xref: /linux/fs/libfs.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 #include "internal.h"
31 
32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 		   struct kstat *stat, u32 request_mask,
34 		   unsigned int query_flags)
35 {
36 	struct inode *inode = d_inode(path->dentry);
37 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 	return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42 
43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46 
47 	buf->f_fsid = u64_to_fsid(id);
48 	buf->f_type = dentry->d_sb->s_magic;
49 	buf->f_bsize = PAGE_SIZE;
50 	buf->f_namelen = NAME_MAX;
51 	return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54 
55 /*
56  * Retaining negative dentries for an in-memory filesystem just wastes
57  * memory and lookup time: arrange for them to be deleted immediately.
58  */
59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 	return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64 
65 /*
66  * Lookup the data. This is trivial - if the dentry didn't already
67  * exist, we know it is negative.  Set d_op to delete negative dentries.
68  */
69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 	if (dentry->d_name.len > NAME_MAX)
72 		return ERR_PTR(-ENAMETOOLONG);
73 	if (!dentry->d_op && !(dentry->d_flags & DCACHE_DONTCACHE)) {
74 		spin_lock(&dentry->d_lock);
75 		dentry->d_flags |= DCACHE_DONTCACHE;
76 		spin_unlock(&dentry->d_lock);
77 	}
78 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
79 		return NULL;
80 
81 	d_add(dentry, NULL);
82 	return NULL;
83 }
84 EXPORT_SYMBOL(simple_lookup);
85 
86 int dcache_dir_open(struct inode *inode, struct file *file)
87 {
88 	file->private_data = d_alloc_cursor(file->f_path.dentry);
89 
90 	return file->private_data ? 0 : -ENOMEM;
91 }
92 EXPORT_SYMBOL(dcache_dir_open);
93 
94 int dcache_dir_close(struct inode *inode, struct file *file)
95 {
96 	dput(file->private_data);
97 	return 0;
98 }
99 EXPORT_SYMBOL(dcache_dir_close);
100 
101 /* parent is locked at least shared */
102 /*
103  * Returns an element of siblings' list.
104  * We are looking for <count>th positive after <p>; if
105  * found, dentry is grabbed and returned to caller.
106  * If no such element exists, NULL is returned.
107  */
108 static struct dentry *scan_positives(struct dentry *cursor,
109 					struct hlist_node **p,
110 					loff_t count,
111 					struct dentry *last)
112 {
113 	struct dentry *dentry = cursor->d_parent, *found = NULL;
114 
115 	spin_lock(&dentry->d_lock);
116 	while (*p) {
117 		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
118 		p = &d->d_sib.next;
119 		// we must at least skip cursors, to avoid livelocks
120 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
121 			continue;
122 		if (simple_positive(d) && !--count) {
123 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
124 			if (simple_positive(d))
125 				found = dget_dlock(d);
126 			spin_unlock(&d->d_lock);
127 			if (likely(found))
128 				break;
129 			count = 1;
130 		}
131 		if (need_resched()) {
132 			if (!hlist_unhashed(&cursor->d_sib))
133 				__hlist_del(&cursor->d_sib);
134 			hlist_add_behind(&cursor->d_sib, &d->d_sib);
135 			p = &cursor->d_sib.next;
136 			spin_unlock(&dentry->d_lock);
137 			cond_resched();
138 			spin_lock(&dentry->d_lock);
139 		}
140 	}
141 	spin_unlock(&dentry->d_lock);
142 	dput(last);
143 	return found;
144 }
145 
146 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
147 {
148 	struct dentry *dentry = file->f_path.dentry;
149 	switch (whence) {
150 		case 1:
151 			offset += file->f_pos;
152 			fallthrough;
153 		case 0:
154 			if (offset >= 0)
155 				break;
156 			fallthrough;
157 		default:
158 			return -EINVAL;
159 	}
160 	if (offset != file->f_pos) {
161 		struct dentry *cursor = file->private_data;
162 		struct dentry *to = NULL;
163 
164 		inode_lock_shared(dentry->d_inode);
165 
166 		if (offset > 2)
167 			to = scan_positives(cursor, &dentry->d_children.first,
168 					    offset - 2, NULL);
169 		spin_lock(&dentry->d_lock);
170 		hlist_del_init(&cursor->d_sib);
171 		if (to)
172 			hlist_add_behind(&cursor->d_sib, &to->d_sib);
173 		spin_unlock(&dentry->d_lock);
174 		dput(to);
175 
176 		file->f_pos = offset;
177 
178 		inode_unlock_shared(dentry->d_inode);
179 	}
180 	return offset;
181 }
182 EXPORT_SYMBOL(dcache_dir_lseek);
183 
184 /*
185  * Directory is locked and all positive dentries in it are safe, since
186  * for ramfs-type trees they can't go away without unlink() or rmdir(),
187  * both impossible due to the lock on directory.
188  */
189 
190 int dcache_readdir(struct file *file, struct dir_context *ctx)
191 {
192 	struct dentry *dentry = file->f_path.dentry;
193 	struct dentry *cursor = file->private_data;
194 	struct dentry *next = NULL;
195 	struct hlist_node **p;
196 
197 	if (!dir_emit_dots(file, ctx))
198 		return 0;
199 
200 	if (ctx->pos == 2)
201 		p = &dentry->d_children.first;
202 	else
203 		p = &cursor->d_sib.next;
204 
205 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
206 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
207 			      d_inode(next)->i_ino,
208 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
209 			break;
210 		ctx->pos++;
211 		p = &next->d_sib.next;
212 	}
213 	spin_lock(&dentry->d_lock);
214 	hlist_del_init(&cursor->d_sib);
215 	if (next)
216 		hlist_add_before(&cursor->d_sib, &next->d_sib);
217 	spin_unlock(&dentry->d_lock);
218 	dput(next);
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL(dcache_readdir);
223 
224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225 {
226 	return -EISDIR;
227 }
228 EXPORT_SYMBOL(generic_read_dir);
229 
230 const struct file_operations simple_dir_operations = {
231 	.open		= dcache_dir_open,
232 	.release	= dcache_dir_close,
233 	.llseek		= dcache_dir_lseek,
234 	.read		= generic_read_dir,
235 	.iterate_shared	= dcache_readdir,
236 	.fsync		= noop_fsync,
237 };
238 EXPORT_SYMBOL(simple_dir_operations);
239 
240 const struct inode_operations simple_dir_inode_operations = {
241 	.lookup		= simple_lookup,
242 };
243 EXPORT_SYMBOL(simple_dir_inode_operations);
244 
245 /* simple_offset_add() never assigns these to a dentry */
246 enum {
247 	DIR_OFFSET_FIRST	= 2,		/* Find first real entry */
248 	DIR_OFFSET_EOD		= S32_MAX,
249 };
250 
251 /* simple_offset_add() allocation range */
252 enum {
253 	DIR_OFFSET_MIN		= DIR_OFFSET_FIRST + 1,
254 	DIR_OFFSET_MAX		= DIR_OFFSET_EOD - 1,
255 };
256 
257 static void offset_set(struct dentry *dentry, long offset)
258 {
259 	dentry->d_fsdata = (void *)offset;
260 }
261 
262 static long dentry2offset(struct dentry *dentry)
263 {
264 	return (long)dentry->d_fsdata;
265 }
266 
267 static struct lock_class_key simple_offset_lock_class;
268 
269 /**
270  * simple_offset_init - initialize an offset_ctx
271  * @octx: directory offset map to be initialized
272  *
273  */
274 void simple_offset_init(struct offset_ctx *octx)
275 {
276 	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
277 	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
278 	octx->next_offset = DIR_OFFSET_MIN;
279 }
280 
281 /**
282  * simple_offset_add - Add an entry to a directory's offset map
283  * @octx: directory offset ctx to be updated
284  * @dentry: new dentry being added
285  *
286  * Returns zero on success. @octx and the dentry's offset are updated.
287  * Otherwise, a negative errno value is returned.
288  */
289 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
290 {
291 	unsigned long offset;
292 	int ret;
293 
294 	if (dentry2offset(dentry) != 0)
295 		return -EBUSY;
296 
297 	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
298 				 DIR_OFFSET_MAX, &octx->next_offset,
299 				 GFP_KERNEL);
300 	if (unlikely(ret < 0))
301 		return ret == -EBUSY ? -ENOSPC : ret;
302 
303 	offset_set(dentry, offset);
304 	return 0;
305 }
306 
307 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
308 				 long offset)
309 {
310 	int ret;
311 
312 	ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
313 	if (ret)
314 		return ret;
315 	offset_set(dentry, offset);
316 	return 0;
317 }
318 
319 /**
320  * simple_offset_remove - Remove an entry to a directory's offset map
321  * @octx: directory offset ctx to be updated
322  * @dentry: dentry being removed
323  *
324  */
325 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
326 {
327 	long offset;
328 
329 	offset = dentry2offset(dentry);
330 	if (offset == 0)
331 		return;
332 
333 	mtree_erase(&octx->mt, offset);
334 	offset_set(dentry, 0);
335 }
336 
337 /**
338  * simple_offset_rename - handle directory offsets for rename
339  * @old_dir: parent directory of source entry
340  * @old_dentry: dentry of source entry
341  * @new_dir: parent_directory of destination entry
342  * @new_dentry: dentry of destination
343  *
344  * Caller provides appropriate serialization.
345  *
346  * User space expects the directory offset value of the replaced
347  * (new) directory entry to be unchanged after a rename.
348  *
349  * Returns zero on success, a negative errno value on failure.
350  */
351 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
352 			 struct inode *new_dir, struct dentry *new_dentry)
353 {
354 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
355 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
356 	long new_offset = dentry2offset(new_dentry);
357 
358 	simple_offset_remove(old_ctx, old_dentry);
359 
360 	if (new_offset) {
361 		offset_set(new_dentry, 0);
362 		return simple_offset_replace(new_ctx, old_dentry, new_offset);
363 	}
364 	return simple_offset_add(new_ctx, old_dentry);
365 }
366 
367 /**
368  * simple_offset_rename_exchange - exchange rename with directory offsets
369  * @old_dir: parent of dentry being moved
370  * @old_dentry: dentry being moved
371  * @new_dir: destination parent
372  * @new_dentry: destination dentry
373  *
374  * This API preserves the directory offset values. Caller provides
375  * appropriate serialization.
376  *
377  * Returns zero on success. Otherwise a negative errno is returned and the
378  * rename is rolled back.
379  */
380 int simple_offset_rename_exchange(struct inode *old_dir,
381 				  struct dentry *old_dentry,
382 				  struct inode *new_dir,
383 				  struct dentry *new_dentry)
384 {
385 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
386 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
387 	long old_index = dentry2offset(old_dentry);
388 	long new_index = dentry2offset(new_dentry);
389 	int ret;
390 
391 	simple_offset_remove(old_ctx, old_dentry);
392 	simple_offset_remove(new_ctx, new_dentry);
393 
394 	ret = simple_offset_replace(new_ctx, old_dentry, new_index);
395 	if (ret)
396 		goto out_restore;
397 
398 	ret = simple_offset_replace(old_ctx, new_dentry, old_index);
399 	if (ret) {
400 		simple_offset_remove(new_ctx, old_dentry);
401 		goto out_restore;
402 	}
403 
404 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
405 	if (ret) {
406 		simple_offset_remove(new_ctx, old_dentry);
407 		simple_offset_remove(old_ctx, new_dentry);
408 		goto out_restore;
409 	}
410 	return 0;
411 
412 out_restore:
413 	(void)simple_offset_replace(old_ctx, old_dentry, old_index);
414 	(void)simple_offset_replace(new_ctx, new_dentry, new_index);
415 	return ret;
416 }
417 
418 /**
419  * simple_offset_destroy - Release offset map
420  * @octx: directory offset ctx that is about to be destroyed
421  *
422  * During fs teardown (eg. umount), a directory's offset map might still
423  * contain entries. xa_destroy() cleans out anything that remains.
424  */
425 void simple_offset_destroy(struct offset_ctx *octx)
426 {
427 	mtree_destroy(&octx->mt);
428 }
429 
430 /**
431  * offset_dir_llseek - Advance the read position of a directory descriptor
432  * @file: an open directory whose position is to be updated
433  * @offset: a byte offset
434  * @whence: enumerator describing the starting position for this update
435  *
436  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
437  *
438  * Returns the updated read position if successful; otherwise a
439  * negative errno is returned and the read position remains unchanged.
440  */
441 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
442 {
443 	switch (whence) {
444 	case SEEK_CUR:
445 		offset += file->f_pos;
446 		fallthrough;
447 	case SEEK_SET:
448 		if (offset >= 0)
449 			break;
450 		fallthrough;
451 	default:
452 		return -EINVAL;
453 	}
454 
455 	return vfs_setpos(file, offset, LONG_MAX);
456 }
457 
458 static struct dentry *find_positive_dentry(struct dentry *parent,
459 					   struct dentry *dentry,
460 					   bool next)
461 {
462 	struct dentry *found = NULL;
463 
464 	spin_lock(&parent->d_lock);
465 	if (next)
466 		dentry = d_next_sibling(dentry);
467 	else if (!dentry)
468 		dentry = d_first_child(parent);
469 	hlist_for_each_entry_from(dentry, d_sib) {
470 		if (!simple_positive(dentry))
471 			continue;
472 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
473 		if (simple_positive(dentry))
474 			found = dget_dlock(dentry);
475 		spin_unlock(&dentry->d_lock);
476 		if (likely(found))
477 			break;
478 	}
479 	spin_unlock(&parent->d_lock);
480 	return found;
481 }
482 
483 static noinline_for_stack struct dentry *
484 offset_dir_lookup(struct dentry *parent, loff_t offset)
485 {
486 	struct inode *inode = d_inode(parent);
487 	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
488 	struct dentry *child, *found = NULL;
489 
490 	MA_STATE(mas, &octx->mt, offset, offset);
491 
492 	if (offset == DIR_OFFSET_FIRST)
493 		found = find_positive_dentry(parent, NULL, false);
494 	else {
495 		rcu_read_lock();
496 		child = mas_find_rev(&mas, DIR_OFFSET_MIN);
497 		found = find_positive_dentry(parent, child, false);
498 		rcu_read_unlock();
499 	}
500 	return found;
501 }
502 
503 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
504 {
505 	struct inode *inode = d_inode(dentry);
506 
507 	return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
508 			inode->i_ino, fs_umode_to_dtype(inode->i_mode));
509 }
510 
511 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
512 {
513 	struct dentry *dir = file->f_path.dentry;
514 	struct dentry *dentry;
515 
516 	dentry = offset_dir_lookup(dir, ctx->pos);
517 	if (!dentry)
518 		goto out_eod;
519 	while (true) {
520 		struct dentry *next;
521 
522 		ctx->pos = dentry2offset(dentry);
523 		if (!offset_dir_emit(ctx, dentry))
524 			break;
525 
526 		next = find_positive_dentry(dir, dentry, true);
527 		dput(dentry);
528 
529 		if (!next)
530 			goto out_eod;
531 		dentry = next;
532 	}
533 	dput(dentry);
534 	return;
535 
536 out_eod:
537 	ctx->pos = DIR_OFFSET_EOD;
538 }
539 
540 /**
541  * offset_readdir - Emit entries starting at offset @ctx->pos
542  * @file: an open directory to iterate over
543  * @ctx: directory iteration context
544  *
545  * Caller must hold @file's i_rwsem to prevent insertion or removal of
546  * entries during this call.
547  *
548  * On entry, @ctx->pos contains an offset that represents the first entry
549  * to be read from the directory.
550  *
551  * The operation continues until there are no more entries to read, or
552  * until the ctx->actor indicates there is no more space in the caller's
553  * output buffer.
554  *
555  * On return, @ctx->pos contains an offset that will read the next entry
556  * in this directory when offset_readdir() is called again with @ctx.
557  * Caller places this value in the d_off field of the last entry in the
558  * user's buffer.
559  *
560  * Return values:
561  *   %0 - Complete
562  */
563 static int offset_readdir(struct file *file, struct dir_context *ctx)
564 {
565 	struct dentry *dir = file->f_path.dentry;
566 
567 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
568 
569 	if (!dir_emit_dots(file, ctx))
570 		return 0;
571 	if (ctx->pos != DIR_OFFSET_EOD)
572 		offset_iterate_dir(file, ctx);
573 	return 0;
574 }
575 
576 const struct file_operations simple_offset_dir_operations = {
577 	.llseek		= offset_dir_llseek,
578 	.iterate_shared	= offset_readdir,
579 	.read		= generic_read_dir,
580 	.fsync		= noop_fsync,
581 };
582 
583 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
584 {
585 	struct dentry *child = NULL, *d;
586 
587 	spin_lock(&parent->d_lock);
588 	d = prev ? d_next_sibling(prev) : d_first_child(parent);
589 	hlist_for_each_entry_from(d, d_sib) {
590 		if (simple_positive(d)) {
591 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
592 			if (simple_positive(d))
593 				child = dget_dlock(d);
594 			spin_unlock(&d->d_lock);
595 			if (likely(child))
596 				break;
597 		}
598 	}
599 	spin_unlock(&parent->d_lock);
600 	dput(prev);
601 	return child;
602 }
603 EXPORT_SYMBOL(find_next_child);
604 
605 static void __simple_recursive_removal(struct dentry *dentry,
606                               void (*callback)(struct dentry *),
607 			      bool locked)
608 {
609 	struct dentry *this = dget(dentry);
610 	while (true) {
611 		struct dentry *victim = NULL, *child;
612 		struct inode *inode = this->d_inode;
613 
614 		inode_lock_nested(inode, I_MUTEX_CHILD);
615 		if (d_is_dir(this))
616 			inode->i_flags |= S_DEAD;
617 		while ((child = find_next_child(this, victim)) == NULL) {
618 			// kill and ascend
619 			// update metadata while it's still locked
620 			inode_set_ctime_current(inode);
621 			clear_nlink(inode);
622 			inode_unlock(inode);
623 			victim = this;
624 			this = this->d_parent;
625 			inode = this->d_inode;
626 			if (!locked || victim != dentry)
627 				inode_lock_nested(inode, I_MUTEX_CHILD);
628 			if (simple_positive(victim)) {
629 				d_invalidate(victim);	// avoid lost mounts
630 				if (callback)
631 					callback(victim);
632 				fsnotify_delete(inode, d_inode(victim), victim);
633 				dput(victim);		// unpin it
634 			}
635 			if (victim == dentry) {
636 				inode_set_mtime_to_ts(inode,
637 						      inode_set_ctime_current(inode));
638 				if (d_is_dir(dentry))
639 					drop_nlink(inode);
640 				if (!locked)
641 					inode_unlock(inode);
642 				dput(dentry);
643 				return;
644 			}
645 		}
646 		inode_unlock(inode);
647 		this = child;
648 	}
649 }
650 
651 void simple_recursive_removal(struct dentry *dentry,
652                               void (*callback)(struct dentry *))
653 {
654 	return __simple_recursive_removal(dentry, callback, false);
655 }
656 EXPORT_SYMBOL(simple_recursive_removal);
657 
658 /* caller holds parent directory with I_MUTEX_PARENT */
659 void locked_recursive_removal(struct dentry *dentry,
660                               void (*callback)(struct dentry *))
661 {
662 	return __simple_recursive_removal(dentry, callback, true);
663 }
664 EXPORT_SYMBOL(locked_recursive_removal);
665 
666 static const struct super_operations simple_super_operations = {
667 	.statfs		= simple_statfs,
668 };
669 
670 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
671 {
672 	struct pseudo_fs_context *ctx = fc->fs_private;
673 	struct inode *root;
674 
675 	s->s_maxbytes = MAX_LFS_FILESIZE;
676 	s->s_blocksize = PAGE_SIZE;
677 	s->s_blocksize_bits = PAGE_SHIFT;
678 	s->s_magic = ctx->magic;
679 	s->s_op = ctx->ops ?: &simple_super_operations;
680 	s->s_export_op = ctx->eops;
681 	s->s_xattr = ctx->xattr;
682 	s->s_time_gran = 1;
683 	s->s_d_flags |= ctx->s_d_flags;
684 	root = new_inode(s);
685 	if (!root)
686 		return -ENOMEM;
687 
688 	/*
689 	 * since this is the first inode, make it number 1. New inodes created
690 	 * after this must take care not to collide with it (by passing
691 	 * max_reserved of 1 to iunique).
692 	 */
693 	root->i_ino = 1;
694 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
695 	simple_inode_init_ts(root);
696 	s->s_root = d_make_root(root);
697 	if (!s->s_root)
698 		return -ENOMEM;
699 	set_default_d_op(s, ctx->dops);
700 	return 0;
701 }
702 
703 static int pseudo_fs_get_tree(struct fs_context *fc)
704 {
705 	return get_tree_nodev(fc, pseudo_fs_fill_super);
706 }
707 
708 static void pseudo_fs_free(struct fs_context *fc)
709 {
710 	kfree(fc->fs_private);
711 }
712 
713 static const struct fs_context_operations pseudo_fs_context_ops = {
714 	.free		= pseudo_fs_free,
715 	.get_tree	= pseudo_fs_get_tree,
716 };
717 
718 /*
719  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
720  * will never be mountable)
721  */
722 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
723 					unsigned long magic)
724 {
725 	struct pseudo_fs_context *ctx;
726 
727 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
728 	if (likely(ctx)) {
729 		ctx->magic = magic;
730 		fc->fs_private = ctx;
731 		fc->ops = &pseudo_fs_context_ops;
732 		fc->sb_flags |= SB_NOUSER;
733 		fc->global = true;
734 	}
735 	return ctx;
736 }
737 EXPORT_SYMBOL(init_pseudo);
738 
739 int simple_open(struct inode *inode, struct file *file)
740 {
741 	if (inode->i_private)
742 		file->private_data = inode->i_private;
743 	return 0;
744 }
745 EXPORT_SYMBOL(simple_open);
746 
747 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
748 {
749 	struct inode *inode = d_inode(old_dentry);
750 
751 	inode_set_mtime_to_ts(dir,
752 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
753 	inc_nlink(inode);
754 	ihold(inode);
755 	dget(dentry);
756 	d_instantiate(dentry, inode);
757 	return 0;
758 }
759 EXPORT_SYMBOL(simple_link);
760 
761 int simple_empty(struct dentry *dentry)
762 {
763 	struct dentry *child;
764 	int ret = 0;
765 
766 	spin_lock(&dentry->d_lock);
767 	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
768 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
769 		if (simple_positive(child)) {
770 			spin_unlock(&child->d_lock);
771 			goto out;
772 		}
773 		spin_unlock(&child->d_lock);
774 	}
775 	ret = 1;
776 out:
777 	spin_unlock(&dentry->d_lock);
778 	return ret;
779 }
780 EXPORT_SYMBOL(simple_empty);
781 
782 int simple_unlink(struct inode *dir, struct dentry *dentry)
783 {
784 	struct inode *inode = d_inode(dentry);
785 
786 	inode_set_mtime_to_ts(dir,
787 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
788 	drop_nlink(inode);
789 	dput(dentry);
790 	return 0;
791 }
792 EXPORT_SYMBOL(simple_unlink);
793 
794 int simple_rmdir(struct inode *dir, struct dentry *dentry)
795 {
796 	if (!simple_empty(dentry))
797 		return -ENOTEMPTY;
798 
799 	drop_nlink(d_inode(dentry));
800 	simple_unlink(dir, dentry);
801 	drop_nlink(dir);
802 	return 0;
803 }
804 EXPORT_SYMBOL(simple_rmdir);
805 
806 /**
807  * simple_rename_timestamp - update the various inode timestamps for rename
808  * @old_dir: old parent directory
809  * @old_dentry: dentry that is being renamed
810  * @new_dir: new parent directory
811  * @new_dentry: target for rename
812  *
813  * POSIX mandates that the old and new parent directories have their ctime and
814  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
815  * their ctime updated.
816  */
817 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
818 			     struct inode *new_dir, struct dentry *new_dentry)
819 {
820 	struct inode *newino = d_inode(new_dentry);
821 
822 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
823 	if (new_dir != old_dir)
824 		inode_set_mtime_to_ts(new_dir,
825 				      inode_set_ctime_current(new_dir));
826 	inode_set_ctime_current(d_inode(old_dentry));
827 	if (newino)
828 		inode_set_ctime_current(newino);
829 }
830 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
831 
832 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
833 			   struct inode *new_dir, struct dentry *new_dentry)
834 {
835 	bool old_is_dir = d_is_dir(old_dentry);
836 	bool new_is_dir = d_is_dir(new_dentry);
837 
838 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
839 		if (old_is_dir) {
840 			drop_nlink(old_dir);
841 			inc_nlink(new_dir);
842 		} else {
843 			drop_nlink(new_dir);
844 			inc_nlink(old_dir);
845 		}
846 	}
847 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
848 	return 0;
849 }
850 EXPORT_SYMBOL_GPL(simple_rename_exchange);
851 
852 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
853 		  struct dentry *old_dentry, struct inode *new_dir,
854 		  struct dentry *new_dentry, unsigned int flags)
855 {
856 	int they_are_dirs = d_is_dir(old_dentry);
857 
858 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
859 		return -EINVAL;
860 
861 	if (flags & RENAME_EXCHANGE)
862 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
863 
864 	if (!simple_empty(new_dentry))
865 		return -ENOTEMPTY;
866 
867 	if (d_really_is_positive(new_dentry)) {
868 		simple_unlink(new_dir, new_dentry);
869 		if (they_are_dirs) {
870 			drop_nlink(d_inode(new_dentry));
871 			drop_nlink(old_dir);
872 		}
873 	} else if (they_are_dirs) {
874 		drop_nlink(old_dir);
875 		inc_nlink(new_dir);
876 	}
877 
878 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
879 	return 0;
880 }
881 EXPORT_SYMBOL(simple_rename);
882 
883 /**
884  * simple_setattr - setattr for simple filesystem
885  * @idmap: idmap of the target mount
886  * @dentry: dentry
887  * @iattr: iattr structure
888  *
889  * Returns 0 on success, -error on failure.
890  *
891  * simple_setattr is a simple ->setattr implementation without a proper
892  * implementation of size changes.
893  *
894  * It can either be used for in-memory filesystems or special files
895  * on simple regular filesystems.  Anything that needs to change on-disk
896  * or wire state on size changes needs its own setattr method.
897  */
898 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
899 		   struct iattr *iattr)
900 {
901 	struct inode *inode = d_inode(dentry);
902 	int error;
903 
904 	error = setattr_prepare(idmap, dentry, iattr);
905 	if (error)
906 		return error;
907 
908 	if (iattr->ia_valid & ATTR_SIZE)
909 		truncate_setsize(inode, iattr->ia_size);
910 	setattr_copy(idmap, inode, iattr);
911 	mark_inode_dirty(inode);
912 	return 0;
913 }
914 EXPORT_SYMBOL(simple_setattr);
915 
916 static int simple_read_folio(struct file *file, struct folio *folio)
917 {
918 	folio_zero_range(folio, 0, folio_size(folio));
919 	flush_dcache_folio(folio);
920 	folio_mark_uptodate(folio);
921 	folio_unlock(folio);
922 	return 0;
923 }
924 
925 int simple_write_begin(const struct kiocb *iocb, struct address_space *mapping,
926 			loff_t pos, unsigned len,
927 			struct folio **foliop, void **fsdata)
928 {
929 	struct folio *folio;
930 
931 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
932 			mapping_gfp_mask(mapping));
933 	if (IS_ERR(folio))
934 		return PTR_ERR(folio);
935 
936 	*foliop = folio;
937 
938 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
939 		size_t from = offset_in_folio(folio, pos);
940 
941 		folio_zero_segments(folio, 0, from,
942 				from + len, folio_size(folio));
943 	}
944 	return 0;
945 }
946 EXPORT_SYMBOL(simple_write_begin);
947 
948 /**
949  * simple_write_end - .write_end helper for non-block-device FSes
950  * @iocb: kernel I/O control block
951  * @mapping: 		"
952  * @pos: 		"
953  * @len: 		"
954  * @copied: 		"
955  * @folio: 		"
956  * @fsdata: 		"
957  *
958  * simple_write_end does the minimum needed for updating a folio after
959  * writing is done. It has the same API signature as the .write_end of
960  * address_space_operations vector. So it can just be set onto .write_end for
961  * FSes that don't need any other processing. i_rwsem is assumed to be held
962  * exclusively.
963  * Block based filesystems should use generic_write_end().
964  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
965  * is not called, so a filesystem that actually does store data in .write_inode
966  * should extend on what's done here with a call to mark_inode_dirty() in the
967  * case that i_size has changed.
968  *
969  * Use *ONLY* with simple_read_folio()
970  */
971 static int simple_write_end(const struct kiocb *iocb,
972 			    struct address_space *mapping,
973 			    loff_t pos, unsigned len, unsigned copied,
974 			    struct folio *folio, void *fsdata)
975 {
976 	struct inode *inode = folio->mapping->host;
977 	loff_t last_pos = pos + copied;
978 
979 	/* zero the stale part of the folio if we did a short copy */
980 	if (!folio_test_uptodate(folio)) {
981 		if (copied < len) {
982 			size_t from = offset_in_folio(folio, pos);
983 
984 			folio_zero_range(folio, from + copied, len - copied);
985 		}
986 		folio_mark_uptodate(folio);
987 	}
988 	/*
989 	 * No need to use i_size_read() here, the i_size
990 	 * cannot change under us because we hold the i_rwsem.
991 	 */
992 	if (last_pos > inode->i_size)
993 		i_size_write(inode, last_pos);
994 
995 	folio_mark_dirty(folio);
996 	folio_unlock(folio);
997 	folio_put(folio);
998 
999 	return copied;
1000 }
1001 
1002 /*
1003  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
1004  */
1005 const struct address_space_operations ram_aops = {
1006 	.read_folio	= simple_read_folio,
1007 	.write_begin	= simple_write_begin,
1008 	.write_end	= simple_write_end,
1009 	.dirty_folio	= noop_dirty_folio,
1010 };
1011 EXPORT_SYMBOL(ram_aops);
1012 
1013 /*
1014  * the inodes created here are not hashed. If you use iunique to generate
1015  * unique inode values later for this filesystem, then you must take care
1016  * to pass it an appropriate max_reserved value to avoid collisions.
1017  */
1018 int simple_fill_super(struct super_block *s, unsigned long magic,
1019 		      const struct tree_descr *files)
1020 {
1021 	struct inode *inode;
1022 	struct dentry *dentry;
1023 	int i;
1024 
1025 	s->s_blocksize = PAGE_SIZE;
1026 	s->s_blocksize_bits = PAGE_SHIFT;
1027 	s->s_magic = magic;
1028 	s->s_op = &simple_super_operations;
1029 	s->s_time_gran = 1;
1030 
1031 	inode = new_inode(s);
1032 	if (!inode)
1033 		return -ENOMEM;
1034 	/*
1035 	 * because the root inode is 1, the files array must not contain an
1036 	 * entry at index 1
1037 	 */
1038 	inode->i_ino = 1;
1039 	inode->i_mode = S_IFDIR | 0755;
1040 	simple_inode_init_ts(inode);
1041 	inode->i_op = &simple_dir_inode_operations;
1042 	inode->i_fop = &simple_dir_operations;
1043 	set_nlink(inode, 2);
1044 	s->s_root = d_make_root(inode);
1045 	if (!s->s_root)
1046 		return -ENOMEM;
1047 	for (i = 0; !files->name || files->name[0]; i++, files++) {
1048 		if (!files->name)
1049 			continue;
1050 
1051 		/* warn if it tries to conflict with the root inode */
1052 		if (unlikely(i == 1))
1053 			printk(KERN_WARNING "%s: %s passed in a files array"
1054 				"with an index of 1!\n", __func__,
1055 				s->s_type->name);
1056 
1057 		dentry = d_alloc_name(s->s_root, files->name);
1058 		if (!dentry)
1059 			return -ENOMEM;
1060 		inode = new_inode(s);
1061 		if (!inode) {
1062 			dput(dentry);
1063 			return -ENOMEM;
1064 		}
1065 		inode->i_mode = S_IFREG | files->mode;
1066 		simple_inode_init_ts(inode);
1067 		inode->i_fop = files->ops;
1068 		inode->i_ino = i;
1069 		d_add(dentry, inode);
1070 	}
1071 	return 0;
1072 }
1073 EXPORT_SYMBOL(simple_fill_super);
1074 
1075 static DEFINE_SPINLOCK(pin_fs_lock);
1076 
1077 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1078 {
1079 	struct vfsmount *mnt = NULL;
1080 	spin_lock(&pin_fs_lock);
1081 	if (unlikely(!*mount)) {
1082 		spin_unlock(&pin_fs_lock);
1083 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1084 		if (IS_ERR(mnt))
1085 			return PTR_ERR(mnt);
1086 		spin_lock(&pin_fs_lock);
1087 		if (!*mount)
1088 			*mount = mnt;
1089 	}
1090 	mntget(*mount);
1091 	++*count;
1092 	spin_unlock(&pin_fs_lock);
1093 	mntput(mnt);
1094 	return 0;
1095 }
1096 EXPORT_SYMBOL(simple_pin_fs);
1097 
1098 void simple_release_fs(struct vfsmount **mount, int *count)
1099 {
1100 	struct vfsmount *mnt;
1101 	spin_lock(&pin_fs_lock);
1102 	mnt = *mount;
1103 	if (!--*count)
1104 		*mount = NULL;
1105 	spin_unlock(&pin_fs_lock);
1106 	mntput(mnt);
1107 }
1108 EXPORT_SYMBOL(simple_release_fs);
1109 
1110 /**
1111  * simple_read_from_buffer - copy data from the buffer to user space
1112  * @to: the user space buffer to read to
1113  * @count: the maximum number of bytes to read
1114  * @ppos: the current position in the buffer
1115  * @from: the buffer to read from
1116  * @available: the size of the buffer
1117  *
1118  * The simple_read_from_buffer() function reads up to @count bytes from the
1119  * buffer @from at offset @ppos into the user space address starting at @to.
1120  *
1121  * On success, the number of bytes read is returned and the offset @ppos is
1122  * advanced by this number, or negative value is returned on error.
1123  **/
1124 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1125 				const void *from, size_t available)
1126 {
1127 	loff_t pos = *ppos;
1128 	size_t ret;
1129 
1130 	if (pos < 0)
1131 		return -EINVAL;
1132 	if (pos >= available || !count)
1133 		return 0;
1134 	if (count > available - pos)
1135 		count = available - pos;
1136 	ret = copy_to_user(to, from + pos, count);
1137 	if (ret == count)
1138 		return -EFAULT;
1139 	count -= ret;
1140 	*ppos = pos + count;
1141 	return count;
1142 }
1143 EXPORT_SYMBOL(simple_read_from_buffer);
1144 
1145 /**
1146  * simple_write_to_buffer - copy data from user space to the buffer
1147  * @to: the buffer to write to
1148  * @available: the size of the buffer
1149  * @ppos: the current position in the buffer
1150  * @from: the user space buffer to read from
1151  * @count: the maximum number of bytes to read
1152  *
1153  * The simple_write_to_buffer() function reads up to @count bytes from the user
1154  * space address starting at @from into the buffer @to at offset @ppos.
1155  *
1156  * On success, the number of bytes written is returned and the offset @ppos is
1157  * advanced by this number, or negative value is returned on error.
1158  **/
1159 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1160 		const void __user *from, size_t count)
1161 {
1162 	loff_t pos = *ppos;
1163 	size_t res;
1164 
1165 	if (pos < 0)
1166 		return -EINVAL;
1167 	if (pos >= available || !count)
1168 		return 0;
1169 	if (count > available - pos)
1170 		count = available - pos;
1171 	res = copy_from_user(to + pos, from, count);
1172 	if (res == count)
1173 		return -EFAULT;
1174 	count -= res;
1175 	*ppos = pos + count;
1176 	return count;
1177 }
1178 EXPORT_SYMBOL(simple_write_to_buffer);
1179 
1180 /**
1181  * memory_read_from_buffer - copy data from the buffer
1182  * @to: the kernel space buffer to read to
1183  * @count: the maximum number of bytes to read
1184  * @ppos: the current position in the buffer
1185  * @from: the buffer to read from
1186  * @available: the size of the buffer
1187  *
1188  * The memory_read_from_buffer() function reads up to @count bytes from the
1189  * buffer @from at offset @ppos into the kernel space address starting at @to.
1190  *
1191  * On success, the number of bytes read is returned and the offset @ppos is
1192  * advanced by this number, or negative value is returned on error.
1193  **/
1194 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1195 				const void *from, size_t available)
1196 {
1197 	loff_t pos = *ppos;
1198 
1199 	if (pos < 0)
1200 		return -EINVAL;
1201 	if (pos >= available)
1202 		return 0;
1203 	if (count > available - pos)
1204 		count = available - pos;
1205 	memcpy(to, from + pos, count);
1206 	*ppos = pos + count;
1207 
1208 	return count;
1209 }
1210 EXPORT_SYMBOL(memory_read_from_buffer);
1211 
1212 /*
1213  * Transaction based IO.
1214  * The file expects a single write which triggers the transaction, and then
1215  * possibly a read which collects the result - which is stored in a
1216  * file-local buffer.
1217  */
1218 
1219 void simple_transaction_set(struct file *file, size_t n)
1220 {
1221 	struct simple_transaction_argresp *ar = file->private_data;
1222 
1223 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1224 
1225 	/*
1226 	 * The barrier ensures that ar->size will really remain zero until
1227 	 * ar->data is ready for reading.
1228 	 */
1229 	smp_mb();
1230 	ar->size = n;
1231 }
1232 EXPORT_SYMBOL(simple_transaction_set);
1233 
1234 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1235 {
1236 	struct simple_transaction_argresp *ar;
1237 	static DEFINE_SPINLOCK(simple_transaction_lock);
1238 
1239 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1240 		return ERR_PTR(-EFBIG);
1241 
1242 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1243 	if (!ar)
1244 		return ERR_PTR(-ENOMEM);
1245 
1246 	spin_lock(&simple_transaction_lock);
1247 
1248 	/* only one write allowed per open */
1249 	if (file->private_data) {
1250 		spin_unlock(&simple_transaction_lock);
1251 		free_page((unsigned long)ar);
1252 		return ERR_PTR(-EBUSY);
1253 	}
1254 
1255 	file->private_data = ar;
1256 
1257 	spin_unlock(&simple_transaction_lock);
1258 
1259 	if (copy_from_user(ar->data, buf, size))
1260 		return ERR_PTR(-EFAULT);
1261 
1262 	return ar->data;
1263 }
1264 EXPORT_SYMBOL(simple_transaction_get);
1265 
1266 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1267 {
1268 	struct simple_transaction_argresp *ar = file->private_data;
1269 
1270 	if (!ar)
1271 		return 0;
1272 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1273 }
1274 EXPORT_SYMBOL(simple_transaction_read);
1275 
1276 int simple_transaction_release(struct inode *inode, struct file *file)
1277 {
1278 	free_page((unsigned long)file->private_data);
1279 	return 0;
1280 }
1281 EXPORT_SYMBOL(simple_transaction_release);
1282 
1283 /* Simple attribute files */
1284 
1285 struct simple_attr {
1286 	int (*get)(void *, u64 *);
1287 	int (*set)(void *, u64);
1288 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1289 	char set_buf[24];
1290 	void *data;
1291 	const char *fmt;	/* format for read operation */
1292 	struct mutex mutex;	/* protects access to these buffers */
1293 };
1294 
1295 /* simple_attr_open is called by an actual attribute open file operation
1296  * to set the attribute specific access operations. */
1297 int simple_attr_open(struct inode *inode, struct file *file,
1298 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1299 		     const char *fmt)
1300 {
1301 	struct simple_attr *attr;
1302 
1303 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1304 	if (!attr)
1305 		return -ENOMEM;
1306 
1307 	attr->get = get;
1308 	attr->set = set;
1309 	attr->data = inode->i_private;
1310 	attr->fmt = fmt;
1311 	mutex_init(&attr->mutex);
1312 
1313 	file->private_data = attr;
1314 
1315 	return nonseekable_open(inode, file);
1316 }
1317 EXPORT_SYMBOL_GPL(simple_attr_open);
1318 
1319 int simple_attr_release(struct inode *inode, struct file *file)
1320 {
1321 	kfree(file->private_data);
1322 	return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1325 
1326 /* read from the buffer that is filled with the get function */
1327 ssize_t simple_attr_read(struct file *file, char __user *buf,
1328 			 size_t len, loff_t *ppos)
1329 {
1330 	struct simple_attr *attr;
1331 	size_t size;
1332 	ssize_t ret;
1333 
1334 	attr = file->private_data;
1335 
1336 	if (!attr->get)
1337 		return -EACCES;
1338 
1339 	ret = mutex_lock_interruptible(&attr->mutex);
1340 	if (ret)
1341 		return ret;
1342 
1343 	if (*ppos && attr->get_buf[0]) {
1344 		/* continued read */
1345 		size = strlen(attr->get_buf);
1346 	} else {
1347 		/* first read */
1348 		u64 val;
1349 		ret = attr->get(attr->data, &val);
1350 		if (ret)
1351 			goto out;
1352 
1353 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1354 				 attr->fmt, (unsigned long long)val);
1355 	}
1356 
1357 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1358 out:
1359 	mutex_unlock(&attr->mutex);
1360 	return ret;
1361 }
1362 EXPORT_SYMBOL_GPL(simple_attr_read);
1363 
1364 /* interpret the buffer as a number to call the set function with */
1365 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1366 			  size_t len, loff_t *ppos, bool is_signed)
1367 {
1368 	struct simple_attr *attr;
1369 	unsigned long long val;
1370 	size_t size;
1371 	ssize_t ret;
1372 
1373 	attr = file->private_data;
1374 	if (!attr->set)
1375 		return -EACCES;
1376 
1377 	ret = mutex_lock_interruptible(&attr->mutex);
1378 	if (ret)
1379 		return ret;
1380 
1381 	ret = -EFAULT;
1382 	size = min(sizeof(attr->set_buf) - 1, len);
1383 	if (copy_from_user(attr->set_buf, buf, size))
1384 		goto out;
1385 
1386 	attr->set_buf[size] = '\0';
1387 	if (is_signed)
1388 		ret = kstrtoll(attr->set_buf, 0, &val);
1389 	else
1390 		ret = kstrtoull(attr->set_buf, 0, &val);
1391 	if (ret)
1392 		goto out;
1393 	ret = attr->set(attr->data, val);
1394 	if (ret == 0)
1395 		ret = len; /* on success, claim we got the whole input */
1396 out:
1397 	mutex_unlock(&attr->mutex);
1398 	return ret;
1399 }
1400 
1401 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1402 			  size_t len, loff_t *ppos)
1403 {
1404 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1405 }
1406 EXPORT_SYMBOL_GPL(simple_attr_write);
1407 
1408 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1409 			  size_t len, loff_t *ppos)
1410 {
1411 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1412 }
1413 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1414 
1415 /**
1416  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1417  * @inode:   the object to encode
1418  * @fh:      where to store the file handle fragment
1419  * @max_len: maximum length to store there (in 4 byte units)
1420  * @parent:  parent directory inode, if wanted
1421  *
1422  * This generic encode_fh function assumes that the 32 inode number
1423  * is suitable for locating an inode, and that the generation number
1424  * can be used to check that it is still valid.  It places them in the
1425  * filehandle fragment where export_decode_fh expects to find them.
1426  */
1427 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1428 			    struct inode *parent)
1429 {
1430 	struct fid *fid = (void *)fh;
1431 	int len = *max_len;
1432 	int type = FILEID_INO32_GEN;
1433 
1434 	if (parent && (len < 4)) {
1435 		*max_len = 4;
1436 		return FILEID_INVALID;
1437 	} else if (len < 2) {
1438 		*max_len = 2;
1439 		return FILEID_INVALID;
1440 	}
1441 
1442 	len = 2;
1443 	fid->i32.ino = inode->i_ino;
1444 	fid->i32.gen = inode->i_generation;
1445 	if (parent) {
1446 		fid->i32.parent_ino = parent->i_ino;
1447 		fid->i32.parent_gen = parent->i_generation;
1448 		len = 4;
1449 		type = FILEID_INO32_GEN_PARENT;
1450 	}
1451 	*max_len = len;
1452 	return type;
1453 }
1454 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1455 
1456 /**
1457  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1458  * @sb:		filesystem to do the file handle conversion on
1459  * @fid:	file handle to convert
1460  * @fh_len:	length of the file handle in bytes
1461  * @fh_type:	type of file handle
1462  * @get_inode:	filesystem callback to retrieve inode
1463  *
1464  * This function decodes @fid as long as it has one of the well-known
1465  * Linux filehandle types and calls @get_inode on it to retrieve the
1466  * inode for the object specified in the file handle.
1467  */
1468 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1469 		int fh_len, int fh_type, struct inode *(*get_inode)
1470 			(struct super_block *sb, u64 ino, u32 gen))
1471 {
1472 	struct inode *inode = NULL;
1473 
1474 	if (fh_len < 2)
1475 		return NULL;
1476 
1477 	switch (fh_type) {
1478 	case FILEID_INO32_GEN:
1479 	case FILEID_INO32_GEN_PARENT:
1480 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1481 		break;
1482 	}
1483 
1484 	return d_obtain_alias(inode);
1485 }
1486 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1487 
1488 /**
1489  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1490  * @sb:		filesystem to do the file handle conversion on
1491  * @fid:	file handle to convert
1492  * @fh_len:	length of the file handle in bytes
1493  * @fh_type:	type of file handle
1494  * @get_inode:	filesystem callback to retrieve inode
1495  *
1496  * This function decodes @fid as long as it has one of the well-known
1497  * Linux filehandle types and calls @get_inode on it to retrieve the
1498  * inode for the _parent_ object specified in the file handle if it
1499  * is specified in the file handle, or NULL otherwise.
1500  */
1501 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1502 		int fh_len, int fh_type, struct inode *(*get_inode)
1503 			(struct super_block *sb, u64 ino, u32 gen))
1504 {
1505 	struct inode *inode = NULL;
1506 
1507 	if (fh_len <= 2)
1508 		return NULL;
1509 
1510 	switch (fh_type) {
1511 	case FILEID_INO32_GEN_PARENT:
1512 		inode = get_inode(sb, fid->i32.parent_ino,
1513 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1514 		break;
1515 	}
1516 
1517 	return d_obtain_alias(inode);
1518 }
1519 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1520 
1521 /**
1522  * __generic_file_fsync - generic fsync implementation for simple filesystems
1523  *
1524  * @file:	file to synchronize
1525  * @start:	start offset in bytes
1526  * @end:	end offset in bytes (inclusive)
1527  * @datasync:	only synchronize essential metadata if true
1528  *
1529  * This is a generic implementation of the fsync method for simple
1530  * filesystems which track all non-inode metadata in the buffers list
1531  * hanging off the address_space structure.
1532  */
1533 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1534 				 int datasync)
1535 {
1536 	struct inode *inode = file->f_mapping->host;
1537 	int err;
1538 	int ret;
1539 
1540 	err = file_write_and_wait_range(file, start, end);
1541 	if (err)
1542 		return err;
1543 
1544 	inode_lock(inode);
1545 	ret = sync_mapping_buffers(inode->i_mapping);
1546 	if (!(inode_state_read_once(inode) & I_DIRTY_ALL))
1547 		goto out;
1548 	if (datasync && !(inode_state_read_once(inode) & I_DIRTY_DATASYNC))
1549 		goto out;
1550 
1551 	err = sync_inode_metadata(inode, 1);
1552 	if (ret == 0)
1553 		ret = err;
1554 
1555 out:
1556 	inode_unlock(inode);
1557 	/* check and advance again to catch errors after syncing out buffers */
1558 	err = file_check_and_advance_wb_err(file);
1559 	if (ret == 0)
1560 		ret = err;
1561 	return ret;
1562 }
1563 EXPORT_SYMBOL(__generic_file_fsync);
1564 
1565 /**
1566  * generic_file_fsync - generic fsync implementation for simple filesystems
1567  *			with flush
1568  * @file:	file to synchronize
1569  * @start:	start offset in bytes
1570  * @end:	end offset in bytes (inclusive)
1571  * @datasync:	only synchronize essential metadata if true
1572  *
1573  */
1574 
1575 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1576 		       int datasync)
1577 {
1578 	struct inode *inode = file->f_mapping->host;
1579 	int err;
1580 
1581 	err = __generic_file_fsync(file, start, end, datasync);
1582 	if (err)
1583 		return err;
1584 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1585 }
1586 EXPORT_SYMBOL(generic_file_fsync);
1587 
1588 /**
1589  * generic_check_addressable - Check addressability of file system
1590  * @blocksize_bits:	log of file system block size
1591  * @num_blocks:		number of blocks in file system
1592  *
1593  * Determine whether a file system with @num_blocks blocks (and a
1594  * block size of 2**@blocksize_bits) is addressable by the sector_t
1595  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1596  */
1597 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1598 {
1599 	u64 last_fs_block = num_blocks - 1;
1600 	u64 last_fs_page, max_bytes;
1601 
1602 	if (check_shl_overflow(num_blocks, blocksize_bits, &max_bytes))
1603 		return -EFBIG;
1604 
1605 	last_fs_page = (max_bytes >> PAGE_SHIFT) - 1;
1606 
1607 	if (unlikely(num_blocks == 0))
1608 		return 0;
1609 
1610 	if (blocksize_bits < 9)
1611 		return -EINVAL;
1612 
1613 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1614 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1615 		return -EFBIG;
1616 	}
1617 	return 0;
1618 }
1619 EXPORT_SYMBOL(generic_check_addressable);
1620 
1621 /*
1622  * No-op implementation of ->fsync for in-memory filesystems.
1623  */
1624 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1625 {
1626 	return 0;
1627 }
1628 EXPORT_SYMBOL(noop_fsync);
1629 
1630 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1631 {
1632 	/*
1633 	 * iomap based filesystems support direct I/O without need for
1634 	 * this callback. However, it still needs to be set in
1635 	 * inode->a_ops so that open/fcntl know that direct I/O is
1636 	 * generally supported.
1637 	 */
1638 	return -EINVAL;
1639 }
1640 EXPORT_SYMBOL_GPL(noop_direct_IO);
1641 
1642 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1643 void kfree_link(void *p)
1644 {
1645 	kfree(p);
1646 }
1647 EXPORT_SYMBOL(kfree_link);
1648 
1649 struct inode *alloc_anon_inode(struct super_block *s)
1650 {
1651 	static const struct address_space_operations anon_aops = {
1652 		.dirty_folio	= noop_dirty_folio,
1653 	};
1654 	struct inode *inode = new_inode_pseudo(s);
1655 
1656 	if (!inode)
1657 		return ERR_PTR(-ENOMEM);
1658 
1659 	inode->i_ino = get_next_ino();
1660 	inode->i_mapping->a_ops = &anon_aops;
1661 
1662 	/*
1663 	 * Mark the inode dirty from the very beginning,
1664 	 * that way it will never be moved to the dirty
1665 	 * list because mark_inode_dirty() will think
1666 	 * that it already _is_ on the dirty list.
1667 	 */
1668 	inode_state_assign_raw(inode, I_DIRTY);
1669 	/*
1670 	 * Historically anonymous inodes don't have a type at all and
1671 	 * userspace has come to rely on this.
1672 	 */
1673 	inode->i_mode = S_IRUSR | S_IWUSR;
1674 	inode->i_uid = current_fsuid();
1675 	inode->i_gid = current_fsgid();
1676 	inode->i_flags |= S_PRIVATE | S_ANON_INODE;
1677 	simple_inode_init_ts(inode);
1678 	return inode;
1679 }
1680 EXPORT_SYMBOL(alloc_anon_inode);
1681 
1682 /**
1683  * simple_nosetlease - generic helper for prohibiting leases
1684  * @filp: file pointer
1685  * @arg: type of lease to obtain
1686  * @flp: new lease supplied for insertion
1687  * @priv: private data for lm_setup operation
1688  *
1689  * Generic helper for filesystems that do not wish to allow leases to be set.
1690  * All arguments are ignored and it just returns -EINVAL.
1691  */
1692 int
1693 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1694 		  void **priv)
1695 {
1696 	return -EINVAL;
1697 }
1698 EXPORT_SYMBOL(simple_nosetlease);
1699 
1700 /**
1701  * simple_get_link - generic helper to get the target of "fast" symlinks
1702  * @dentry: not used here
1703  * @inode: the symlink inode
1704  * @done: not used here
1705  *
1706  * Generic helper for filesystems to use for symlink inodes where a pointer to
1707  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1708  * since as an optimization the path lookup code uses any non-NULL ->i_link
1709  * directly, without calling ->get_link().  But ->get_link() still must be set,
1710  * to mark the inode_operations as being for a symlink.
1711  *
1712  * Return: the symlink target
1713  */
1714 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1715 			    struct delayed_call *done)
1716 {
1717 	return inode->i_link;
1718 }
1719 EXPORT_SYMBOL(simple_get_link);
1720 
1721 const struct inode_operations simple_symlink_inode_operations = {
1722 	.get_link = simple_get_link,
1723 };
1724 EXPORT_SYMBOL(simple_symlink_inode_operations);
1725 
1726 /*
1727  * Operations for a permanently empty directory.
1728  */
1729 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1730 {
1731 	return ERR_PTR(-ENOENT);
1732 }
1733 
1734 static int empty_dir_setattr(struct mnt_idmap *idmap,
1735 			     struct dentry *dentry, struct iattr *attr)
1736 {
1737 	return -EPERM;
1738 }
1739 
1740 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1741 {
1742 	return -EOPNOTSUPP;
1743 }
1744 
1745 static const struct inode_operations empty_dir_inode_operations = {
1746 	.lookup		= empty_dir_lookup,
1747 	.setattr	= empty_dir_setattr,
1748 	.listxattr	= empty_dir_listxattr,
1749 };
1750 
1751 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1752 {
1753 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1754 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1755 }
1756 
1757 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1758 {
1759 	dir_emit_dots(file, ctx);
1760 	return 0;
1761 }
1762 
1763 static const struct file_operations empty_dir_operations = {
1764 	.llseek		= empty_dir_llseek,
1765 	.read		= generic_read_dir,
1766 	.iterate_shared	= empty_dir_readdir,
1767 	.fsync		= noop_fsync,
1768 };
1769 
1770 
1771 void make_empty_dir_inode(struct inode *inode)
1772 {
1773 	set_nlink(inode, 2);
1774 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1775 	inode->i_uid = GLOBAL_ROOT_UID;
1776 	inode->i_gid = GLOBAL_ROOT_GID;
1777 	inode->i_rdev = 0;
1778 	inode->i_size = 0;
1779 	inode->i_blkbits = PAGE_SHIFT;
1780 	inode->i_blocks = 0;
1781 
1782 	inode->i_op = &empty_dir_inode_operations;
1783 	inode->i_opflags &= ~IOP_XATTR;
1784 	inode->i_fop = &empty_dir_operations;
1785 }
1786 
1787 bool is_empty_dir_inode(struct inode *inode)
1788 {
1789 	return (inode->i_fop == &empty_dir_operations) &&
1790 		(inode->i_op == &empty_dir_inode_operations);
1791 }
1792 
1793 #if IS_ENABLED(CONFIG_UNICODE)
1794 /**
1795  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1796  * @dentry:	dentry whose name we are checking against
1797  * @len:	len of name of dentry
1798  * @str:	str pointer to name of dentry
1799  * @name:	Name to compare against
1800  *
1801  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1802  */
1803 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1804 			 const char *str, const struct qstr *name)
1805 {
1806 	const struct dentry *parent;
1807 	const struct inode *dir;
1808 	union shortname_store strbuf;
1809 	struct qstr qstr;
1810 
1811 	/*
1812 	 * Attempt a case-sensitive match first. It is cheaper and
1813 	 * should cover most lookups, including all the sane
1814 	 * applications that expect a case-sensitive filesystem.
1815 	 *
1816 	 * This comparison is safe under RCU because the caller
1817 	 * guarantees the consistency between str and len. See
1818 	 * __d_lookup_rcu_op_compare() for details.
1819 	 */
1820 	if (len == name->len && !memcmp(str, name->name, len))
1821 		return 0;
1822 
1823 	parent = READ_ONCE(dentry->d_parent);
1824 	dir = READ_ONCE(parent->d_inode);
1825 	if (!dir || !IS_CASEFOLDED(dir))
1826 		return 1;
1827 
1828 	qstr.len = len;
1829 	qstr.name = str;
1830 	/*
1831 	 * If the dentry name is stored in-line, then it may be concurrently
1832 	 * modified by a rename.  If this happens, the VFS will eventually retry
1833 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1834 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1835 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1836 	 * As above, len is guaranteed to match str, so the shortname case
1837 	 * is exactly when str points to ->d_shortname.
1838 	 */
1839 	if (qstr.name == dentry->d_shortname.string) {
1840 		strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1841 		qstr.name = strbuf.string;
1842 		/* prevent compiler from optimizing out the temporary buffer */
1843 		barrier();
1844 	}
1845 
1846 	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1847 }
1848 EXPORT_SYMBOL(generic_ci_d_compare);
1849 
1850 /**
1851  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1852  * @dentry:	dentry of the parent directory
1853  * @str:	qstr of name whose hash we should fill in
1854  *
1855  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1856  */
1857 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1858 {
1859 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1860 	struct super_block *sb = dentry->d_sb;
1861 	const struct unicode_map *um = sb->s_encoding;
1862 	int ret;
1863 
1864 	if (!dir || !IS_CASEFOLDED(dir))
1865 		return 0;
1866 
1867 	ret = utf8_casefold_hash(um, dentry, str);
1868 	if (ret < 0 && sb_has_strict_encoding(sb))
1869 		return -EINVAL;
1870 	return 0;
1871 }
1872 EXPORT_SYMBOL(generic_ci_d_hash);
1873 
1874 static const struct dentry_operations generic_ci_dentry_ops = {
1875 	.d_hash = generic_ci_d_hash,
1876 	.d_compare = generic_ci_d_compare,
1877 #ifdef CONFIG_FS_ENCRYPTION
1878 	.d_revalidate = fscrypt_d_revalidate,
1879 #endif
1880 };
1881 
1882 /**
1883  * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1884  * This is a filesystem helper for comparison with directory entries.
1885  * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1886  *
1887  * @parent: Inode of the parent of the dirent under comparison
1888  * @name: name under lookup.
1889  * @folded_name: Optional pre-folded name under lookup
1890  * @de_name: Dirent name.
1891  * @de_name_len: dirent name length.
1892  *
1893  * Test whether a case-insensitive directory entry matches the filename
1894  * being searched.  If @folded_name is provided, it is used instead of
1895  * recalculating the casefold of @name.
1896  *
1897  * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1898  * < 0 on error.
1899  */
1900 int generic_ci_match(const struct inode *parent,
1901 		     const struct qstr *name,
1902 		     const struct qstr *folded_name,
1903 		     const u8 *de_name, u32 de_name_len)
1904 {
1905 	const struct super_block *sb = parent->i_sb;
1906 	const struct unicode_map *um = sb->s_encoding;
1907 	struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1908 	struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1909 	int res = 0;
1910 
1911 	if (IS_ENCRYPTED(parent)) {
1912 		const struct fscrypt_str encrypted_name =
1913 			FSTR_INIT((u8 *) de_name, de_name_len);
1914 
1915 		if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1916 			return -EINVAL;
1917 
1918 		decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1919 		if (!decrypted_name.name)
1920 			return -ENOMEM;
1921 		res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1922 						&decrypted_name);
1923 		if (res < 0) {
1924 			kfree(decrypted_name.name);
1925 			return res;
1926 		}
1927 		dirent.name = decrypted_name.name;
1928 		dirent.len = decrypted_name.len;
1929 	}
1930 
1931 	/*
1932 	 * Attempt a case-sensitive match first. It is cheaper and
1933 	 * should cover most lookups, including all the sane
1934 	 * applications that expect a case-sensitive filesystem.
1935 	 */
1936 
1937 	if (dirent.len == name->len &&
1938 	    !memcmp(name->name, dirent.name, dirent.len))
1939 		goto out;
1940 
1941 	if (folded_name->name)
1942 		res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1943 	else
1944 		res = utf8_strncasecmp(um, name, &dirent);
1945 
1946 out:
1947 	kfree(decrypted_name.name);
1948 	if (res < 0 && sb_has_strict_encoding(sb)) {
1949 		pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1950 		return 0;
1951 	}
1952 	return !res;
1953 }
1954 EXPORT_SYMBOL(generic_ci_match);
1955 #endif
1956 
1957 #ifdef CONFIG_FS_ENCRYPTION
1958 static const struct dentry_operations generic_encrypted_dentry_ops = {
1959 	.d_revalidate = fscrypt_d_revalidate,
1960 };
1961 #endif
1962 
1963 /**
1964  * generic_set_sb_d_ops - helper for choosing the set of
1965  * filesystem-wide dentry operations for the enabled features
1966  * @sb: superblock to be configured
1967  *
1968  * Filesystems supporting casefolding and/or fscrypt can call this
1969  * helper at mount-time to configure default dentry_operations to the
1970  * best set of dentry operations required for the enabled features.
1971  * The helper must be called after these have been configured, but
1972  * before the root dentry is created.
1973  */
1974 void generic_set_sb_d_ops(struct super_block *sb)
1975 {
1976 #if IS_ENABLED(CONFIG_UNICODE)
1977 	if (sb->s_encoding) {
1978 		set_default_d_op(sb, &generic_ci_dentry_ops);
1979 		return;
1980 	}
1981 #endif
1982 #ifdef CONFIG_FS_ENCRYPTION
1983 	if (sb->s_cop) {
1984 		set_default_d_op(sb, &generic_encrypted_dentry_ops);
1985 		return;
1986 	}
1987 #endif
1988 }
1989 EXPORT_SYMBOL(generic_set_sb_d_ops);
1990 
1991 /**
1992  * inode_maybe_inc_iversion - increments i_version
1993  * @inode: inode with the i_version that should be updated
1994  * @force: increment the counter even if it's not necessary?
1995  *
1996  * Every time the inode is modified, the i_version field must be seen to have
1997  * changed by any observer.
1998  *
1999  * If "force" is set or the QUERIED flag is set, then ensure that we increment
2000  * the value, and clear the queried flag.
2001  *
2002  * In the common case where neither is set, then we can return "false" without
2003  * updating i_version.
2004  *
2005  * If this function returns false, and no other metadata has changed, then we
2006  * can avoid logging the metadata.
2007  */
2008 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
2009 {
2010 	u64 cur, new;
2011 
2012 	/*
2013 	 * The i_version field is not strictly ordered with any other inode
2014 	 * information, but the legacy inode_inc_iversion code used a spinlock
2015 	 * to serialize increments.
2016 	 *
2017 	 * We add a full memory barrier to ensure that any de facto ordering
2018 	 * with other state is preserved (either implicitly coming from cmpxchg
2019 	 * or explicitly from smp_mb if we don't know upfront if we will execute
2020 	 * the former).
2021 	 *
2022 	 * These barriers pair with inode_query_iversion().
2023 	 */
2024 	cur = inode_peek_iversion_raw(inode);
2025 	if (!force && !(cur & I_VERSION_QUERIED)) {
2026 		smp_mb();
2027 		cur = inode_peek_iversion_raw(inode);
2028 	}
2029 
2030 	do {
2031 		/* If flag is clear then we needn't do anything */
2032 		if (!force && !(cur & I_VERSION_QUERIED))
2033 			return false;
2034 
2035 		/* Since lowest bit is flag, add 2 to avoid it */
2036 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2037 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2038 	return true;
2039 }
2040 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2041 
2042 /**
2043  * inode_query_iversion - read i_version for later use
2044  * @inode: inode from which i_version should be read
2045  *
2046  * Read the inode i_version counter. This should be used by callers that wish
2047  * to store the returned i_version for later comparison. This will guarantee
2048  * that a later query of the i_version will result in a different value if
2049  * anything has changed.
2050  *
2051  * In this implementation, we fetch the current value, set the QUERIED flag and
2052  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2053  * that fails, we try again with the newly fetched value from the cmpxchg.
2054  */
2055 u64 inode_query_iversion(struct inode *inode)
2056 {
2057 	u64 cur, new;
2058 	bool fenced = false;
2059 
2060 	/*
2061 	 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2062 	 * inode_maybe_inc_iversion(), see that routine for more details.
2063 	 */
2064 	cur = inode_peek_iversion_raw(inode);
2065 	do {
2066 		/* If flag is already set, then no need to swap */
2067 		if (cur & I_VERSION_QUERIED) {
2068 			if (!fenced)
2069 				smp_mb();
2070 			break;
2071 		}
2072 
2073 		fenced = true;
2074 		new = cur | I_VERSION_QUERIED;
2075 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2076 	return cur >> I_VERSION_QUERIED_SHIFT;
2077 }
2078 EXPORT_SYMBOL(inode_query_iversion);
2079 
2080 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2081 		ssize_t direct_written, ssize_t buffered_written)
2082 {
2083 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2084 	loff_t pos = iocb->ki_pos - buffered_written;
2085 	loff_t end = iocb->ki_pos - 1;
2086 	int err;
2087 
2088 	/*
2089 	 * If the buffered write fallback returned an error, we want to return
2090 	 * the number of bytes which were written by direct I/O, or the error
2091 	 * code if that was zero.
2092 	 *
2093 	 * Note that this differs from normal direct-io semantics, which will
2094 	 * return -EFOO even if some bytes were written.
2095 	 */
2096 	if (unlikely(buffered_written < 0)) {
2097 		if (direct_written)
2098 			return direct_written;
2099 		return buffered_written;
2100 	}
2101 
2102 	/*
2103 	 * We need to ensure that the page cache pages are written to disk and
2104 	 * invalidated to preserve the expected O_DIRECT semantics.
2105 	 */
2106 	err = filemap_write_and_wait_range(mapping, pos, end);
2107 	if (err < 0) {
2108 		/*
2109 		 * We don't know how much we wrote, so just return the number of
2110 		 * bytes which were direct-written
2111 		 */
2112 		iocb->ki_pos -= buffered_written;
2113 		if (direct_written)
2114 			return direct_written;
2115 		return err;
2116 	}
2117 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2118 	return direct_written + buffered_written;
2119 }
2120 EXPORT_SYMBOL_GPL(direct_write_fallback);
2121 
2122 /**
2123  * simple_inode_init_ts - initialize the timestamps for a new inode
2124  * @inode: inode to be initialized
2125  *
2126  * When a new inode is created, most filesystems set the timestamps to the
2127  * current time. Add a helper to do this.
2128  */
2129 struct timespec64 simple_inode_init_ts(struct inode *inode)
2130 {
2131 	struct timespec64 ts = inode_set_ctime_current(inode);
2132 
2133 	inode_set_atime_to_ts(inode, ts);
2134 	inode_set_mtime_to_ts(inode, ts);
2135 	return ts;
2136 }
2137 EXPORT_SYMBOL(simple_inode_init_ts);
2138 
2139 struct dentry *stashed_dentry_get(struct dentry **stashed)
2140 {
2141 	struct dentry *dentry;
2142 
2143 	guard(rcu)();
2144 	dentry = rcu_dereference(*stashed);
2145 	if (!dentry)
2146 		return NULL;
2147 	if (IS_ERR(dentry))
2148 		return dentry;
2149 	if (!lockref_get_not_dead(&dentry->d_lockref))
2150 		return NULL;
2151 	return dentry;
2152 }
2153 
2154 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2155 					  struct super_block *sb,
2156 					  void *data)
2157 {
2158 	struct dentry *dentry;
2159 	struct inode *inode;
2160 	const struct stashed_operations *sops = sb->s_fs_info;
2161 	int ret;
2162 
2163 	inode = new_inode_pseudo(sb);
2164 	if (!inode) {
2165 		sops->put_data(data);
2166 		return ERR_PTR(-ENOMEM);
2167 	}
2168 
2169 	inode->i_flags |= S_IMMUTABLE;
2170 	inode->i_mode = S_IFREG;
2171 	simple_inode_init_ts(inode);
2172 
2173 	ret = sops->init_inode(inode, data);
2174 	if (ret < 0) {
2175 		iput(inode);
2176 		return ERR_PTR(ret);
2177 	}
2178 
2179 	/* Notice when this is changed. */
2180 	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2181 
2182 	dentry = d_alloc_anon(sb);
2183 	if (!dentry) {
2184 		iput(inode);
2185 		return ERR_PTR(-ENOMEM);
2186 	}
2187 
2188 	/* Store address of location where dentry's supposed to be stashed. */
2189 	dentry->d_fsdata = stashed;
2190 
2191 	/* @data is now owned by the fs */
2192 	d_instantiate(dentry, inode);
2193 	return dentry;
2194 }
2195 
2196 struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry)
2197 {
2198 	guard(rcu)();
2199 	for (;;) {
2200 		struct dentry *old;
2201 
2202 		/* Assume any old dentry was cleared out. */
2203 		old = cmpxchg(stashed, NULL, dentry);
2204 		if (likely(!old))
2205 			return dentry;
2206 
2207 		/* Check if somebody else installed a reusable dentry. */
2208 		if (lockref_get_not_dead(&old->d_lockref))
2209 			return old;
2210 
2211 		/* There's an old dead dentry there, try to take it over. */
2212 		if (likely(try_cmpxchg(stashed, &old, dentry)))
2213 			return dentry;
2214 	}
2215 }
2216 
2217 /**
2218  * path_from_stashed - create path from stashed or new dentry
2219  * @stashed:    where to retrieve or stash dentry
2220  * @mnt:        mnt of the filesystems to use
2221  * @data:       data to store in inode->i_private
2222  * @path:       path to create
2223  *
2224  * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2225  * is still valid then it will be reused. If the dentry isn't able the function
2226  * will allocate a new dentry and inode. It will then check again whether it
2227  * can reuse an existing dentry in case one has been added in the meantime or
2228  * update @stashed with the newly added dentry.
2229  *
2230  * Special-purpose helper for nsfs and pidfs.
2231  *
2232  * Return: On success zero and on failure a negative error is returned.
2233  */
2234 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2235 		      struct path *path)
2236 {
2237 	struct dentry *dentry, *res;
2238 	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2239 
2240 	/* See if dentry can be reused. */
2241 	res = stashed_dentry_get(stashed);
2242 	if (IS_ERR(res))
2243 		return PTR_ERR(res);
2244 	if (res) {
2245 		sops->put_data(data);
2246 		goto make_path;
2247 	}
2248 
2249 	/* Allocate a new dentry. */
2250 	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2251 	if (IS_ERR(dentry))
2252 		return PTR_ERR(dentry);
2253 
2254 	/* Added a new dentry. @data is now owned by the filesystem. */
2255 	if (sops->stash_dentry)
2256 		res = sops->stash_dentry(stashed, dentry);
2257 	else
2258 		res = stash_dentry(stashed, dentry);
2259 	if (IS_ERR(res)) {
2260 		dput(dentry);
2261 		return PTR_ERR(res);
2262 	}
2263 	if (res != dentry)
2264 		dput(dentry);
2265 
2266 make_path:
2267 	path->dentry = res;
2268 	path->mnt = mntget(mnt);
2269 	VFS_WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2270 	VFS_WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2271 	return 0;
2272 }
2273 
2274 void stashed_dentry_prune(struct dentry *dentry)
2275 {
2276 	struct dentry **stashed = dentry->d_fsdata;
2277 	struct inode *inode = d_inode(dentry);
2278 
2279 	if (WARN_ON_ONCE(!stashed))
2280 		return;
2281 
2282 	if (!inode)
2283 		return;
2284 
2285 	/*
2286 	 * Only replace our own @dentry as someone else might've
2287 	 * already cleared out @dentry and stashed their own
2288 	 * dentry in there.
2289 	 */
2290 	cmpxchg(stashed, dentry, NULL);
2291 }
2292 
2293 /**
2294  * simple_start_creating - prepare to create a given name
2295  * @parent: directory in which to prepare to create the name
2296  * @name:   the name to be created
2297  *
2298  * Required lock is taken and a lookup in performed prior to creating an
2299  * object in a directory.  No permission checking is performed.
2300  *
2301  * Returns: a negative dentry on which vfs_create() or similar may
2302  *  be attempted, or an error.
2303  */
2304 struct dentry *simple_start_creating(struct dentry *parent, const char *name)
2305 {
2306 	struct qstr qname = QSTR(name);
2307 	int err;
2308 
2309 	err = lookup_noperm_common(&qname, parent);
2310 	if (err)
2311 		return ERR_PTR(err);
2312 	return start_dirop(parent, &qname, LOOKUP_CREATE | LOOKUP_EXCL);
2313 }
2314 EXPORT_SYMBOL(simple_start_creating);
2315