linux/writeback.h>
19  #include <linux/buffer_head.h> /* sync_mapping_buffers */
20  #include <linux/fs_context.h>
21  #include <linux/pseudo_fs.h>
22  #include <linux/fsnotify.h>
23  
24  #include <linux/uaccess.h>
25  
26  #include "internal.h"
27  
28  int simple_getattr(const struct path *path, struct kstat *stat,
29  		   u32 request_mask, unsigned int query_flags)
30  {
31  	struct inode *inode = d_inode(path->dentry);
32  	generic_fillattr(inode, stat);
33  	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
34  	return 0;
35  }
36  EXPORT_SYMBOL(simple_getattr);
37  
38  int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
39  {
40  	buf->f_type = dentry->d_sb->s_magic;
41  	buf->f_bsize = PAGE_SIZE;
42  	buf->f_namelen = NAME_MAX;
43  	return 0;
44  }
45  EXPORT_SYMBOL(simple_statfs);
46  
47  /*
48   * Retaining negative dentries for an in-memory filesystem just wastes
49   * memory and lookup time: arrange for them to be deleted immediately.
50   */
51  int always_delete_dentry(const struct dentry *dentry)
52  {
53  	return 1;
54  }
55  EXPORT_SYMBOL(always_delete_dentry);
56  
57  const struct dentry_operations simple_dentry_operations = {
58  	.d_delete = always_delete_dentry,
59  };
60  EXPORT_SYMBOL(simple_dentry_operations);
61  
62  /*
63   * Lookup the data. This is trivial - if the dentry didn't already
64   * exist, we know it is negative.  Set d_op to delete negative dentries.
65   */
66  struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
67  {
68  	if (dentry->d_name.len > NAME_MAX)
69  		return ERR_PTR(-ENAMETOOLONG);
70  	if (!dentry->d_sb->s_d_op)
71  		d_set_d_op(dentry, &simple_dentry_operations);
72  	d_add(dentry, NULL);
73  	return NULL;
74  }
75  EXPORT_SYMBOL(simple_lookup);
76  
77  int dcache_dir_open(struct inode *inode, struct file *file)
78  {
79  	file->private_data = d_alloc_cursor(file->f_path.dentry);
80  
81  	return file->private_data ? 0 : -ENOMEM;
82  }
83  EXPORT_SYMBOL(dcache_dir_open);
84  
85  int dcache_dir_close(struct inode *inode, struct file *file)
86  {
87  	dput(file->private_data);
88  	return 0;
89  }
90  EXPORT_SYMBOL(dcache_dir_close);
91  
92  /* parent is locked at least shared */
93  /*
94   * Returns an element of siblings' list.
95   * We are looking for <count>th positive after <p>; if
96   * found, dentry is grabbed and returned to caller.
97   * If no such element exists, NULL is returned.
98   */
99  static struct dentry *scan_positives(struct dentry *cursor,
100  					struct list_head *p,
101  					loff_t count,
102  					struct dentry *last)
103  {
104  	struct dentry *dentry = cursor->d_parent, *found = NULL;
105  
106  	spin_lock(&dentry->d_lock);
107  	while ((p = p->next) != &dentry->d_subdirs) {
108  		struct dentry *d = list_entry(p, struct dentry, d_child);
109  		// we must at least skip cursors, to avoid livelocks
110  		if (d->d_flags & DCACHE_DENTRY_CURSOR)
111  			continue;
112  		if (simple_positive(d) && !--count) {
113  			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
114  			if (simple_positive(d))
115  				found = dget_dlock(d);
116  			spin_unlock(&d->d_lock);
117  			if (likely(found))
118  				break;
119  			count = 1;
120  		}
121  		if (need_resched()) {
122  			list_move(&cursor->d_child, p);
123  			p = &cursor->d_child;
124  			spin_unlock(&dentry->d_lock);
125  			cond_resched();
126  			spin_lock(&dentry->d_lock);
127  		}
128  	}
129  	spin_unlock(&dentry->d_lock);
130  	dput(last);
131  	return found;
132  }
133  
134  loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
135  {
136  	struct dentry *dentry = file->f_path.dentry;
137  	switch (whence) {
138  		case 1:
139  			offset += file->f_pos;
140  			/* fall through */
141  		case 0:
142  			if (offset >= 0)
143  				break;
144  			/* fall through */
145  		default:
146  			return -EINVAL;
147  	}
148  	if (offset != file->f_pos) {
149  		struct dentry *cursor = file->private_data;
150  		struct dentry *to = NULL;
151  
152  		inode_lock_shared(dentry->d_inode);
153  
154  		if (offset > 2)
155  			to = scan_positives(cursor, &dentry->d_subdirs,
156  					    offset - 2, NULL);
157  		spin_lock(&dentry->d_lock);
158  		if (to)
159  			list_move(&cursor->d_child, &to->d_child);
160  		else
161  			list_del_init(&cursor->d_child);
162  		spin_unlock(&dentry->d_lock);
163  		dput(to);
164  
165  		file->f_pos = offset;
166  
167  		inode_unlock_shared(dentry->d_inode);
168  	}
169  	return offset;
170  }
171  EXPORT_SYMBOL(dcache_dir_lseek);
172  
173  /* Relationship between i_mode and the DT_xxx types */
174  static inline unsigned char dt_type(struct inode *inode)
175  {
176  	return (inode->i_mode >> 12) & 15;
177  }
178  
179  /*
180   * Directory is locked and all positive dentries in it are safe, since
181   * for ramfs-type trees they can't go away without unlink() or rmdir(),
182   * both impossible due to the lock on directory.
183   */
184  
185  int dcache_readdir(struct file *file, struct dir_context *ctx)
186  {
187  	struct dentry *dentry = file->f_path.dentry;
188  	struct dentry *cursor = file->private_data;
189  	struct list_head *anchor = &dentry->d_subdirs;
190  	struct dentry *next = NULL;
191  	struct list_head *p;
192  
193  	if (!dir_emit_dots(file, ctx))
194  		return 0;
195  
196  	if (ctx->pos == 2)
197  		p = anchor;
198  	else if (!list_empty(&cursor->d_child))
199  		p = &cursor->d_child;
200  	else
201  		return 0;
202  
203  	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
204  		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
205  			      d_inode(next)->i_ino, dt_type(d_inode(next))))
206  			break;
207  		ctx->pos++;
208  		p = &next->d_child;
209  	}
210  	spin_lock(&dentry->d_lock);
211  	if (next)
212  		list_move_tail(&cursor->d_child, &next->d_child);
213  	else
214  		list_del_init(&cursor->d_child);
215  	spin_unlock(&dentry->d_lock);
216  	dput(next);
217  
218  	return 0;
219  }
220  EXPORT_SYMBOL(dcache_readdir);
221  
222  ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
223  {
224  	return -EISDIR;
225  }
226  EXPORT_SYMBOL(generic_read_dir);
227  
228  const struct file_operations simple_dir_operations = {
229  	.open		= dcache_dir_open,
230  	.release	= dcache_dir_close,
231  	.llseek		= dcache_dir_lseek,
232  	.read		= generic_read_dir,
233  	.iterate_shared	= dcache_readdir,
234  	.fsync		= noop_fsync,
235  };
236  EXPORT_SYMBOL(simple_dir_operations);
237  
238  const struct inode_operations simple_dir_inode_operations = {
239  	.lookup		= simple_lookup,
240  };
241  EXPORT_SYMBOL(simple_dir_inode_operations);
242  
243  static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
244  {
245  	struct dentry *child = NULL;
246  	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
247  
248  	spin_lock(&parent->d_lock);
249  	while ((p = p->next) != &parent->d_subdirs) {
250  		struct dentry *d = container_of(p, struct dentry, d_child);
251  		if (simple_positive(d)) {
252  			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
253  			if (simple_positive(d))
254  				child = dget_dlock(d);
255  			spin_unlock(&d->d_lock);
256  			if (likely(child))
257  				break;
258  		}
259  	}
260  	spin_unlock(&parent->d_lock);
261  	dput(prev);
262  	return child;
263  }
264  
265  void simple_recursive_removal(struct dentry *dentry,
266                                void (*callback)(struct dentry *))
267  {
268  	struct dentry *this = dget(dentry);
269  	while (true) {
270  		struct dentry *victim = NULL, *child;
271  		struct inode *inode = this->d_inode;
272  
273  		inode_lock(inode);
274  		if (d_is_dir(this))
275  			inode->i_flags |= S_DEAD;
276  		while ((child = find_next_child(this, victim)) == NULL) {
277  			// kill and ascend
278  			// update metadata while it's still locked
279  			inode->i_ctime = current_time(inode);
280  			clear_nlink(inode);
281  			inode_unlock(inode);
282  			victim = this;
283  			this = this->d_parent;
284  			inode = this->d_inode;
285  			inode_lock(inode);
286  			if (simple_positive(victim)) {
287  				d_invalidate(victim);	// avoid lost mounts
288  				if (d_is_dir(victim))
289  					fsnotify_rmdir(inode, victim);
290  				else
291  					fsnotify_unlink(inode, victim);
292  				if (callback)
293  					callback(victim);
294  				dput(victim);		// unpin it
295  			}
296  			if (victim == dentry) {
297  				inode->i_ctime = inode->i_mtime =
298  					current_time(inode);
299  				if (d_is_dir(dentry))
300  					drop_nlink(inode);
301  				inode_unlock(inode);
302  				dput(dentry);
303  				return;
304  			}
305  		}
306  		inode_unlock(inode);
307  		this = child;
308  	}
309  }
310  EXPORT_SYMBOL(simple_recursive_removal);
311  
312  static const struct super_operations simple_super_operations = {
313  	.statfs		= simple_statfs,
314  };
315  
316  static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
317  {
318  	struct pseudo_fs_context *ctx = fc->fs_private;
319  	struct inode *root;
320  
321  	s->s_maxbytes = MAX_LFS_FILESIZE;
322  	s->s_blocksize = PAGE_SIZE;
323  	s->s_blocksize_bits = PAGE_SHIFT;
324  	s->s_magic = ctx->magic;
325  	s->s_op = ctx->ops ?: &simple_super_operations;
326  	s->s_xattr = ctx->xattr;
327  	s->s_time_gran = 1;
328  	root = new_inode(s);
329  	if (!root)
330  		return -ENOMEM;
331  
332  	/*
333  	 * since this is the first inode, make it number 1. New inodes created
334  	 * after this must take care not to collide with it (by passing
335  	 * max_reserved of 1 to iunique).
336  	 */
337  	root->i_ino = 1;
338  	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
339  	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
340  	s->s_root = d_make_root(root);
341  	if (!s->s_root)
342  		return -ENOMEM;
343  	s->s_d_op = ctx->dops;
344  	return 0;
345  }
346  
347  static int pseudo_fs_get_tree(struct fs_context *fc)
348  {
349  	return get_tree_nodev(fc, pseudo_fs_fill_super);
350  }
351  
352  static void pseudo_fs_free(struct fs_context *fc)
353  {
354  	kfree(fc->fs_private);
355  }
356  
357  static const struct fs_context_operations pseudo_fs_context_ops = {
358  	.free		= pseudo_fs_free,
359  	.get_tree	= pseudo_fs_get_tree,
360  };
361  
362  /*
363   * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
364   * will never be mountable)
365   */
366  struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
367  					unsigned long magic)
368  {
369  	struct pseudo_fs_context *ctx;
370  
371  	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
372  	if (likely(ctx)) {
373  		ctx->magic = magic;
374  		fc->fs_private = ctx;
375  		fc->ops = &pseudo_fs_context_ops;
376  		fc->sb_flags |= SB_NOUSER;
377  		fc->global = true;
378  	}
379  	return ctx;
380  }
381  EXPORT_SYMBOL(init_pseudo);
382  
383  int simple_open(struct inode *inode, struct file *file)
384  {
385  	if (inode->i_private)
386  		file->private_data = inode->i_private;
387  	return 0;
388  }
389  EXPORT_SYMBOL(simple_open);
390  
391  int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
392  {
393  	struct inode *inode = d_inode(old_dentry);
394  
395  	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
396  	inc_nlink(inode);
397  	ihold(inode);
398  	dget(dentry);
399  	d_instantiate(dentry, inode);
400  	return 0;
401  }
402  EXPORT_SYMBOL(simple_link);
403  
404  int simple_empty(struct dentry *dentry)
405  {
406  	struct dentry *child;
407  	int ret = 0;
408  
409  	spin_lock(&dentry->d_lock);
410  	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
411  		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
412  		if (simple_positive(child)) {
413  			spin_unlock(&child->d_lock);
414  			goto out;
415  		}
416  		spin_unlock(&child->d_lock);
417  	}
418  	ret = 1;
419  out:
420  	spin_unlock(&dentry->d_lock);
421  	return ret;
422  }
423  EXPORT_SYMBOL(simple_empty);
424  
425  int simple_unlink(struct inode *dir, struct dentry *dentry)
426  {
427  	struct inode *inode = d_inode(dentry);
428  
429  	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
430  	drop_nlink(inode);
431  	dput(dentry);
432  	return 0;
433  }
434  EXPORT_SYMBOL(simple_unlink);
435  
436  int simple_rmdir(struct inode *dir, struct dentry *dentry)
437  {
438  	if (!simple_empty(dentry))
439  		return -ENOTEMPTY;
440  
441  	drop_nlink(d_inode(dentry));
442  	simple_unlink(dir, dentry);
443  	drop_nlink(dir);
444  	return 0;
445  }
446  EXPORT_SYMBOL(simple_rmdir);
447  
448  int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
449  		  struct inode *new_dir, struct dentry *new_dentry,
450  		  unsigned int flags)
451  {
452  	struct inode *inode = d_inode(old_dentry);
453  	int they_are_dirs = d_is_dir(old_dentry);
454  
455  	if (flags & ~RENAME_NOREPLACE)
456  		return -EINVAL;
457  
458  	if (!simple_empty(new_dentry))
459  		return -ENOTEMPTY;
460  
461  	if (d_really_is_positive(new_dentry)) {
462  		simple_unlink(new_dir, new_dentry);
463  		if (they_are_dirs) {
464  			drop_nlink(d_inode(new_dentry));
465  			drop_nlink(old_dir);
466  		}
467  	} else if (they_are_dirs) {
468  		drop_nlink(old_dir);
469  		inc_nlink(new_dir);
470  	}
471  
472  	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
473  		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
474  
475  	return 0;
476  }
477  EXPORT_SYMBOL(simple_rename);
478  
479  /**
480   * simple_setattr - setattr for simple filesystem
481   * @dentry: dentry
482   * @iattr: iattr structure
483   *
484   * Returns 0 on success, -error on failure.
485   *
486   * simple_setattr is a simple ->setattr implementation without a proper
487   * implementation of size changes.
488   *
489   * It can either be used for in-memory filesystems or special files
490   * on simple regular filesystems.  Anything that needs to change on-disk
491   * or wire state on size changes needs its own setattr method.
492   */
493  int simple_setattr(struct dentry *dentry, struct iattr *iattr)
494  {
495  	struct inode *inode = d_inode(dentry);
496  	int error;
497  
498  	error = setattr_prepare(dentry, iattr);
499  	if (error)
500  		return error;
501  
502  	if (iattr->ia_valid & ATTR_SIZE)
503  		truncate_setsize(inode, iattr->ia_size);
504  	setattr_copy(inode, iattr);
505  	mark_inode_dirty(inode);
506  	return 0;
507  }
508  EXPORT_SYMBOL(simple_setattr);
509  
510  int simple_readpage(struct file *file, struct page *page)
511  {
512  	clear_highpage(page);
513  	flush_dcache_page(page);
514  	SetPageUptodate(page);
515  	unlock_page(page);
516  	return 0;
517  }
518  EXPORT_SYMBOL(simple_readpage);
519  
520  int simple_write_begin(struct file *file, struct address_space *mapping,
521  			loff_t pos, unsigned len, unsigned flags,
522  			struct page **pagep, void **fsdata)
523  {
524  	struct page *page;
525  	pgoff_t index;
526  
527  	index = pos >> PAGE_SHIFT;
528  
529  	page = grab_cache_page_write_begin(mapping, index, flags);
530  	if (!page)
531  		return -ENOMEM;
532  
533  	*pagep = page;
534  
535  	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
536  		unsigned from = pos & (PAGE_SIZE - 1);
537  
538  		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
539  	}
540  	return 0;
541  }
542  EXPORT_SYMBOL(simple_write_begin);
543  
544  /**
545   * simple_write_end - .write_end helper for non-block-device FSes
546   * @file: See .write_end of address_space_operations
547   * @mapping: 		"
548   * @pos: 		"
549   * @len: 		"
550   * @copied: 		"
551   * @page: 		"
552   * @fsdata: 		"
553   *
554   * simple_write_end does the minimum needed for updating a page after writing is
555   * done. It has the same API signature as the .write_end of
556   * address_space_operations vector. So it can just be set onto .write_end for
557   * FSes that don't need any other processing. i_mutex is assumed to be held.
558   * Block based filesystems should use generic_write_end().
559   * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
560   * is not called, so a filesystem that actually does store data in .write_inode
561   * should extend on what's done here with a call to mark_inode_dirty() in the
562   * case that i_size has changed.
563   *
564   * Use *ONLY* with simple_readpage()
565   */
566  int simple_write_end(struct file *file, struct address_space *mapping,
567  			loff_t pos, unsigned len, unsigned copied,
568  			struct page *page, void *fsdata)
569  {
570  	struct inode *inode = page->mapping->host;
571  	loff_t last_pos = pos + copied;
572  
573  	/* zero the stale part of the page if we did a short copy */
574  	if (!PageUptodate(page)) {
575  		if (copied < len) {
576  			unsigned from = pos & (PAGE_SIZE - 1);
577  
578  			zero_user(page, from + copied, len - copied);
579  		}
580  		SetPageUptodate(page);
581  	}
582  	/*
583  	 * No need to use i_size_read() here, the i_size
584  	 * cannot change under us because we hold the i_mutex.
585  	 */
586  	if (last_pos > inode->i_size)
587  		i_size_write(inode, last_pos);
588  
589  	set_page_dirty(page);
590  	unlock_page(page);
591  	put_page(page);
592  
593  	return copied;
594  }
595  EXPORT_SYMBOL(simple_write_end);
596  
597  /*
598   * the inodes created here are not hashed. If you use iunique to generate
599   * unique inode values later for this filesystem, then you must take care
600   * to pass it an appropriate max_reserved value to avoid collisions.
601   */
602  int simple_fill_super(struct super_block *s, unsigned long magic,
603  		      const struct tree_descr *files)
604  {
605  	struct inode *inode;
606  	struct dentry *root;
607  	struct dentry *dentry;
608  	int i;
609  
610  	s->s_blocksize = PAGE_SIZE;
611  	s->s_blocksize_bits = PAGE_SHIFT;
612  	s->s_magic = magic;
613  	s->s_op = &simple_super_operations;
614  	s->s_time_gran = 1;
615  
616  	inode = new_inode(s);
617  	if (!inode)
618  		return -ENOMEM;
619  	/*
620  	 * because the root inode is 1, the files array must not contain an
621  	 * entry at index 1
622  	 */
623  	inode->i_ino = 1;
624  	inode->i_mode = S_IFDIR | 0755;
625  	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
626  	inode->i_op = &simple_dir_inode_operations;
627  	inode->i_fop = &simple_dir_operations;
628  	set_nlink(inode, 2);
629  	root = d_make_root(inode);
630  	if (!root)
631  		return -ENOMEM;
632  	for (i = 0; !files->name || files->name[0]; i++, files++) {
633  		if (!files->name)
634  			continue;
635  
636  		/* warn if it tries to conflict with the root inode */
637  		if (unlikely(i == 1))
638  			printk(KERN_WARNING "%s: %s passed in a files array"
639  				"with an index of 1!\n", __func__,
640  				s->s_type->name);
641  
642  		dentry = d_alloc_name(root, files->name);
643  		if (!dentry)
644  			goto out;
645  		inode = new_inode(s);
646  		if (!inode) {
647  			dput(dentry);
648  			goto out;
649  		}
650  		inode->i_mode = S_IFREG | files->mode;
651  		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
652  		inode->i_fop = files->ops;
653  		inode->i_ino = i;
654  		d_add(dentry, inode);
655  	}
656  	s->s_root = root;
657  	return 0;
658  out:
659  	d_genocide(root);
660  	shrink_dcache_parent(root);
661  	dput(root);
662  	return -ENOMEM;
663  }
664  EXPORT_SYMBOL(simple_fill_super);
665  
666  static DEFINE_SPINLOCK(pin_fs_lock);
667  
668  int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
669  {
670  	struct vfsmount *mnt = NULL;
671  	spin_lock(&pin_fs_lock);
672  	if (unlikely(!*mount)) {
673  		spin_unlock(&pin_fs_lock);
674  		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
675  		if (IS_ERR(mnt))
676  			return PTR_ERR(mnt);
677  		spin_lock(&pin_fs_lock);
678  		if (!*mount)
679  			*mount = mnt;
680  	}
681  	mntget(*mount);
682  	++*count;
683  	spin_unlock(&pin_fs_lock);
684  	mntput(mnt);
685  	return 0;
686  }
687  EXPORT_SYMBOL(simple_pin_fs);
688  
689  void simple_release_fs(struct vfsmount **mount, int *count)
690  {
691  	struct vfsmount *mnt;
692  	spin_lock(&pin_fs_lock);
693  	mnt = *mount;
694  	if (!--*count)
695  		*mount = NULL;
696  	spin_unlock(&pin_fs_lock);
697  	mntput(mnt);
698  }
699  EXPORT_SYMBOL(simple_release_fs);
700  
701  /**
702   * simple_read_from_buffer - copy data from the buffer to user space
703   * @to: the user space buffer to read to
704   * @count: the maximum number of bytes to read
705   * @ppos: the current position in the buffer
706   * @from: the buffer to read from
707   * @available: the size of the buffer
708   *
709   * The simple_read_from_buffer() function reads up to @count bytes from the
710   * buffer @from at offset @ppos into the user space address starting at @to.
711   *
712   * On success, the number of bytes read is returned and the offset @ppos is
713   * advanced by this number, or negative value is returned on error.
714   **/
715  ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
716  				const void *from, size_t available)
717  {
718  	loff_t pos = *ppos;
719  	size_t ret;
720  
721  	if (pos < 0)
722  		return -EINVAL;
723  	if (pos >= available || !count)
724  		return 0;
725  	if (count > available - pos)
726  		count = available - pos;
727  	ret = copy_to_user(to, from + pos, count);
728  	if (ret == count)
729  		return -EFAULT;
730  	count -= ret;
731  	*ppos = pos + count;
732  	return count;
733  }
734  EXPORT_SYMBOL(simple_read_from_buffer);
735  
736  /**
737   * simple_write_to_buffer - copy data from user space to the buffer
738   * @to: the buffer to write to
739   * @available: the size of the buffer
740   * @ppos: the current position in the buffer
741   * @from: the user space buffer to read from
742   * @count: the maximum number of bytes to read
743   *
744   * The simple_write_to_buffer() function reads up to @count bytes from the user
745   * space address starting at @from into the buffer @to at offset @ppos.
746   *
747   * On success, the number of bytes written is returned and the offset @ppos is
748   * advanced by this number, or negative value is returned on error.
749   **/
750  ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
751  		const void __user *from, size_t count)
752  {
753  	loff_t pos = *ppos;
754  	size_t res;
755  
756  	if (pos < 0)
757  		return -EINVAL;
758  	if (pos >= available || !count)
759  		return 0;
760  	if (count > available - pos)
761  		count = available - pos;
762  	res = copy_from_user(to + pos, from, count);
763  	if (res == count)
764  		return -EFAULT;
765  	count -= res;
766  	*ppos = pos + count;
767  	return count;
768  }
769  EXPORT_SYMBOL(simple_write_to_buffer);
770  
771  /**
772   * memory_read_from_buffer - copy data from the buffer
773   * @to: the kernel space buffer to read to
774   * @count: the maximum number of bytes to read
775   * @ppos: the current position in the buffer
776   * @from: the buffer to read from
777   * @available: the size of the buffer
778   *
779   * The memory_read_from_buffer() function reads up to @count bytes from the
780   * buffer @from at offset @ppos into the kernel space address starting at @to.
781   *
782   * On success, the number of bytes read is returned and the offset @ppos is
783   * advanced by this number, or negative value is returned on error.
784   **/
785  ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
786  				const void *from, size_t available)
787  {
788  	loff_t pos = *ppos;
789  
790  	if (pos < 0)
791  		return -EINVAL;
792  	if (pos >= available)
793  		return 0;
794  	if (count > available - pos)
795  		count = available - pos;
796  	memcpy(to, from + pos, count);
797  	*ppos = pos + count;
798  
799  	return count;
800  }
801  EXPORT_SYMBOL(memory_read_from_buffer);
802  
803  /*
804   * Transaction based IO.
805   * The file expects a single write which triggers the transaction, and then
806   * possibly a read which collects the result - which is stored in a
807   * file-local buffer.
808   */
809  
810  void simple_transaction_set(struct file *file, size_t n)
811  {
812  	struct simple_transaction_argresp *ar = file->private_data;
813  
814  	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
815  
816  	/*
817  	 * The barrier ensures that ar->size will really remain zero until
818  	 * ar->data is ready for reading.
819  	 */
820  	smp_mb();
821  	ar->size = n;
822  }
823  EXPORT_SYMBOL(simple_transaction_set);
824  
825  char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
826  {
827  	struct simple_transaction_argresp *ar;
828  	static DEFINE_SPINLOCK(simple_transaction_lock);
829  
830  	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
831  		return ERR_PTR(-EFBIG);
832  
833  	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
834  	if (!ar)
835  		return ERR_PTR(-ENOMEM);
836  
837  	spin_lock(&simple_transaction_lock);
838  
839  	/* only one write allowed per open */
840  	if (file->private_data) {
841  		spin_unlock(&simple_transaction_lock);
842  		free_page((unsigned long)ar);
843  		return ERR_PTR(-EBUSY);
844  	}
845  
846  	file->private_data = ar;
847  
848  	spin_unlock(&simple_transaction_lock);
849  
850  	if (copy_from_user(ar->data, buf, size))
851  		return ERR_PTR(-EFAULT);
852  
853  	return ar->data;
854  }
855  EXPORT_SYMBOL(simple_transaction_get);
856  
857  ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
858  {
859  	struct simple_transaction_argresp *ar = file->private_data;
860  
861  	if (!ar)
862  		return 0;
863  	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
864  }
865  EXPORT_SYMBOL(simple_transaction_read);
866  
867  int simple_transaction_release(struct inode *inode, struct file *file)
868  {
869  	free_page((unsigned long)file->private_data);
870  	return 0;
871  }
872  EXPORT_SYMBOL(simple_transaction_release);
873  
874  /* Simple attribute files */
875  
876  struct simple_attr {
877  	int (*get)(void *, u64 *);
878  	int (*set)(void *, u64);
879  	char get_buf[24];	/* enough to store a u64 and "\n\0" */
880  	char set_buf[24];
881  	void *data;
882  	const char *fmt;	/* format for read operation */
883  	struct mutex mutex;	/* protects access to these buffers */
884  };
885  
886  /* simple_attr_open is called by an actual attribute open file operation
887   * to set the attribute specific access operations. */
888  int simple_attr_open(struct inode *inode, struct file *file,
889  		     int (*get)(void *, u64 *), int (*set)(void *, u64),
890  		     const char *fmt)
891  {
892  	struct simple_attr *attr;
893  
894  	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
895  	if (!attr)
896  		return -ENOMEM;
897  
898  	attr->get = get;
899  	attr->set = set;
900  	attr->data = inode->i_private;
901  	attr->fmt = fmt;
902  	mutex_init(&attr->mutex);
903  
904  	file->private_data = attr;
905  
906  	return nonseekable_open(inode, file);
907  }
908  EXPORT_SYMBOL_GPL(simple_attr_open);
909  
910  int simple_attr_release(struct inode *inode, struct file *file)
911  {
912  	kfree(file->private_data);
913  	return 0;
914  }
915  EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
916  
917  /* read from the buffer that is filled with the get function */
918  ssize_t simple_attr_read(struct file *file, char __user *buf,
919  			 size_t len, loff_t *ppos)
920  {
921  	struct simple_attr *attr;
922  	size_t size;
923  	ssize_t ret;
924  
925  	attr = file->private_data;
926  
927  	if (!attr->get)
928  		return -EACCES;
929  
930  	ret = mutex_lock_interruptible(&attr->mutex);
931  	if (ret)
932  		return ret;
933  
934  	if (*ppos && attr->get_buf[0]) {
935  		/* continued read */
936  		size = strlen(attr->get_buf);
937  	} else {
938  		/* first read */
939  		u64 val;
940  		ret = attr->get(attr->data, &val);
941  		if (ret)
942  			goto out;
943  
944  		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
945  				 attr->fmt, (unsigned long long)val);
946  	}
947  
948  	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
949  out:
950  	mutex_unlock(&attr->mutex);
951  	return ret;
952  }
953  EXPORT_SYMBOL_GPL(simple_attr_read);
954  
955  /* interpret the buffer as a number to call the set function with */
956  ssize_t simple_attr_write(struct file *file, const char __user *buf,
957  			  size_t len, loff_t *ppos)
958  {
959  	struct simple_attr *attr;
960  	u64 val;
961  	size_t size;
962  	ssize_t ret;
963  
964  	attr = file->private_data;
965  	if (!attr->set)
966  		return -EACCES;
967  
968  	ret = mutex_lock_interruptible(&attr->mutex);
969  	if (ret)
970  		return ret;
971  
972  	ret = -EFAULT;
973  	size = min(sizeof(attr->set_buf) - 1, len);
974  	if (copy_from_user(attr->set_buf, buf, size))
975  		goto out;
976  
977  	attr->set_buf[size] = '\0';
978  	val = simple_strtoll(attr->set_buf, NULL, 0);
979  	ret = attr->set(attr->data, val);
980  	if (ret == 0)
981  		ret = len; /* on success, claim we got the whole input */
982  out:
983  	mutex_unlock(&attr->mutex);
984  	return ret;
985  }
986  EXPORT_SYMBOL_GPL(simple_attr_write);
987  
988  /**
989   * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
990   * @sb:		filesystem to do the file handle conversion on
991   * @fid:	file handle to convert
992   * @fh_len:	length of the file handle in bytes
993   * @fh_type:	type of file handle
994   * @get_inode:	filesystem callback to retrieve inode
995   *
996   * This function decodes @fid as long as it has one of the well-known
997   * Linux filehandle types and calls @get_inode on it to retrieve the
998   * inode for the object specified in the file handle.
999   */
1000  struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1001  		int fh_len, int fh_type, struct inode *(*get_inode)
1002  			(struct super_block *sb, u64 ino, u32 gen))
1003  {
1004  	struct inode *inode = NULL;
1005  
1006  	if (fh_len < 2)
1007  		return NULL;
1008  
1009  	switch (fh_type) {
1010  	case FILEID_INO32_GEN:
1011  	case FILEID_INO32_GEN_PARENT:
1012  		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1013  		break;
1014  	}
1015  
1016  	return d_obtain_alias(inode);
1017  }
1018  EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1019  
1020  /**
1021   * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1022   * @sb:		filesystem to do the file handle conversion on
1023   * @fid:	file handle to convert
1024   * @fh_len:	length of the file handle in bytes
1025   * @fh_type:	type of file handle
1026   * @get_inode:	filesystem callback to retrieve inode
1027   *
1028   * This function decodes @fid as long as it has one of the well-known
1029   * Linux filehandle types and calls @get_inode on it to retrieve the
1030   * inode for the _parent_ object specified in the file handle if it
1031   * is specified in the file handle, or NULL otherwise.
1032   */
1033  struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1034  		int fh_len, int fh_type, struct inode *(*get_inode)
1035  			(struct super_block *sb, u64 ino, u32 gen))
1036  {
1037  	struct inode *inode = NULL;
1038  
1039  	if (fh_len <= 2)
1040  		return NULL;
1041  
1042  	switch (fh_type) {
1043  	case FILEID_INO32_GEN_PARENT:
1044  		inode = get_inode(sb, fid->i32.parent_ino,
1045  				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1046  		break;
1047  	}
1048  
1049  	return d_obtain_alias(inode);
1050  }
1051  EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1052  
1053  /**
1054   * __generic_file_fsync - generic fsync implementation for simple filesystems
1055   *
1056   * @file:	file to synchronize
1057   * @start:	start offset in bytes
1058   * @end:	end offset in bytes (inclusive)
1059   * @datasync:	only synchronize essential metadata if true
1060   *
1061   * This is a generic implementation of the fsync method for simple
1062   * filesystems which track all non-inode metadata in the buffers list
1063   * hanging off the address_space structure.
1064   */
1065  int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1066  				 int datasync)
1067  {
1068  	struct inode *inode = file->f_mapping->host;
1069  	int err;
1070  	int ret;
1071  
1072  	err = file_write_and_wait_range(file, start, end);
1073  	if (err)
1074  		return err;
1075  
1076  	inode_lock(inode);
1077  	ret = sync_mapping_buffers(inode->i_mapping);
1078  	if (!(inode->i_state & I_DIRTY_ALL))
1079  		goto out;
1080  	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1081  		goto out;
1082  
1083  	err = sync_inode_metadata(inode, 1);
1084  	if (ret == 0)
1085  		ret = err;
1086  
1087  out:
1088  	inode_unlock(inode);
1089  	/* check and advance again to catch errors after syncing out buffers */
1090  	err = file_check_and_advance_wb_err(file);
1091  	if (ret == 0)
1092  		ret = err;
1093  	return ret;
1094  }
1095  EXPORT_SYMBOL(__generic_file_fsync);
1096  
1097  /**
1098   * generic_file_fsync - generic fsync implementation for simple filesystems
1099   *			with flush
1100   * @file:	file to synchronize
1101   * @start:	start offset in bytes
1102   * @end:	end offset in bytes (inclusive)
1103   * @datasync:	only synchronize essential metadata if true
1104   *
1105   */
1106  
1107  int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1108  		       int datasync)
1109  {
1110  	struct inode *inode = file->f_mapping->host;
1111  	int err;
1112  
1113  	err = __generic_file_fsync(file, start, end, datasync);
1114  	if (err)
1115  		return err;
1116  	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1117  }
1118  EXPORT_SYMBOL(generic_file_fsync);
1119  
1120  /**
1121   * generic_check_addressable - Check addressability of file system
1122   * @blocksize_bits:	log of file system block size
1123   * @num_blocks:		number of blocks in file system
1124   *
1125   * Determine whether a file system with @num_blocks blocks (and a
1126   * block size of 2**@blocksize_bits) is addressable by the sector_t
1127   * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1128   */
1129  int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1130  {
1131  	u64 last_fs_block = num_blocks - 1;
1132  	u64 last_fs_page =
1133  		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1134  
1135  	if (unlikely(num_blocks == 0))
1136  		return 0;
1137  
1138  	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1139  		return -EINVAL;
1140  
1141  	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1142  	    (last_fs_page > (pgoff_t)(~0ULL))) {
1143  		return -EFBIG;
1144  	}
1145  	return 0;
1146  }
1147  EXPORT_SYMBOL(generic_check_addressable);
1148  
1149  /*
1150   * No-op implementation of ->fsync for in-memory filesystems.
1151   */
1152  int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1153  {
1154  	return 0;
1155  }
1156  EXPORT_SYMBOL(noop_fsync);
1157  
1158  int noop_set_page_dirty(struct page *page)
1159  {
1160  	/*
1161  	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1162  	 * tracking in the page object, dax does all dirty tracking in
1163  	 * the inode address_space in response to mkwrite faults. In the
1164  	 * dax case we only need to worry about potentially dirty CPU
1165  	 * caches, not dirty page cache pages to write back.
1166  	 *
1167  	 * This callback is defined to prevent fallback to
1168  	 * __set_page_dirty_buffers() in set_page_dirty().
1169  	 */
1170  	return 0;
1171  }
1172  EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1173  
1174  void noop_invalidatepage(struct page *page, unsigned int offset,
1175  		unsigned int length)
1176  {
1177  	/*
1178  	 * There is no page cache to invalidate in the dax case, however
1179  	 * we need this callback defined to prevent falling back to
1180  	 * block_invalidatepage() in do_invalidatepage().
1181  	 */
1182  }
1183  EXPORT_SYMBOL_GPL(noop_invalidatepage);
1184  
1185  ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1186  {
1187  	/*
1188  	 * iomap based filesystems support direct I/O without need for
1189  	 * this callback. However, it still needs to be set in
1190  	 * inode->a_ops so that open/fcntl know that direct I/O is
1191  	 * generally supported.
1192  	 */
1193  	return -EINVAL;
1194  }
1195  EXPORT_SYMBOL_GPL(noop_direct_IO);
1196  
1197  /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1198  void kfree_link(void *p)
1199  {
1200  	kfree(p);
1201  }
1202  EXPORT_SYMBOL(kfree_link);
1203  
1204  /*
1205   * nop .set_page_dirty method so that people can use .page_mkwrite on
1206   * anon inodes.
1207   */
1208  static int anon_set_page_dirty(struct page *page)
1209  {
1210  	return 0;
1211  };
1212  
1213  /*
1214   * A single inode exists for all anon_inode files. Contrary to pipes,
1215   * anon_inode inodes have no associated per-instance data, so we need
1216   * only allocate one of them.
1217   */
1218  struct inode *alloc_anon_inode(struct super_block *s)
1219  {
1220  	static const struct address_space_operations anon_aops = {
1221  		.set_page_dirty = anon_set_page_dirty,
1222  	};
1223  	struct inode *inode = new_inode_pseudo(s);
1224  
1225  	if (!inode)
1226  		return ERR_PTR(-ENOMEM);
1227  
1228  	inode->i_ino = get_next_ino();
1229  	inode->i_mapping->a_ops = &anon_aops;
1230  
1231  	/*
1232  	 * Mark the inode dirty from the very beginning,
1233  	 * that way it will never be moved to the dirty
1234  	 * list because mark_inode_dirty() will think
1235  	 * that it already _is_ on the dirty list.
1236  	 */
1237  	inode->i_state = I_DIRTY;
1238  	inode->i_mode = S_IRUSR | S_IWUSR;
1239  	inode->i_uid = current_fsuid();
1240  	inode->i_gid = current_fsgid();
1241  	inode->i_flags |= S_PRIVATE;
1242  	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1243  	return inode;
1244  }
1245  EXPORT_SYMBOL(alloc_anon_inode);
1246  
1247  /**
1248   * simple_nosetlease - generic helper for prohibiting leases
1249   * @filp: file pointer
1250   * @arg: type of lease to obtain
1251   * @flp: new lease supplied for insertion
1252   * @priv: private data for lm_setup operation
1253   *
1254   * Generic helper for filesystems that do not wish to allow leases to be set.
1255   * All arguments are ignored and it just returns -EINVAL.
1256   */
1257  int
1258  simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1259  		  void **priv)
1260  {
1261  	return -EINVAL;
1262  }
1263  EXPORT_SYMBOL(simple_nosetlease);
1264  
1265  /**
1266   * simple_get_link - generic helper to get the target of "fast" symlinks
1267   * @dentry: not used here
1268   * @inode: the symlink inode
1269   * @done: not used here
1270   *
1271   * Generic helper for filesystems to use for symlink inodes where a pointer to
1272   * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1273   * since as an optimization the path lookup code uses any non-NULL ->i_link
1274   * directly, without calling ->get_link().  But ->get_link() still must be set,
1275   * to mark the inode_operations as being for a symlink.
1276   *
1277   * Return: the symlink target
1278   */
1279  const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1280  			    struct delayed_call *done)
1281  {
1282  	return inode->i_link;
1283  }
1284  EXPORT_SYMBOL(simple_get_link);
1285  
1286  const struct inode_operations simple_symlink_inode_operations = {
1287  	.get_link = simple_get_link,
1288  };
1289  EXPORT_SYMBOL(simple_symlink_inode_operations);
1290  
1291  /*
1292   * Operations for a permanently empty directory.
1293   */
1294  static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1295  {
1296  	return ERR_PTR(-ENOENT);
1297  }
1298  
1299  static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1300  			     u32 request_mask, unsigned int query_flags)
1301  {
1302  	struct inode *inode = d_inode(path->dentry);
1303  	generic_fillattr(inode, stat);
1304  	return 0;
1305  }
1306  
1307  static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1308  {
1309  	return -EPERM;
1310  }
1311  
1312  static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1313  {
1314  	return -EOPNOTSUPP;
1315  }
1316  
1317  static const struct inode_operations empty_dir_inode_operations = {
1318  	.lookup		= empty_dir_lookup,
1319  	.permission	= generic_permission,
1320  	.setattr	= empty_dir_setattr,
1321  	.getattr	= empty_dir_getattr,
1322  	.listxattr	= empty_dir_listxattr,
1323  };
1324  
1325  static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1326  {
1327  	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1328  	return generic_file_llseek_size(file, offset, whence, 2, 2);
1329  }
1330  
1331  static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1332  {
1333  	dir_emit_dots(file, ctx);
1334  	return 0;
1335  }
1336  
1337  static const struct file_operations empty_dir_operations = {
1338  	.llseek		= empty_dir_llseek,
1339  	.read		= generic_read_dir,
1340  	.iterate_shared	= empty_dir_readdir,
1341  	.fsync		= noop_fsync,
1342  };
1343  
1344  
1345  void make_empty_dir_inode(struct inode *inode)
1346  {
1347  	set_nlink(inode, 2);
1348  	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1349  	inode->i_uid = GLOBAL_ROOT_UID;
1350  	inode->i_gid = GLOBAL_ROOT_GID;
1351  	inode->i_rdev = 0;
1352  	inode->i_size = 0;
1353  	inode->i_blkbits = PAGE_SHIFT;
1354  	inode->i_blocks = 0;
1355  
1356  	inode->i_op = &empty_dir_inode_operations;
1357  	inode->i_opflags &= ~IOP_XATTR;
1358  	inode->i_fop = &empty_dir_operations;
1359  }
1360  
1361  bool is_empty_dir_inode(struct inode *inode)
1362  {
1363  	return (inode->i_fop == &empty_dir_operations) &&
1364  		(inode->i_op == &empty_dir_inode_operations);
1365  }
1366