1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/writeback.h> 19 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 20 #include <linux/fs_context.h> 21 #include <linux/pseudo_fs.h> 22 #include <linux/fsnotify.h> 23 #include <linux/unicode.h> 24 #include <linux/fscrypt.h> 25 26 #include <linux/uaccess.h> 27 28 #include "internal.h" 29 30 int simple_getattr(struct user_namespace *mnt_userns, const struct path *path, 31 struct kstat *stat, u32 request_mask, 32 unsigned int query_flags) 33 { 34 struct inode *inode = d_inode(path->dentry); 35 generic_fillattr(&init_user_ns, inode, stat); 36 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 37 return 0; 38 } 39 EXPORT_SYMBOL(simple_getattr); 40 41 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 42 { 43 buf->f_type = dentry->d_sb->s_magic; 44 buf->f_bsize = PAGE_SIZE; 45 buf->f_namelen = NAME_MAX; 46 return 0; 47 } 48 EXPORT_SYMBOL(simple_statfs); 49 50 /* 51 * Retaining negative dentries for an in-memory filesystem just wastes 52 * memory and lookup time: arrange for them to be deleted immediately. 53 */ 54 int always_delete_dentry(const struct dentry *dentry) 55 { 56 return 1; 57 } 58 EXPORT_SYMBOL(always_delete_dentry); 59 60 const struct dentry_operations simple_dentry_operations = { 61 .d_delete = always_delete_dentry, 62 }; 63 EXPORT_SYMBOL(simple_dentry_operations); 64 65 /* 66 * Lookup the data. This is trivial - if the dentry didn't already 67 * exist, we know it is negative. Set d_op to delete negative dentries. 68 */ 69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 70 { 71 if (dentry->d_name.len > NAME_MAX) 72 return ERR_PTR(-ENAMETOOLONG); 73 if (!dentry->d_sb->s_d_op) 74 d_set_d_op(dentry, &simple_dentry_operations); 75 d_add(dentry, NULL); 76 return NULL; 77 } 78 EXPORT_SYMBOL(simple_lookup); 79 80 int dcache_dir_open(struct inode *inode, struct file *file) 81 { 82 file->private_data = d_alloc_cursor(file->f_path.dentry); 83 84 return file->private_data ? 0 : -ENOMEM; 85 } 86 EXPORT_SYMBOL(dcache_dir_open); 87 88 int dcache_dir_close(struct inode *inode, struct file *file) 89 { 90 dput(file->private_data); 91 return 0; 92 } 93 EXPORT_SYMBOL(dcache_dir_close); 94 95 /* parent is locked at least shared */ 96 /* 97 * Returns an element of siblings' list. 98 * We are looking for <count>th positive after <p>; if 99 * found, dentry is grabbed and returned to caller. 100 * If no such element exists, NULL is returned. 101 */ 102 static struct dentry *scan_positives(struct dentry *cursor, 103 struct list_head *p, 104 loff_t count, 105 struct dentry *last) 106 { 107 struct dentry *dentry = cursor->d_parent, *found = NULL; 108 109 spin_lock(&dentry->d_lock); 110 while ((p = p->next) != &dentry->d_subdirs) { 111 struct dentry *d = list_entry(p, struct dentry, d_child); 112 // we must at least skip cursors, to avoid livelocks 113 if (d->d_flags & DCACHE_DENTRY_CURSOR) 114 continue; 115 if (simple_positive(d) && !--count) { 116 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 117 if (simple_positive(d)) 118 found = dget_dlock(d); 119 spin_unlock(&d->d_lock); 120 if (likely(found)) 121 break; 122 count = 1; 123 } 124 if (need_resched()) { 125 list_move(&cursor->d_child, p); 126 p = &cursor->d_child; 127 spin_unlock(&dentry->d_lock); 128 cond_resched(); 129 spin_lock(&dentry->d_lock); 130 } 131 } 132 spin_unlock(&dentry->d_lock); 133 dput(last); 134 return found; 135 } 136 137 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 138 { 139 struct dentry *dentry = file->f_path.dentry; 140 switch (whence) { 141 case 1: 142 offset += file->f_pos; 143 fallthrough; 144 case 0: 145 if (offset >= 0) 146 break; 147 fallthrough; 148 default: 149 return -EINVAL; 150 } 151 if (offset != file->f_pos) { 152 struct dentry *cursor = file->private_data; 153 struct dentry *to = NULL; 154 155 inode_lock_shared(dentry->d_inode); 156 157 if (offset > 2) 158 to = scan_positives(cursor, &dentry->d_subdirs, 159 offset - 2, NULL); 160 spin_lock(&dentry->d_lock); 161 if (to) 162 list_move(&cursor->d_child, &to->d_child); 163 else 164 list_del_init(&cursor->d_child); 165 spin_unlock(&dentry->d_lock); 166 dput(to); 167 168 file->f_pos = offset; 169 170 inode_unlock_shared(dentry->d_inode); 171 } 172 return offset; 173 } 174 EXPORT_SYMBOL(dcache_dir_lseek); 175 176 /* Relationship between i_mode and the DT_xxx types */ 177 static inline unsigned char dt_type(struct inode *inode) 178 { 179 return (inode->i_mode >> 12) & 15; 180 } 181 182 /* 183 * Directory is locked and all positive dentries in it are safe, since 184 * for ramfs-type trees they can't go away without unlink() or rmdir(), 185 * both impossible due to the lock on directory. 186 */ 187 188 int dcache_readdir(struct file *file, struct dir_context *ctx) 189 { 190 struct dentry *dentry = file->f_path.dentry; 191 struct dentry *cursor = file->private_data; 192 struct list_head *anchor = &dentry->d_subdirs; 193 struct dentry *next = NULL; 194 struct list_head *p; 195 196 if (!dir_emit_dots(file, ctx)) 197 return 0; 198 199 if (ctx->pos == 2) 200 p = anchor; 201 else if (!list_empty(&cursor->d_child)) 202 p = &cursor->d_child; 203 else 204 return 0; 205 206 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 207 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 208 d_inode(next)->i_ino, dt_type(d_inode(next)))) 209 break; 210 ctx->pos++; 211 p = &next->d_child; 212 } 213 spin_lock(&dentry->d_lock); 214 if (next) 215 list_move_tail(&cursor->d_child, &next->d_child); 216 else 217 list_del_init(&cursor->d_child); 218 spin_unlock(&dentry->d_lock); 219 dput(next); 220 221 return 0; 222 } 223 EXPORT_SYMBOL(dcache_readdir); 224 225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 226 { 227 return -EISDIR; 228 } 229 EXPORT_SYMBOL(generic_read_dir); 230 231 const struct file_operations simple_dir_operations = { 232 .open = dcache_dir_open, 233 .release = dcache_dir_close, 234 .llseek = dcache_dir_lseek, 235 .read = generic_read_dir, 236 .iterate_shared = dcache_readdir, 237 .fsync = noop_fsync, 238 }; 239 EXPORT_SYMBOL(simple_dir_operations); 240 241 const struct inode_operations simple_dir_inode_operations = { 242 .lookup = simple_lookup, 243 }; 244 EXPORT_SYMBOL(simple_dir_inode_operations); 245 246 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 247 { 248 struct dentry *child = NULL; 249 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; 250 251 spin_lock(&parent->d_lock); 252 while ((p = p->next) != &parent->d_subdirs) { 253 struct dentry *d = container_of(p, struct dentry, d_child); 254 if (simple_positive(d)) { 255 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 256 if (simple_positive(d)) 257 child = dget_dlock(d); 258 spin_unlock(&d->d_lock); 259 if (likely(child)) 260 break; 261 } 262 } 263 spin_unlock(&parent->d_lock); 264 dput(prev); 265 return child; 266 } 267 268 void simple_recursive_removal(struct dentry *dentry, 269 void (*callback)(struct dentry *)) 270 { 271 struct dentry *this = dget(dentry); 272 while (true) { 273 struct dentry *victim = NULL, *child; 274 struct inode *inode = this->d_inode; 275 276 inode_lock(inode); 277 if (d_is_dir(this)) 278 inode->i_flags |= S_DEAD; 279 while ((child = find_next_child(this, victim)) == NULL) { 280 // kill and ascend 281 // update metadata while it's still locked 282 inode->i_ctime = current_time(inode); 283 clear_nlink(inode); 284 inode_unlock(inode); 285 victim = this; 286 this = this->d_parent; 287 inode = this->d_inode; 288 inode_lock(inode); 289 if (simple_positive(victim)) { 290 d_invalidate(victim); // avoid lost mounts 291 if (d_is_dir(victim)) 292 fsnotify_rmdir(inode, victim); 293 else 294 fsnotify_unlink(inode, victim); 295 if (callback) 296 callback(victim); 297 dput(victim); // unpin it 298 } 299 if (victim == dentry) { 300 inode->i_ctime = inode->i_mtime = 301 current_time(inode); 302 if (d_is_dir(dentry)) 303 drop_nlink(inode); 304 inode_unlock(inode); 305 dput(dentry); 306 return; 307 } 308 } 309 inode_unlock(inode); 310 this = child; 311 } 312 } 313 EXPORT_SYMBOL(simple_recursive_removal); 314 315 static const struct super_operations simple_super_operations = { 316 .statfs = simple_statfs, 317 }; 318 319 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 320 { 321 struct pseudo_fs_context *ctx = fc->fs_private; 322 struct inode *root; 323 324 s->s_maxbytes = MAX_LFS_FILESIZE; 325 s->s_blocksize = PAGE_SIZE; 326 s->s_blocksize_bits = PAGE_SHIFT; 327 s->s_magic = ctx->magic; 328 s->s_op = ctx->ops ?: &simple_super_operations; 329 s->s_xattr = ctx->xattr; 330 s->s_time_gran = 1; 331 root = new_inode(s); 332 if (!root) 333 return -ENOMEM; 334 335 /* 336 * since this is the first inode, make it number 1. New inodes created 337 * after this must take care not to collide with it (by passing 338 * max_reserved of 1 to iunique). 339 */ 340 root->i_ino = 1; 341 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 342 root->i_atime = root->i_mtime = root->i_ctime = current_time(root); 343 s->s_root = d_make_root(root); 344 if (!s->s_root) 345 return -ENOMEM; 346 s->s_d_op = ctx->dops; 347 return 0; 348 } 349 350 static int pseudo_fs_get_tree(struct fs_context *fc) 351 { 352 return get_tree_nodev(fc, pseudo_fs_fill_super); 353 } 354 355 static void pseudo_fs_free(struct fs_context *fc) 356 { 357 kfree(fc->fs_private); 358 } 359 360 static const struct fs_context_operations pseudo_fs_context_ops = { 361 .free = pseudo_fs_free, 362 .get_tree = pseudo_fs_get_tree, 363 }; 364 365 /* 366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 367 * will never be mountable) 368 */ 369 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 370 unsigned long magic) 371 { 372 struct pseudo_fs_context *ctx; 373 374 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 375 if (likely(ctx)) { 376 ctx->magic = magic; 377 fc->fs_private = ctx; 378 fc->ops = &pseudo_fs_context_ops; 379 fc->sb_flags |= SB_NOUSER; 380 fc->global = true; 381 } 382 return ctx; 383 } 384 EXPORT_SYMBOL(init_pseudo); 385 386 int simple_open(struct inode *inode, struct file *file) 387 { 388 if (inode->i_private) 389 file->private_data = inode->i_private; 390 return 0; 391 } 392 EXPORT_SYMBOL(simple_open); 393 394 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 395 { 396 struct inode *inode = d_inode(old_dentry); 397 398 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 399 inc_nlink(inode); 400 ihold(inode); 401 dget(dentry); 402 d_instantiate(dentry, inode); 403 return 0; 404 } 405 EXPORT_SYMBOL(simple_link); 406 407 int simple_empty(struct dentry *dentry) 408 { 409 struct dentry *child; 410 int ret = 0; 411 412 spin_lock(&dentry->d_lock); 413 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 414 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 415 if (simple_positive(child)) { 416 spin_unlock(&child->d_lock); 417 goto out; 418 } 419 spin_unlock(&child->d_lock); 420 } 421 ret = 1; 422 out: 423 spin_unlock(&dentry->d_lock); 424 return ret; 425 } 426 EXPORT_SYMBOL(simple_empty); 427 428 int simple_unlink(struct inode *dir, struct dentry *dentry) 429 { 430 struct inode *inode = d_inode(dentry); 431 432 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 433 drop_nlink(inode); 434 dput(dentry); 435 return 0; 436 } 437 EXPORT_SYMBOL(simple_unlink); 438 439 int simple_rmdir(struct inode *dir, struct dentry *dentry) 440 { 441 if (!simple_empty(dentry)) 442 return -ENOTEMPTY; 443 444 drop_nlink(d_inode(dentry)); 445 simple_unlink(dir, dentry); 446 drop_nlink(dir); 447 return 0; 448 } 449 EXPORT_SYMBOL(simple_rmdir); 450 451 int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 452 struct dentry *old_dentry, struct inode *new_dir, 453 struct dentry *new_dentry, unsigned int flags) 454 { 455 struct inode *inode = d_inode(old_dentry); 456 int they_are_dirs = d_is_dir(old_dentry); 457 458 if (flags & ~RENAME_NOREPLACE) 459 return -EINVAL; 460 461 if (!simple_empty(new_dentry)) 462 return -ENOTEMPTY; 463 464 if (d_really_is_positive(new_dentry)) { 465 simple_unlink(new_dir, new_dentry); 466 if (they_are_dirs) { 467 drop_nlink(d_inode(new_dentry)); 468 drop_nlink(old_dir); 469 } 470 } else if (they_are_dirs) { 471 drop_nlink(old_dir); 472 inc_nlink(new_dir); 473 } 474 475 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 476 new_dir->i_mtime = inode->i_ctime = current_time(old_dir); 477 478 return 0; 479 } 480 EXPORT_SYMBOL(simple_rename); 481 482 /** 483 * simple_setattr - setattr for simple filesystem 484 * @mnt_userns: user namespace of the target mount 485 * @dentry: dentry 486 * @iattr: iattr structure 487 * 488 * Returns 0 on success, -error on failure. 489 * 490 * simple_setattr is a simple ->setattr implementation without a proper 491 * implementation of size changes. 492 * 493 * It can either be used for in-memory filesystems or special files 494 * on simple regular filesystems. Anything that needs to change on-disk 495 * or wire state on size changes needs its own setattr method. 496 */ 497 int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 498 struct iattr *iattr) 499 { 500 struct inode *inode = d_inode(dentry); 501 int error; 502 503 error = setattr_prepare(mnt_userns, dentry, iattr); 504 if (error) 505 return error; 506 507 if (iattr->ia_valid & ATTR_SIZE) 508 truncate_setsize(inode, iattr->ia_size); 509 setattr_copy(mnt_userns, inode, iattr); 510 mark_inode_dirty(inode); 511 return 0; 512 } 513 EXPORT_SYMBOL(simple_setattr); 514 515 static int simple_readpage(struct file *file, struct page *page) 516 { 517 clear_highpage(page); 518 flush_dcache_page(page); 519 SetPageUptodate(page); 520 unlock_page(page); 521 return 0; 522 } 523 524 int simple_write_begin(struct file *file, struct address_space *mapping, 525 loff_t pos, unsigned len, unsigned flags, 526 struct page **pagep, void **fsdata) 527 { 528 struct page *page; 529 pgoff_t index; 530 531 index = pos >> PAGE_SHIFT; 532 533 page = grab_cache_page_write_begin(mapping, index, flags); 534 if (!page) 535 return -ENOMEM; 536 537 *pagep = page; 538 539 if (!PageUptodate(page) && (len != PAGE_SIZE)) { 540 unsigned from = pos & (PAGE_SIZE - 1); 541 542 zero_user_segments(page, 0, from, from + len, PAGE_SIZE); 543 } 544 return 0; 545 } 546 EXPORT_SYMBOL(simple_write_begin); 547 548 /** 549 * simple_write_end - .write_end helper for non-block-device FSes 550 * @file: See .write_end of address_space_operations 551 * @mapping: " 552 * @pos: " 553 * @len: " 554 * @copied: " 555 * @page: " 556 * @fsdata: " 557 * 558 * simple_write_end does the minimum needed for updating a page after writing is 559 * done. It has the same API signature as the .write_end of 560 * address_space_operations vector. So it can just be set onto .write_end for 561 * FSes that don't need any other processing. i_mutex is assumed to be held. 562 * Block based filesystems should use generic_write_end(). 563 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 564 * is not called, so a filesystem that actually does store data in .write_inode 565 * should extend on what's done here with a call to mark_inode_dirty() in the 566 * case that i_size has changed. 567 * 568 * Use *ONLY* with simple_readpage() 569 */ 570 static int simple_write_end(struct file *file, struct address_space *mapping, 571 loff_t pos, unsigned len, unsigned copied, 572 struct page *page, void *fsdata) 573 { 574 struct inode *inode = page->mapping->host; 575 loff_t last_pos = pos + copied; 576 577 /* zero the stale part of the page if we did a short copy */ 578 if (!PageUptodate(page)) { 579 if (copied < len) { 580 unsigned from = pos & (PAGE_SIZE - 1); 581 582 zero_user(page, from + copied, len - copied); 583 } 584 SetPageUptodate(page); 585 } 586 /* 587 * No need to use i_size_read() here, the i_size 588 * cannot change under us because we hold the i_mutex. 589 */ 590 if (last_pos > inode->i_size) 591 i_size_write(inode, last_pos); 592 593 set_page_dirty(page); 594 unlock_page(page); 595 put_page(page); 596 597 return copied; 598 } 599 600 /* 601 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 602 */ 603 const struct address_space_operations ram_aops = { 604 .readpage = simple_readpage, 605 .write_begin = simple_write_begin, 606 .write_end = simple_write_end, 607 .set_page_dirty = __set_page_dirty_no_writeback, 608 }; 609 EXPORT_SYMBOL(ram_aops); 610 611 /* 612 * the inodes created here are not hashed. If you use iunique to generate 613 * unique inode values later for this filesystem, then you must take care 614 * to pass it an appropriate max_reserved value to avoid collisions. 615 */ 616 int simple_fill_super(struct super_block *s, unsigned long magic, 617 const struct tree_descr *files) 618 { 619 struct inode *inode; 620 struct dentry *root; 621 struct dentry *dentry; 622 int i; 623 624 s->s_blocksize = PAGE_SIZE; 625 s->s_blocksize_bits = PAGE_SHIFT; 626 s->s_magic = magic; 627 s->s_op = &simple_super_operations; 628 s->s_time_gran = 1; 629 630 inode = new_inode(s); 631 if (!inode) 632 return -ENOMEM; 633 /* 634 * because the root inode is 1, the files array must not contain an 635 * entry at index 1 636 */ 637 inode->i_ino = 1; 638 inode->i_mode = S_IFDIR | 0755; 639 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 640 inode->i_op = &simple_dir_inode_operations; 641 inode->i_fop = &simple_dir_operations; 642 set_nlink(inode, 2); 643 root = d_make_root(inode); 644 if (!root) 645 return -ENOMEM; 646 for (i = 0; !files->name || files->name[0]; i++, files++) { 647 if (!files->name) 648 continue; 649 650 /* warn if it tries to conflict with the root inode */ 651 if (unlikely(i == 1)) 652 printk(KERN_WARNING "%s: %s passed in a files array" 653 "with an index of 1!\n", __func__, 654 s->s_type->name); 655 656 dentry = d_alloc_name(root, files->name); 657 if (!dentry) 658 goto out; 659 inode = new_inode(s); 660 if (!inode) { 661 dput(dentry); 662 goto out; 663 } 664 inode->i_mode = S_IFREG | files->mode; 665 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 666 inode->i_fop = files->ops; 667 inode->i_ino = i; 668 d_add(dentry, inode); 669 } 670 s->s_root = root; 671 return 0; 672 out: 673 d_genocide(root); 674 shrink_dcache_parent(root); 675 dput(root); 676 return -ENOMEM; 677 } 678 EXPORT_SYMBOL(simple_fill_super); 679 680 static DEFINE_SPINLOCK(pin_fs_lock); 681 682 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 683 { 684 struct vfsmount *mnt = NULL; 685 spin_lock(&pin_fs_lock); 686 if (unlikely(!*mount)) { 687 spin_unlock(&pin_fs_lock); 688 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 689 if (IS_ERR(mnt)) 690 return PTR_ERR(mnt); 691 spin_lock(&pin_fs_lock); 692 if (!*mount) 693 *mount = mnt; 694 } 695 mntget(*mount); 696 ++*count; 697 spin_unlock(&pin_fs_lock); 698 mntput(mnt); 699 return 0; 700 } 701 EXPORT_SYMBOL(simple_pin_fs); 702 703 void simple_release_fs(struct vfsmount **mount, int *count) 704 { 705 struct vfsmount *mnt; 706 spin_lock(&pin_fs_lock); 707 mnt = *mount; 708 if (!--*count) 709 *mount = NULL; 710 spin_unlock(&pin_fs_lock); 711 mntput(mnt); 712 } 713 EXPORT_SYMBOL(simple_release_fs); 714 715 /** 716 * simple_read_from_buffer - copy data from the buffer to user space 717 * @to: the user space buffer to read to 718 * @count: the maximum number of bytes to read 719 * @ppos: the current position in the buffer 720 * @from: the buffer to read from 721 * @available: the size of the buffer 722 * 723 * The simple_read_from_buffer() function reads up to @count bytes from the 724 * buffer @from at offset @ppos into the user space address starting at @to. 725 * 726 * On success, the number of bytes read is returned and the offset @ppos is 727 * advanced by this number, or negative value is returned on error. 728 **/ 729 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 730 const void *from, size_t available) 731 { 732 loff_t pos = *ppos; 733 size_t ret; 734 735 if (pos < 0) 736 return -EINVAL; 737 if (pos >= available || !count) 738 return 0; 739 if (count > available - pos) 740 count = available - pos; 741 ret = copy_to_user(to, from + pos, count); 742 if (ret == count) 743 return -EFAULT; 744 count -= ret; 745 *ppos = pos + count; 746 return count; 747 } 748 EXPORT_SYMBOL(simple_read_from_buffer); 749 750 /** 751 * simple_write_to_buffer - copy data from user space to the buffer 752 * @to: the buffer to write to 753 * @available: the size of the buffer 754 * @ppos: the current position in the buffer 755 * @from: the user space buffer to read from 756 * @count: the maximum number of bytes to read 757 * 758 * The simple_write_to_buffer() function reads up to @count bytes from the user 759 * space address starting at @from into the buffer @to at offset @ppos. 760 * 761 * On success, the number of bytes written is returned and the offset @ppos is 762 * advanced by this number, or negative value is returned on error. 763 **/ 764 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 765 const void __user *from, size_t count) 766 { 767 loff_t pos = *ppos; 768 size_t res; 769 770 if (pos < 0) 771 return -EINVAL; 772 if (pos >= available || !count) 773 return 0; 774 if (count > available - pos) 775 count = available - pos; 776 res = copy_from_user(to + pos, from, count); 777 if (res == count) 778 return -EFAULT; 779 count -= res; 780 *ppos = pos + count; 781 return count; 782 } 783 EXPORT_SYMBOL(simple_write_to_buffer); 784 785 /** 786 * memory_read_from_buffer - copy data from the buffer 787 * @to: the kernel space buffer to read to 788 * @count: the maximum number of bytes to read 789 * @ppos: the current position in the buffer 790 * @from: the buffer to read from 791 * @available: the size of the buffer 792 * 793 * The memory_read_from_buffer() function reads up to @count bytes from the 794 * buffer @from at offset @ppos into the kernel space address starting at @to. 795 * 796 * On success, the number of bytes read is returned and the offset @ppos is 797 * advanced by this number, or negative value is returned on error. 798 **/ 799 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 800 const void *from, size_t available) 801 { 802 loff_t pos = *ppos; 803 804 if (pos < 0) 805 return -EINVAL; 806 if (pos >= available) 807 return 0; 808 if (count > available - pos) 809 count = available - pos; 810 memcpy(to, from + pos, count); 811 *ppos = pos + count; 812 813 return count; 814 } 815 EXPORT_SYMBOL(memory_read_from_buffer); 816 817 /* 818 * Transaction based IO. 819 * The file expects a single write which triggers the transaction, and then 820 * possibly a read which collects the result - which is stored in a 821 * file-local buffer. 822 */ 823 824 void simple_transaction_set(struct file *file, size_t n) 825 { 826 struct simple_transaction_argresp *ar = file->private_data; 827 828 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 829 830 /* 831 * The barrier ensures that ar->size will really remain zero until 832 * ar->data is ready for reading. 833 */ 834 smp_mb(); 835 ar->size = n; 836 } 837 EXPORT_SYMBOL(simple_transaction_set); 838 839 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 840 { 841 struct simple_transaction_argresp *ar; 842 static DEFINE_SPINLOCK(simple_transaction_lock); 843 844 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 845 return ERR_PTR(-EFBIG); 846 847 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 848 if (!ar) 849 return ERR_PTR(-ENOMEM); 850 851 spin_lock(&simple_transaction_lock); 852 853 /* only one write allowed per open */ 854 if (file->private_data) { 855 spin_unlock(&simple_transaction_lock); 856 free_page((unsigned long)ar); 857 return ERR_PTR(-EBUSY); 858 } 859 860 file->private_data = ar; 861 862 spin_unlock(&simple_transaction_lock); 863 864 if (copy_from_user(ar->data, buf, size)) 865 return ERR_PTR(-EFAULT); 866 867 return ar->data; 868 } 869 EXPORT_SYMBOL(simple_transaction_get); 870 871 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 872 { 873 struct simple_transaction_argresp *ar = file->private_data; 874 875 if (!ar) 876 return 0; 877 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 878 } 879 EXPORT_SYMBOL(simple_transaction_read); 880 881 int simple_transaction_release(struct inode *inode, struct file *file) 882 { 883 free_page((unsigned long)file->private_data); 884 return 0; 885 } 886 EXPORT_SYMBOL(simple_transaction_release); 887 888 /* Simple attribute files */ 889 890 struct simple_attr { 891 int (*get)(void *, u64 *); 892 int (*set)(void *, u64); 893 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 894 char set_buf[24]; 895 void *data; 896 const char *fmt; /* format for read operation */ 897 struct mutex mutex; /* protects access to these buffers */ 898 }; 899 900 /* simple_attr_open is called by an actual attribute open file operation 901 * to set the attribute specific access operations. */ 902 int simple_attr_open(struct inode *inode, struct file *file, 903 int (*get)(void *, u64 *), int (*set)(void *, u64), 904 const char *fmt) 905 { 906 struct simple_attr *attr; 907 908 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 909 if (!attr) 910 return -ENOMEM; 911 912 attr->get = get; 913 attr->set = set; 914 attr->data = inode->i_private; 915 attr->fmt = fmt; 916 mutex_init(&attr->mutex); 917 918 file->private_data = attr; 919 920 return nonseekable_open(inode, file); 921 } 922 EXPORT_SYMBOL_GPL(simple_attr_open); 923 924 int simple_attr_release(struct inode *inode, struct file *file) 925 { 926 kfree(file->private_data); 927 return 0; 928 } 929 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 930 931 /* read from the buffer that is filled with the get function */ 932 ssize_t simple_attr_read(struct file *file, char __user *buf, 933 size_t len, loff_t *ppos) 934 { 935 struct simple_attr *attr; 936 size_t size; 937 ssize_t ret; 938 939 attr = file->private_data; 940 941 if (!attr->get) 942 return -EACCES; 943 944 ret = mutex_lock_interruptible(&attr->mutex); 945 if (ret) 946 return ret; 947 948 if (*ppos && attr->get_buf[0]) { 949 /* continued read */ 950 size = strlen(attr->get_buf); 951 } else { 952 /* first read */ 953 u64 val; 954 ret = attr->get(attr->data, &val); 955 if (ret) 956 goto out; 957 958 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 959 attr->fmt, (unsigned long long)val); 960 } 961 962 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 963 out: 964 mutex_unlock(&attr->mutex); 965 return ret; 966 } 967 EXPORT_SYMBOL_GPL(simple_attr_read); 968 969 /* interpret the buffer as a number to call the set function with */ 970 ssize_t simple_attr_write(struct file *file, const char __user *buf, 971 size_t len, loff_t *ppos) 972 { 973 struct simple_attr *attr; 974 unsigned long long val; 975 size_t size; 976 ssize_t ret; 977 978 attr = file->private_data; 979 if (!attr->set) 980 return -EACCES; 981 982 ret = mutex_lock_interruptible(&attr->mutex); 983 if (ret) 984 return ret; 985 986 ret = -EFAULT; 987 size = min(sizeof(attr->set_buf) - 1, len); 988 if (copy_from_user(attr->set_buf, buf, size)) 989 goto out; 990 991 attr->set_buf[size] = '\0'; 992 ret = kstrtoull(attr->set_buf, 0, &val); 993 if (ret) 994 goto out; 995 ret = attr->set(attr->data, val); 996 if (ret == 0) 997 ret = len; /* on success, claim we got the whole input */ 998 out: 999 mutex_unlock(&attr->mutex); 1000 return ret; 1001 } 1002 EXPORT_SYMBOL_GPL(simple_attr_write); 1003 1004 /** 1005 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1006 * @sb: filesystem to do the file handle conversion on 1007 * @fid: file handle to convert 1008 * @fh_len: length of the file handle in bytes 1009 * @fh_type: type of file handle 1010 * @get_inode: filesystem callback to retrieve inode 1011 * 1012 * This function decodes @fid as long as it has one of the well-known 1013 * Linux filehandle types and calls @get_inode on it to retrieve the 1014 * inode for the object specified in the file handle. 1015 */ 1016 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1017 int fh_len, int fh_type, struct inode *(*get_inode) 1018 (struct super_block *sb, u64 ino, u32 gen)) 1019 { 1020 struct inode *inode = NULL; 1021 1022 if (fh_len < 2) 1023 return NULL; 1024 1025 switch (fh_type) { 1026 case FILEID_INO32_GEN: 1027 case FILEID_INO32_GEN_PARENT: 1028 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1029 break; 1030 } 1031 1032 return d_obtain_alias(inode); 1033 } 1034 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1035 1036 /** 1037 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1038 * @sb: filesystem to do the file handle conversion on 1039 * @fid: file handle to convert 1040 * @fh_len: length of the file handle in bytes 1041 * @fh_type: type of file handle 1042 * @get_inode: filesystem callback to retrieve inode 1043 * 1044 * This function decodes @fid as long as it has one of the well-known 1045 * Linux filehandle types and calls @get_inode on it to retrieve the 1046 * inode for the _parent_ object specified in the file handle if it 1047 * is specified in the file handle, or NULL otherwise. 1048 */ 1049 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1050 int fh_len, int fh_type, struct inode *(*get_inode) 1051 (struct super_block *sb, u64 ino, u32 gen)) 1052 { 1053 struct inode *inode = NULL; 1054 1055 if (fh_len <= 2) 1056 return NULL; 1057 1058 switch (fh_type) { 1059 case FILEID_INO32_GEN_PARENT: 1060 inode = get_inode(sb, fid->i32.parent_ino, 1061 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1062 break; 1063 } 1064 1065 return d_obtain_alias(inode); 1066 } 1067 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1068 1069 /** 1070 * __generic_file_fsync - generic fsync implementation for simple filesystems 1071 * 1072 * @file: file to synchronize 1073 * @start: start offset in bytes 1074 * @end: end offset in bytes (inclusive) 1075 * @datasync: only synchronize essential metadata if true 1076 * 1077 * This is a generic implementation of the fsync method for simple 1078 * filesystems which track all non-inode metadata in the buffers list 1079 * hanging off the address_space structure. 1080 */ 1081 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1082 int datasync) 1083 { 1084 struct inode *inode = file->f_mapping->host; 1085 int err; 1086 int ret; 1087 1088 err = file_write_and_wait_range(file, start, end); 1089 if (err) 1090 return err; 1091 1092 inode_lock(inode); 1093 ret = sync_mapping_buffers(inode->i_mapping); 1094 if (!(inode->i_state & I_DIRTY_ALL)) 1095 goto out; 1096 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1097 goto out; 1098 1099 err = sync_inode_metadata(inode, 1); 1100 if (ret == 0) 1101 ret = err; 1102 1103 out: 1104 inode_unlock(inode); 1105 /* check and advance again to catch errors after syncing out buffers */ 1106 err = file_check_and_advance_wb_err(file); 1107 if (ret == 0) 1108 ret = err; 1109 return ret; 1110 } 1111 EXPORT_SYMBOL(__generic_file_fsync); 1112 1113 /** 1114 * generic_file_fsync - generic fsync implementation for simple filesystems 1115 * with flush 1116 * @file: file to synchronize 1117 * @start: start offset in bytes 1118 * @end: end offset in bytes (inclusive) 1119 * @datasync: only synchronize essential metadata if true 1120 * 1121 */ 1122 1123 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1124 int datasync) 1125 { 1126 struct inode *inode = file->f_mapping->host; 1127 int err; 1128 1129 err = __generic_file_fsync(file, start, end, datasync); 1130 if (err) 1131 return err; 1132 return blkdev_issue_flush(inode->i_sb->s_bdev); 1133 } 1134 EXPORT_SYMBOL(generic_file_fsync); 1135 1136 /** 1137 * generic_check_addressable - Check addressability of file system 1138 * @blocksize_bits: log of file system block size 1139 * @num_blocks: number of blocks in file system 1140 * 1141 * Determine whether a file system with @num_blocks blocks (and a 1142 * block size of 2**@blocksize_bits) is addressable by the sector_t 1143 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1144 */ 1145 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1146 { 1147 u64 last_fs_block = num_blocks - 1; 1148 u64 last_fs_page = 1149 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1150 1151 if (unlikely(num_blocks == 0)) 1152 return 0; 1153 1154 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1155 return -EINVAL; 1156 1157 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1158 (last_fs_page > (pgoff_t)(~0ULL))) { 1159 return -EFBIG; 1160 } 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(generic_check_addressable); 1164 1165 /* 1166 * No-op implementation of ->fsync for in-memory filesystems. 1167 */ 1168 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1169 { 1170 return 0; 1171 } 1172 EXPORT_SYMBOL(noop_fsync); 1173 1174 void noop_invalidatepage(struct page *page, unsigned int offset, 1175 unsigned int length) 1176 { 1177 /* 1178 * There is no page cache to invalidate in the dax case, however 1179 * we need this callback defined to prevent falling back to 1180 * block_invalidatepage() in do_invalidatepage(). 1181 */ 1182 } 1183 EXPORT_SYMBOL_GPL(noop_invalidatepage); 1184 1185 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1186 { 1187 /* 1188 * iomap based filesystems support direct I/O without need for 1189 * this callback. However, it still needs to be set in 1190 * inode->a_ops so that open/fcntl know that direct I/O is 1191 * generally supported. 1192 */ 1193 return -EINVAL; 1194 } 1195 EXPORT_SYMBOL_GPL(noop_direct_IO); 1196 1197 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1198 void kfree_link(void *p) 1199 { 1200 kfree(p); 1201 } 1202 EXPORT_SYMBOL(kfree_link); 1203 1204 struct inode *alloc_anon_inode(struct super_block *s) 1205 { 1206 static const struct address_space_operations anon_aops = { 1207 .set_page_dirty = __set_page_dirty_no_writeback, 1208 }; 1209 struct inode *inode = new_inode_pseudo(s); 1210 1211 if (!inode) 1212 return ERR_PTR(-ENOMEM); 1213 1214 inode->i_ino = get_next_ino(); 1215 inode->i_mapping->a_ops = &anon_aops; 1216 1217 /* 1218 * Mark the inode dirty from the very beginning, 1219 * that way it will never be moved to the dirty 1220 * list because mark_inode_dirty() will think 1221 * that it already _is_ on the dirty list. 1222 */ 1223 inode->i_state = I_DIRTY; 1224 inode->i_mode = S_IRUSR | S_IWUSR; 1225 inode->i_uid = current_fsuid(); 1226 inode->i_gid = current_fsgid(); 1227 inode->i_flags |= S_PRIVATE; 1228 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 1229 return inode; 1230 } 1231 EXPORT_SYMBOL(alloc_anon_inode); 1232 1233 /** 1234 * simple_nosetlease - generic helper for prohibiting leases 1235 * @filp: file pointer 1236 * @arg: type of lease to obtain 1237 * @flp: new lease supplied for insertion 1238 * @priv: private data for lm_setup operation 1239 * 1240 * Generic helper for filesystems that do not wish to allow leases to be set. 1241 * All arguments are ignored and it just returns -EINVAL. 1242 */ 1243 int 1244 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, 1245 void **priv) 1246 { 1247 return -EINVAL; 1248 } 1249 EXPORT_SYMBOL(simple_nosetlease); 1250 1251 /** 1252 * simple_get_link - generic helper to get the target of "fast" symlinks 1253 * @dentry: not used here 1254 * @inode: the symlink inode 1255 * @done: not used here 1256 * 1257 * Generic helper for filesystems to use for symlink inodes where a pointer to 1258 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1259 * since as an optimization the path lookup code uses any non-NULL ->i_link 1260 * directly, without calling ->get_link(). But ->get_link() still must be set, 1261 * to mark the inode_operations as being for a symlink. 1262 * 1263 * Return: the symlink target 1264 */ 1265 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1266 struct delayed_call *done) 1267 { 1268 return inode->i_link; 1269 } 1270 EXPORT_SYMBOL(simple_get_link); 1271 1272 const struct inode_operations simple_symlink_inode_operations = { 1273 .get_link = simple_get_link, 1274 }; 1275 EXPORT_SYMBOL(simple_symlink_inode_operations); 1276 1277 /* 1278 * Operations for a permanently empty directory. 1279 */ 1280 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1281 { 1282 return ERR_PTR(-ENOENT); 1283 } 1284 1285 static int empty_dir_getattr(struct user_namespace *mnt_userns, 1286 const struct path *path, struct kstat *stat, 1287 u32 request_mask, unsigned int query_flags) 1288 { 1289 struct inode *inode = d_inode(path->dentry); 1290 generic_fillattr(&init_user_ns, inode, stat); 1291 return 0; 1292 } 1293 1294 static int empty_dir_setattr(struct user_namespace *mnt_userns, 1295 struct dentry *dentry, struct iattr *attr) 1296 { 1297 return -EPERM; 1298 } 1299 1300 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1301 { 1302 return -EOPNOTSUPP; 1303 } 1304 1305 static const struct inode_operations empty_dir_inode_operations = { 1306 .lookup = empty_dir_lookup, 1307 .permission = generic_permission, 1308 .setattr = empty_dir_setattr, 1309 .getattr = empty_dir_getattr, 1310 .listxattr = empty_dir_listxattr, 1311 }; 1312 1313 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1314 { 1315 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1316 return generic_file_llseek_size(file, offset, whence, 2, 2); 1317 } 1318 1319 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1320 { 1321 dir_emit_dots(file, ctx); 1322 return 0; 1323 } 1324 1325 static const struct file_operations empty_dir_operations = { 1326 .llseek = empty_dir_llseek, 1327 .read = generic_read_dir, 1328 .iterate_shared = empty_dir_readdir, 1329 .fsync = noop_fsync, 1330 }; 1331 1332 1333 void make_empty_dir_inode(struct inode *inode) 1334 { 1335 set_nlink(inode, 2); 1336 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1337 inode->i_uid = GLOBAL_ROOT_UID; 1338 inode->i_gid = GLOBAL_ROOT_GID; 1339 inode->i_rdev = 0; 1340 inode->i_size = 0; 1341 inode->i_blkbits = PAGE_SHIFT; 1342 inode->i_blocks = 0; 1343 1344 inode->i_op = &empty_dir_inode_operations; 1345 inode->i_opflags &= ~IOP_XATTR; 1346 inode->i_fop = &empty_dir_operations; 1347 } 1348 1349 bool is_empty_dir_inode(struct inode *inode) 1350 { 1351 return (inode->i_fop == &empty_dir_operations) && 1352 (inode->i_op == &empty_dir_inode_operations); 1353 } 1354 1355 #ifdef CONFIG_UNICODE 1356 /* 1357 * Determine if the name of a dentry should be casefolded. 1358 * 1359 * Return: if names will need casefolding 1360 */ 1361 static bool needs_casefold(const struct inode *dir) 1362 { 1363 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding; 1364 } 1365 1366 /** 1367 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1368 * @dentry: dentry whose name we are checking against 1369 * @len: len of name of dentry 1370 * @str: str pointer to name of dentry 1371 * @name: Name to compare against 1372 * 1373 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1374 */ 1375 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1376 const char *str, const struct qstr *name) 1377 { 1378 const struct dentry *parent = READ_ONCE(dentry->d_parent); 1379 const struct inode *dir = READ_ONCE(parent->d_inode); 1380 const struct super_block *sb = dentry->d_sb; 1381 const struct unicode_map *um = sb->s_encoding; 1382 struct qstr qstr = QSTR_INIT(str, len); 1383 char strbuf[DNAME_INLINE_LEN]; 1384 int ret; 1385 1386 if (!dir || !needs_casefold(dir)) 1387 goto fallback; 1388 /* 1389 * If the dentry name is stored in-line, then it may be concurrently 1390 * modified by a rename. If this happens, the VFS will eventually retry 1391 * the lookup, so it doesn't matter what ->d_compare() returns. 1392 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1393 * string. Therefore, we have to copy the name into a temporary buffer. 1394 */ 1395 if (len <= DNAME_INLINE_LEN - 1) { 1396 memcpy(strbuf, str, len); 1397 strbuf[len] = 0; 1398 qstr.name = strbuf; 1399 /* prevent compiler from optimizing out the temporary buffer */ 1400 barrier(); 1401 } 1402 ret = utf8_strncasecmp(um, name, &qstr); 1403 if (ret >= 0) 1404 return ret; 1405 1406 if (sb_has_strict_encoding(sb)) 1407 return -EINVAL; 1408 fallback: 1409 if (len != name->len) 1410 return 1; 1411 return !!memcmp(str, name->name, len); 1412 } 1413 1414 /** 1415 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1416 * @dentry: dentry of the parent directory 1417 * @str: qstr of name whose hash we should fill in 1418 * 1419 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1420 */ 1421 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1422 { 1423 const struct inode *dir = READ_ONCE(dentry->d_inode); 1424 struct super_block *sb = dentry->d_sb; 1425 const struct unicode_map *um = sb->s_encoding; 1426 int ret = 0; 1427 1428 if (!dir || !needs_casefold(dir)) 1429 return 0; 1430 1431 ret = utf8_casefold_hash(um, dentry, str); 1432 if (ret < 0 && sb_has_strict_encoding(sb)) 1433 return -EINVAL; 1434 return 0; 1435 } 1436 1437 static const struct dentry_operations generic_ci_dentry_ops = { 1438 .d_hash = generic_ci_d_hash, 1439 .d_compare = generic_ci_d_compare, 1440 }; 1441 #endif 1442 1443 #ifdef CONFIG_FS_ENCRYPTION 1444 static const struct dentry_operations generic_encrypted_dentry_ops = { 1445 .d_revalidate = fscrypt_d_revalidate, 1446 }; 1447 #endif 1448 1449 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE) 1450 static const struct dentry_operations generic_encrypted_ci_dentry_ops = { 1451 .d_hash = generic_ci_d_hash, 1452 .d_compare = generic_ci_d_compare, 1453 .d_revalidate = fscrypt_d_revalidate, 1454 }; 1455 #endif 1456 1457 /** 1458 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry 1459 * @dentry: dentry to set ops on 1460 * 1461 * Casefolded directories need d_hash and d_compare set, so that the dentries 1462 * contained in them are handled case-insensitively. Note that these operations 1463 * are needed on the parent directory rather than on the dentries in it, and 1464 * while the casefolding flag can be toggled on and off on an empty directory, 1465 * dentry_operations can't be changed later. As a result, if the filesystem has 1466 * casefolding support enabled at all, we have to give all dentries the 1467 * casefolding operations even if their inode doesn't have the casefolding flag 1468 * currently (and thus the casefolding ops would be no-ops for now). 1469 * 1470 * Encryption works differently in that the only dentry operation it needs is 1471 * d_revalidate, which it only needs on dentries that have the no-key name flag. 1472 * The no-key flag can't be set "later", so we don't have to worry about that. 1473 * 1474 * Finally, to maximize compatibility with overlayfs (which isn't compatible 1475 * with certain dentry operations) and to avoid taking an unnecessary 1476 * performance hit, we use custom dentry_operations for each possible 1477 * combination rather than always installing all operations. 1478 */ 1479 void generic_set_encrypted_ci_d_ops(struct dentry *dentry) 1480 { 1481 #ifdef CONFIG_FS_ENCRYPTION 1482 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; 1483 #endif 1484 #ifdef CONFIG_UNICODE 1485 bool needs_ci_ops = dentry->d_sb->s_encoding; 1486 #endif 1487 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE) 1488 if (needs_encrypt_ops && needs_ci_ops) { 1489 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); 1490 return; 1491 } 1492 #endif 1493 #ifdef CONFIG_FS_ENCRYPTION 1494 if (needs_encrypt_ops) { 1495 d_set_d_op(dentry, &generic_encrypted_dentry_ops); 1496 return; 1497 } 1498 #endif 1499 #ifdef CONFIG_UNICODE 1500 if (needs_ci_ops) { 1501 d_set_d_op(dentry, &generic_ci_dentry_ops); 1502 return; 1503 } 1504 #endif 1505 } 1506 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops); 1507