xref: /linux/fs/libfs.c (revision 7b8e9264f55a9c320f398e337d215e68cca50131)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 #include "internal.h"
31 
32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 		   struct kstat *stat, u32 request_mask,
34 		   unsigned int query_flags)
35 {
36 	struct inode *inode = d_inode(path->dentry);
37 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 	return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42 
43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46 
47 	buf->f_fsid = u64_to_fsid(id);
48 	buf->f_type = dentry->d_sb->s_magic;
49 	buf->f_bsize = PAGE_SIZE;
50 	buf->f_namelen = NAME_MAX;
51 	return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54 
55 /*
56  * Retaining negative dentries for an in-memory filesystem just wastes
57  * memory and lookup time: arrange for them to be deleted immediately.
58  */
59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 	return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64 
65 /*
66  * Lookup the data. This is trivial - if the dentry didn't already
67  * exist, we know it is negative.  Set d_op to delete negative dentries.
68  */
69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 	if (dentry->d_name.len > NAME_MAX)
72 		return ERR_PTR(-ENAMETOOLONG);
73 	if (!dentry->d_op && !(dentry->d_flags & DCACHE_DONTCACHE)) {
74 		spin_lock(&dentry->d_lock);
75 		dentry->d_flags |= DCACHE_DONTCACHE;
76 		spin_unlock(&dentry->d_lock);
77 	}
78 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
79 		return NULL;
80 
81 	d_add(dentry, NULL);
82 	return NULL;
83 }
84 EXPORT_SYMBOL(simple_lookup);
85 
86 int dcache_dir_open(struct inode *inode, struct file *file)
87 {
88 	file->private_data = d_alloc_cursor(file->f_path.dentry);
89 
90 	return file->private_data ? 0 : -ENOMEM;
91 }
92 EXPORT_SYMBOL(dcache_dir_open);
93 
94 int dcache_dir_close(struct inode *inode, struct file *file)
95 {
96 	dput(file->private_data);
97 	return 0;
98 }
99 EXPORT_SYMBOL(dcache_dir_close);
100 
101 /* parent is locked at least shared */
102 /*
103  * Returns an element of siblings' list.
104  * We are looking for <count>th positive after <p>; if
105  * found, dentry is grabbed and returned to caller.
106  * If no such element exists, NULL is returned.
107  */
108 static struct dentry *scan_positives(struct dentry *cursor,
109 					struct hlist_node **p,
110 					loff_t count,
111 					struct dentry *last)
112 {
113 	struct dentry *dentry = cursor->d_parent, *found = NULL;
114 
115 	spin_lock(&dentry->d_lock);
116 	while (*p) {
117 		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
118 		p = &d->d_sib.next;
119 		// we must at least skip cursors, to avoid livelocks
120 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
121 			continue;
122 		if (simple_positive(d) && !--count) {
123 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
124 			if (simple_positive(d))
125 				found = dget_dlock(d);
126 			spin_unlock(&d->d_lock);
127 			if (likely(found))
128 				break;
129 			count = 1;
130 		}
131 		if (need_resched()) {
132 			if (!hlist_unhashed(&cursor->d_sib))
133 				__hlist_del(&cursor->d_sib);
134 			hlist_add_behind(&cursor->d_sib, &d->d_sib);
135 			p = &cursor->d_sib.next;
136 			spin_unlock(&dentry->d_lock);
137 			cond_resched();
138 			spin_lock(&dentry->d_lock);
139 		}
140 	}
141 	spin_unlock(&dentry->d_lock);
142 	dput(last);
143 	return found;
144 }
145 
146 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
147 {
148 	struct dentry *dentry = file->f_path.dentry;
149 	switch (whence) {
150 		case 1:
151 			offset += file->f_pos;
152 			fallthrough;
153 		case 0:
154 			if (offset >= 0)
155 				break;
156 			fallthrough;
157 		default:
158 			return -EINVAL;
159 	}
160 	if (offset != file->f_pos) {
161 		struct dentry *cursor = file->private_data;
162 		struct dentry *to = NULL;
163 
164 		inode_lock_shared(dentry->d_inode);
165 
166 		if (offset > 2)
167 			to = scan_positives(cursor, &dentry->d_children.first,
168 					    offset - 2, NULL);
169 		spin_lock(&dentry->d_lock);
170 		hlist_del_init(&cursor->d_sib);
171 		if (to)
172 			hlist_add_behind(&cursor->d_sib, &to->d_sib);
173 		spin_unlock(&dentry->d_lock);
174 		dput(to);
175 
176 		file->f_pos = offset;
177 
178 		inode_unlock_shared(dentry->d_inode);
179 	}
180 	return offset;
181 }
182 EXPORT_SYMBOL(dcache_dir_lseek);
183 
184 /*
185  * Directory is locked and all positive dentries in it are safe, since
186  * for ramfs-type trees they can't go away without unlink() or rmdir(),
187  * both impossible due to the lock on directory.
188  */
189 
190 int dcache_readdir(struct file *file, struct dir_context *ctx)
191 {
192 	struct dentry *dentry = file->f_path.dentry;
193 	struct dentry *cursor = file->private_data;
194 	struct dentry *next = NULL;
195 	struct hlist_node **p;
196 
197 	if (!dir_emit_dots(file, ctx))
198 		return 0;
199 
200 	if (ctx->pos == 2)
201 		p = &dentry->d_children.first;
202 	else
203 		p = &cursor->d_sib.next;
204 
205 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
206 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
207 			      d_inode(next)->i_ino,
208 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
209 			break;
210 		ctx->pos++;
211 		p = &next->d_sib.next;
212 	}
213 	spin_lock(&dentry->d_lock);
214 	hlist_del_init(&cursor->d_sib);
215 	if (next)
216 		hlist_add_before(&cursor->d_sib, &next->d_sib);
217 	spin_unlock(&dentry->d_lock);
218 	dput(next);
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL(dcache_readdir);
223 
224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225 {
226 	return -EISDIR;
227 }
228 EXPORT_SYMBOL(generic_read_dir);
229 
230 const struct file_operations simple_dir_operations = {
231 	.open		= dcache_dir_open,
232 	.release	= dcache_dir_close,
233 	.llseek		= dcache_dir_lseek,
234 	.read		= generic_read_dir,
235 	.iterate_shared	= dcache_readdir,
236 	.fsync		= noop_fsync,
237 };
238 EXPORT_SYMBOL(simple_dir_operations);
239 
240 const struct inode_operations simple_dir_inode_operations = {
241 	.lookup		= simple_lookup,
242 };
243 EXPORT_SYMBOL(simple_dir_inode_operations);
244 
245 /* simple_offset_add() never assigns these to a dentry */
246 enum {
247 	DIR_OFFSET_FIRST	= 2,		/* Find first real entry */
248 	DIR_OFFSET_EOD		= S32_MAX,
249 };
250 
251 /* simple_offset_add() allocation range */
252 enum {
253 	DIR_OFFSET_MIN		= DIR_OFFSET_FIRST + 1,
254 	DIR_OFFSET_MAX		= DIR_OFFSET_EOD - 1,
255 };
256 
257 static void offset_set(struct dentry *dentry, long offset)
258 {
259 	dentry->d_fsdata = (void *)offset;
260 }
261 
262 static long dentry2offset(struct dentry *dentry)
263 {
264 	return (long)dentry->d_fsdata;
265 }
266 
267 static struct lock_class_key simple_offset_lock_class;
268 
269 /**
270  * simple_offset_init - initialize an offset_ctx
271  * @octx: directory offset map to be initialized
272  *
273  */
274 void simple_offset_init(struct offset_ctx *octx)
275 {
276 	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
277 	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
278 	octx->next_offset = DIR_OFFSET_MIN;
279 }
280 
281 /**
282  * simple_offset_add - Add an entry to a directory's offset map
283  * @octx: directory offset ctx to be updated
284  * @dentry: new dentry being added
285  *
286  * Returns zero on success. @octx and the dentry's offset are updated.
287  * Otherwise, a negative errno value is returned.
288  */
289 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
290 {
291 	unsigned long offset;
292 	int ret;
293 
294 	if (dentry2offset(dentry) != 0)
295 		return -EBUSY;
296 
297 	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
298 				 DIR_OFFSET_MAX, &octx->next_offset,
299 				 GFP_KERNEL);
300 	if (unlikely(ret < 0))
301 		return ret == -EBUSY ? -ENOSPC : ret;
302 
303 	offset_set(dentry, offset);
304 	return 0;
305 }
306 
307 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
308 				 long offset)
309 {
310 	int ret;
311 
312 	ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
313 	if (ret)
314 		return ret;
315 	offset_set(dentry, offset);
316 	return 0;
317 }
318 
319 /**
320  * simple_offset_remove - Remove an entry to a directory's offset map
321  * @octx: directory offset ctx to be updated
322  * @dentry: dentry being removed
323  *
324  */
325 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
326 {
327 	long offset;
328 
329 	offset = dentry2offset(dentry);
330 	if (offset == 0)
331 		return;
332 
333 	mtree_erase(&octx->mt, offset);
334 	offset_set(dentry, 0);
335 }
336 
337 /**
338  * simple_offset_rename - handle directory offsets for rename
339  * @old_dir: parent directory of source entry
340  * @old_dentry: dentry of source entry
341  * @new_dir: parent_directory of destination entry
342  * @new_dentry: dentry of destination
343  *
344  * Caller provides appropriate serialization.
345  *
346  * User space expects the directory offset value of the replaced
347  * (new) directory entry to be unchanged after a rename.
348  *
349  * Caller must have grabbed a slot for new_dentry in the maple_tree
350  * associated with new_dir, even if dentry is negative.
351  */
352 void simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
353 			  struct inode *new_dir, struct dentry *new_dentry)
354 {
355 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
356 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
357 	long new_offset = dentry2offset(new_dentry);
358 
359 	if (WARN_ON(!new_offset))
360 		return;
361 
362 	simple_offset_remove(old_ctx, old_dentry);
363 	offset_set(new_dentry, 0);
364 	WARN_ON(simple_offset_replace(new_ctx, old_dentry, new_offset));
365 }
366 
367 /**
368  * simple_offset_rename_exchange - exchange rename with directory offsets
369  * @old_dir: parent of dentry being moved
370  * @old_dentry: dentry being moved
371  * @new_dir: destination parent
372  * @new_dentry: destination dentry
373  *
374  * This API preserves the directory offset values. Caller provides
375  * appropriate serialization.
376  *
377  * Returns zero on success. Otherwise a negative errno is returned and the
378  * rename is rolled back.
379  */
380 int simple_offset_rename_exchange(struct inode *old_dir,
381 				  struct dentry *old_dentry,
382 				  struct inode *new_dir,
383 				  struct dentry *new_dentry)
384 {
385 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
386 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
387 	long old_index = dentry2offset(old_dentry);
388 	long new_index = dentry2offset(new_dentry);
389 	int ret;
390 
391 	if (WARN_ON(!old_index || !new_index))
392 		return -EINVAL;
393 
394 	ret = mtree_store(&new_ctx->mt, new_index, old_dentry, GFP_KERNEL);
395 	if (WARN_ON(ret))
396 		return ret;
397 
398 	ret = mtree_store(&old_ctx->mt, old_index, new_dentry, GFP_KERNEL);
399 	if (WARN_ON(ret)) {
400 		mtree_store(&new_ctx->mt, new_index, new_dentry, GFP_KERNEL);
401 		return ret;
402 	}
403 
404 	offset_set(old_dentry, new_index);
405 	offset_set(new_dentry, old_index);
406 	simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
407 	return 0;
408 }
409 
410 /**
411  * simple_offset_destroy - Release offset map
412  * @octx: directory offset ctx that is about to be destroyed
413  *
414  * During fs teardown (eg. umount), a directory's offset map might still
415  * contain entries. xa_destroy() cleans out anything that remains.
416  */
417 void simple_offset_destroy(struct offset_ctx *octx)
418 {
419 	mtree_destroy(&octx->mt);
420 }
421 
422 /**
423  * offset_dir_llseek - Advance the read position of a directory descriptor
424  * @file: an open directory whose position is to be updated
425  * @offset: a byte offset
426  * @whence: enumerator describing the starting position for this update
427  *
428  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
429  *
430  * Returns the updated read position if successful; otherwise a
431  * negative errno is returned and the read position remains unchanged.
432  */
433 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
434 {
435 	switch (whence) {
436 	case SEEK_CUR:
437 		offset += file->f_pos;
438 		fallthrough;
439 	case SEEK_SET:
440 		if (offset >= 0)
441 			break;
442 		fallthrough;
443 	default:
444 		return -EINVAL;
445 	}
446 
447 	return vfs_setpos(file, offset, LONG_MAX);
448 }
449 
450 static struct dentry *find_positive_dentry(struct dentry *parent,
451 					   struct dentry *dentry,
452 					   bool next)
453 {
454 	struct dentry *found = NULL;
455 
456 	spin_lock(&parent->d_lock);
457 	if (next)
458 		dentry = d_next_sibling(dentry);
459 	else if (!dentry)
460 		dentry = d_first_child(parent);
461 	hlist_for_each_entry_from(dentry, d_sib) {
462 		if (!simple_positive(dentry))
463 			continue;
464 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
465 		if (simple_positive(dentry))
466 			found = dget_dlock(dentry);
467 		spin_unlock(&dentry->d_lock);
468 		if (likely(found))
469 			break;
470 	}
471 	spin_unlock(&parent->d_lock);
472 	return found;
473 }
474 
475 static noinline_for_stack struct dentry *
476 offset_dir_lookup(struct dentry *parent, loff_t offset)
477 {
478 	struct inode *inode = d_inode(parent);
479 	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
480 	struct dentry *child, *found = NULL;
481 
482 	MA_STATE(mas, &octx->mt, offset, offset);
483 
484 	if (offset == DIR_OFFSET_FIRST)
485 		found = find_positive_dentry(parent, NULL, false);
486 	else {
487 		rcu_read_lock();
488 		child = mas_find_rev(&mas, DIR_OFFSET_MIN);
489 		found = find_positive_dentry(parent, child, false);
490 		rcu_read_unlock();
491 	}
492 	return found;
493 }
494 
495 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
496 {
497 	struct inode *inode = d_inode(dentry);
498 
499 	return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
500 			inode->i_ino, fs_umode_to_dtype(inode->i_mode));
501 }
502 
503 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
504 {
505 	struct dentry *dir = file->f_path.dentry;
506 	struct dentry *dentry;
507 
508 	dentry = offset_dir_lookup(dir, ctx->pos);
509 	if (!dentry)
510 		goto out_eod;
511 	while (true) {
512 		struct dentry *next;
513 
514 		ctx->pos = dentry2offset(dentry);
515 		if (!offset_dir_emit(ctx, dentry))
516 			break;
517 
518 		next = find_positive_dentry(dir, dentry, true);
519 		dput(dentry);
520 
521 		if (!next)
522 			goto out_eod;
523 		dentry = next;
524 	}
525 	dput(dentry);
526 	return;
527 
528 out_eod:
529 	ctx->pos = DIR_OFFSET_EOD;
530 }
531 
532 /**
533  * offset_readdir - Emit entries starting at offset @ctx->pos
534  * @file: an open directory to iterate over
535  * @ctx: directory iteration context
536  *
537  * Caller must hold @file's i_rwsem to prevent insertion or removal of
538  * entries during this call.
539  *
540  * On entry, @ctx->pos contains an offset that represents the first entry
541  * to be read from the directory.
542  *
543  * The operation continues until there are no more entries to read, or
544  * until the ctx->actor indicates there is no more space in the caller's
545  * output buffer.
546  *
547  * On return, @ctx->pos contains an offset that will read the next entry
548  * in this directory when offset_readdir() is called again with @ctx.
549  * Caller places this value in the d_off field of the last entry in the
550  * user's buffer.
551  *
552  * Return values:
553  *   %0 - Complete
554  */
555 static int offset_readdir(struct file *file, struct dir_context *ctx)
556 {
557 	struct dentry *dir = file->f_path.dentry;
558 
559 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
560 
561 	if (!dir_emit_dots(file, ctx))
562 		return 0;
563 	if (ctx->pos != DIR_OFFSET_EOD)
564 		offset_iterate_dir(file, ctx);
565 	return 0;
566 }
567 
568 const struct file_operations simple_offset_dir_operations = {
569 	.llseek		= offset_dir_llseek,
570 	.iterate_shared	= offset_readdir,
571 	.read		= generic_read_dir,
572 	.fsync		= noop_fsync,
573 };
574 
575 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
576 {
577 	struct dentry *child = NULL, *d;
578 
579 	spin_lock(&parent->d_lock);
580 	d = prev ? d_next_sibling(prev) : d_first_child(parent);
581 	hlist_for_each_entry_from(d, d_sib) {
582 		if (simple_positive(d)) {
583 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
584 			if (simple_positive(d))
585 				child = dget_dlock(d);
586 			spin_unlock(&d->d_lock);
587 			if (likely(child))
588 				break;
589 		}
590 	}
591 	spin_unlock(&parent->d_lock);
592 	dput(prev);
593 	return child;
594 }
595 EXPORT_SYMBOL(find_next_child);
596 
597 static void __simple_recursive_removal(struct dentry *dentry,
598                               void (*callback)(struct dentry *),
599 			      bool locked)
600 {
601 	struct dentry *this = dget(dentry);
602 	while (true) {
603 		struct dentry *victim = NULL, *child;
604 		struct inode *inode = this->d_inode;
605 
606 		inode_lock_nested(inode, I_MUTEX_CHILD);
607 		if (d_is_dir(this))
608 			inode->i_flags |= S_DEAD;
609 		while ((child = find_next_child(this, victim)) == NULL) {
610 			// kill and ascend
611 			// update metadata while it's still locked
612 			inode_set_ctime_current(inode);
613 			clear_nlink(inode);
614 			inode_unlock(inode);
615 			victim = this;
616 			this = this->d_parent;
617 			inode = this->d_inode;
618 			if (!locked || victim != dentry)
619 				inode_lock_nested(inode, I_MUTEX_CHILD);
620 			if (simple_positive(victim)) {
621 				d_invalidate(victim);	// avoid lost mounts
622 				if (callback)
623 					callback(victim);
624 				fsnotify_delete(inode, d_inode(victim), victim);
625 				d_make_discardable(victim);
626 			}
627 			if (victim == dentry) {
628 				inode_set_mtime_to_ts(inode,
629 						      inode_set_ctime_current(inode));
630 				if (d_is_dir(dentry))
631 					drop_nlink(inode);
632 				if (!locked)
633 					inode_unlock(inode);
634 				dput(dentry);
635 				return;
636 			}
637 		}
638 		inode_unlock(inode);
639 		this = child;
640 	}
641 }
642 
643 void simple_recursive_removal(struct dentry *dentry,
644                               void (*callback)(struct dentry *))
645 {
646 	return __simple_recursive_removal(dentry, callback, false);
647 }
648 EXPORT_SYMBOL(simple_recursive_removal);
649 
650 void simple_remove_by_name(struct dentry *parent, const char *name,
651                            void (*callback)(struct dentry *))
652 {
653 	struct dentry *dentry;
654 
655 	dentry = lookup_noperm_positive_unlocked(&QSTR(name), parent);
656 	if (!IS_ERR(dentry)) {
657 		simple_recursive_removal(dentry, callback);
658 		dput(dentry);	// paired with lookup_noperm_positive_unlocked()
659 	}
660 }
661 EXPORT_SYMBOL(simple_remove_by_name);
662 
663 /* caller holds parent directory with I_MUTEX_PARENT */
664 void locked_recursive_removal(struct dentry *dentry,
665                               void (*callback)(struct dentry *))
666 {
667 	return __simple_recursive_removal(dentry, callback, true);
668 }
669 EXPORT_SYMBOL(locked_recursive_removal);
670 
671 static const struct super_operations simple_super_operations = {
672 	.statfs		= simple_statfs,
673 };
674 
675 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
676 {
677 	struct pseudo_fs_context *ctx = fc->fs_private;
678 	struct inode *root;
679 
680 	s->s_maxbytes = MAX_LFS_FILESIZE;
681 	s->s_blocksize = PAGE_SIZE;
682 	s->s_blocksize_bits = PAGE_SHIFT;
683 	s->s_magic = ctx->magic;
684 	s->s_op = ctx->ops ?: &simple_super_operations;
685 	s->s_export_op = ctx->eops;
686 	s->s_xattr = ctx->xattr;
687 	s->s_time_gran = 1;
688 	s->s_d_flags |= ctx->s_d_flags;
689 	root = new_inode(s);
690 	if (!root)
691 		return -ENOMEM;
692 
693 	/*
694 	 * since this is the first inode, make it number 1. New inodes created
695 	 * after this must take care not to collide with it (by passing
696 	 * max_reserved of 1 to iunique).
697 	 */
698 	root->i_ino = 1;
699 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
700 	simple_inode_init_ts(root);
701 	s->s_root = d_make_root(root);
702 	if (!s->s_root)
703 		return -ENOMEM;
704 	set_default_d_op(s, ctx->dops);
705 	return 0;
706 }
707 
708 static int pseudo_fs_get_tree(struct fs_context *fc)
709 {
710 	return get_tree_nodev(fc, pseudo_fs_fill_super);
711 }
712 
713 static void pseudo_fs_free(struct fs_context *fc)
714 {
715 	kfree(fc->fs_private);
716 }
717 
718 static const struct fs_context_operations pseudo_fs_context_ops = {
719 	.free		= pseudo_fs_free,
720 	.get_tree	= pseudo_fs_get_tree,
721 };
722 
723 /*
724  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
725  * will never be mountable)
726  */
727 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
728 					unsigned long magic)
729 {
730 	struct pseudo_fs_context *ctx;
731 
732 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
733 	if (likely(ctx)) {
734 		ctx->magic = magic;
735 		fc->fs_private = ctx;
736 		fc->ops = &pseudo_fs_context_ops;
737 		fc->sb_flags |= SB_NOUSER;
738 		fc->global = true;
739 	}
740 	return ctx;
741 }
742 EXPORT_SYMBOL(init_pseudo);
743 
744 int simple_open(struct inode *inode, struct file *file)
745 {
746 	if (inode->i_private)
747 		file->private_data = inode->i_private;
748 	return 0;
749 }
750 EXPORT_SYMBOL(simple_open);
751 
752 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
753 {
754 	struct inode *inode = d_inode(old_dentry);
755 
756 	inode_set_mtime_to_ts(dir,
757 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
758 	inc_nlink(inode);
759 	ihold(inode);
760 	d_make_persistent(dentry, inode);
761 	return 0;
762 }
763 EXPORT_SYMBOL(simple_link);
764 
765 int simple_empty(struct dentry *dentry)
766 {
767 	struct dentry *child;
768 	int ret = 0;
769 
770 	spin_lock(&dentry->d_lock);
771 	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
772 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
773 		if (simple_positive(child)) {
774 			spin_unlock(&child->d_lock);
775 			goto out;
776 		}
777 		spin_unlock(&child->d_lock);
778 	}
779 	ret = 1;
780 out:
781 	spin_unlock(&dentry->d_lock);
782 	return ret;
783 }
784 EXPORT_SYMBOL(simple_empty);
785 
786 void __simple_unlink(struct inode *dir, struct dentry *dentry)
787 {
788 	struct inode *inode = d_inode(dentry);
789 
790 	inode_set_mtime_to_ts(dir,
791 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
792 	drop_nlink(inode);
793 }
794 EXPORT_SYMBOL(__simple_unlink);
795 
796 void __simple_rmdir(struct inode *dir, struct dentry *dentry)
797 {
798 	drop_nlink(d_inode(dentry));
799 	__simple_unlink(dir, dentry);
800 	drop_nlink(dir);
801 }
802 EXPORT_SYMBOL(__simple_rmdir);
803 
804 int simple_unlink(struct inode *dir, struct dentry *dentry)
805 {
806 	__simple_unlink(dir, dentry);
807 	d_make_discardable(dentry);
808 	return 0;
809 }
810 EXPORT_SYMBOL(simple_unlink);
811 
812 int simple_rmdir(struct inode *dir, struct dentry *dentry)
813 {
814 	if (!simple_empty(dentry))
815 		return -ENOTEMPTY;
816 
817 	__simple_rmdir(dir, dentry);
818 	d_make_discardable(dentry);
819 	return 0;
820 }
821 EXPORT_SYMBOL(simple_rmdir);
822 
823 /**
824  * simple_rename_timestamp - update the various inode timestamps for rename
825  * @old_dir: old parent directory
826  * @old_dentry: dentry that is being renamed
827  * @new_dir: new parent directory
828  * @new_dentry: target for rename
829  *
830  * POSIX mandates that the old and new parent directories have their ctime and
831  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
832  * their ctime updated.
833  */
834 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
835 			     struct inode *new_dir, struct dentry *new_dentry)
836 {
837 	struct inode *newino = d_inode(new_dentry);
838 
839 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
840 	if (new_dir != old_dir)
841 		inode_set_mtime_to_ts(new_dir,
842 				      inode_set_ctime_current(new_dir));
843 	inode_set_ctime_current(d_inode(old_dentry));
844 	if (newino)
845 		inode_set_ctime_current(newino);
846 }
847 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
848 
849 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
850 			   struct inode *new_dir, struct dentry *new_dentry)
851 {
852 	bool old_is_dir = d_is_dir(old_dentry);
853 	bool new_is_dir = d_is_dir(new_dentry);
854 
855 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
856 		if (old_is_dir) {
857 			drop_nlink(old_dir);
858 			inc_nlink(new_dir);
859 		} else {
860 			drop_nlink(new_dir);
861 			inc_nlink(old_dir);
862 		}
863 	}
864 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
865 	return 0;
866 }
867 EXPORT_SYMBOL_GPL(simple_rename_exchange);
868 
869 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
870 		  struct dentry *old_dentry, struct inode *new_dir,
871 		  struct dentry *new_dentry, unsigned int flags)
872 {
873 	int they_are_dirs = d_is_dir(old_dentry);
874 
875 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
876 		return -EINVAL;
877 
878 	if (flags & RENAME_EXCHANGE)
879 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
880 
881 	if (!simple_empty(new_dentry))
882 		return -ENOTEMPTY;
883 
884 	if (d_really_is_positive(new_dentry)) {
885 		simple_unlink(new_dir, new_dentry);
886 		if (they_are_dirs) {
887 			drop_nlink(d_inode(new_dentry));
888 			drop_nlink(old_dir);
889 		}
890 	} else if (they_are_dirs) {
891 		drop_nlink(old_dir);
892 		inc_nlink(new_dir);
893 	}
894 
895 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
896 	return 0;
897 }
898 EXPORT_SYMBOL(simple_rename);
899 
900 /**
901  * simple_setattr - setattr for simple filesystem
902  * @idmap: idmap of the target mount
903  * @dentry: dentry
904  * @iattr: iattr structure
905  *
906  * Returns 0 on success, -error on failure.
907  *
908  * simple_setattr is a simple ->setattr implementation without a proper
909  * implementation of size changes.
910  *
911  * It can either be used for in-memory filesystems or special files
912  * on simple regular filesystems.  Anything that needs to change on-disk
913  * or wire state on size changes needs its own setattr method.
914  */
915 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
916 		   struct iattr *iattr)
917 {
918 	struct inode *inode = d_inode(dentry);
919 	int error;
920 
921 	error = setattr_prepare(idmap, dentry, iattr);
922 	if (error)
923 		return error;
924 
925 	if (iattr->ia_valid & ATTR_SIZE)
926 		truncate_setsize(inode, iattr->ia_size);
927 	setattr_copy(idmap, inode, iattr);
928 	mark_inode_dirty(inode);
929 	return 0;
930 }
931 EXPORT_SYMBOL(simple_setattr);
932 
933 static int simple_read_folio(struct file *file, struct folio *folio)
934 {
935 	folio_zero_range(folio, 0, folio_size(folio));
936 	flush_dcache_folio(folio);
937 	folio_mark_uptodate(folio);
938 	folio_unlock(folio);
939 	return 0;
940 }
941 
942 int simple_write_begin(const struct kiocb *iocb, struct address_space *mapping,
943 			loff_t pos, unsigned len,
944 			struct folio **foliop, void **fsdata)
945 {
946 	struct folio *folio;
947 
948 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
949 			mapping_gfp_mask(mapping));
950 	if (IS_ERR(folio))
951 		return PTR_ERR(folio);
952 
953 	*foliop = folio;
954 
955 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
956 		size_t from = offset_in_folio(folio, pos);
957 
958 		folio_zero_segments(folio, 0, from,
959 				from + len, folio_size(folio));
960 	}
961 	return 0;
962 }
963 EXPORT_SYMBOL(simple_write_begin);
964 
965 /**
966  * simple_write_end - .write_end helper for non-block-device FSes
967  * @iocb: kernel I/O control block
968  * @mapping: 		"
969  * @pos: 		"
970  * @len: 		"
971  * @copied: 		"
972  * @folio: 		"
973  * @fsdata: 		"
974  *
975  * simple_write_end does the minimum needed for updating a folio after
976  * writing is done. It has the same API signature as the .write_end of
977  * address_space_operations vector. So it can just be set onto .write_end for
978  * FSes that don't need any other processing. i_rwsem is assumed to be held
979  * exclusively.
980  * Block based filesystems should use generic_write_end().
981  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
982  * is not called, so a filesystem that actually does store data in .write_inode
983  * should extend on what's done here with a call to mark_inode_dirty() in the
984  * case that i_size has changed.
985  *
986  * Use *ONLY* with simple_read_folio()
987  */
988 static int simple_write_end(const struct kiocb *iocb,
989 			    struct address_space *mapping,
990 			    loff_t pos, unsigned len, unsigned copied,
991 			    struct folio *folio, void *fsdata)
992 {
993 	struct inode *inode = folio->mapping->host;
994 	loff_t last_pos = pos + copied;
995 
996 	/* zero the stale part of the folio if we did a short copy */
997 	if (!folio_test_uptodate(folio)) {
998 		if (copied < len) {
999 			size_t from = offset_in_folio(folio, pos);
1000 
1001 			folio_zero_range(folio, from + copied, len - copied);
1002 		}
1003 		folio_mark_uptodate(folio);
1004 	}
1005 	/*
1006 	 * No need to use i_size_read() here, the i_size
1007 	 * cannot change under us because we hold the i_rwsem.
1008 	 */
1009 	if (last_pos > inode->i_size)
1010 		i_size_write(inode, last_pos);
1011 
1012 	folio_mark_dirty(folio);
1013 	folio_unlock(folio);
1014 	folio_put(folio);
1015 
1016 	return copied;
1017 }
1018 
1019 /*
1020  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
1021  */
1022 const struct address_space_operations ram_aops = {
1023 	.read_folio	= simple_read_folio,
1024 	.write_begin	= simple_write_begin,
1025 	.write_end	= simple_write_end,
1026 	.dirty_folio	= noop_dirty_folio,
1027 };
1028 EXPORT_SYMBOL(ram_aops);
1029 
1030 /*
1031  * the inodes created here are not hashed. If you use iunique to generate
1032  * unique inode values later for this filesystem, then you must take care
1033  * to pass it an appropriate max_reserved value to avoid collisions.
1034  */
1035 int simple_fill_super(struct super_block *s, unsigned long magic,
1036 		      const struct tree_descr *files)
1037 {
1038 	struct inode *inode;
1039 	struct dentry *dentry;
1040 	int i;
1041 
1042 	s->s_blocksize = PAGE_SIZE;
1043 	s->s_blocksize_bits = PAGE_SHIFT;
1044 	s->s_magic = magic;
1045 	s->s_op = &simple_super_operations;
1046 	s->s_time_gran = 1;
1047 
1048 	inode = new_inode(s);
1049 	if (!inode)
1050 		return -ENOMEM;
1051 	/*
1052 	 * because the root inode is 1, the files array must not contain an
1053 	 * entry at index 1
1054 	 */
1055 	inode->i_ino = 1;
1056 	inode->i_mode = S_IFDIR | 0755;
1057 	simple_inode_init_ts(inode);
1058 	inode->i_op = &simple_dir_inode_operations;
1059 	inode->i_fop = &simple_dir_operations;
1060 	set_nlink(inode, 2);
1061 	s->s_root = d_make_root(inode);
1062 	if (!s->s_root)
1063 		return -ENOMEM;
1064 	for (i = 0; !files->name || files->name[0]; i++, files++) {
1065 		if (!files->name)
1066 			continue;
1067 
1068 		/* warn if it tries to conflict with the root inode */
1069 		if (unlikely(i == 1))
1070 			printk(KERN_WARNING "%s: %s passed in a files array"
1071 				"with an index of 1!\n", __func__,
1072 				s->s_type->name);
1073 
1074 		dentry = d_alloc_name(s->s_root, files->name);
1075 		if (!dentry)
1076 			return -ENOMEM;
1077 		inode = new_inode(s);
1078 		if (!inode) {
1079 			dput(dentry);
1080 			return -ENOMEM;
1081 		}
1082 		inode->i_mode = S_IFREG | files->mode;
1083 		simple_inode_init_ts(inode);
1084 		inode->i_fop = files->ops;
1085 		inode->i_ino = i;
1086 		d_make_persistent(dentry, inode);
1087 		dput(dentry);
1088 	}
1089 	return 0;
1090 }
1091 EXPORT_SYMBOL(simple_fill_super);
1092 
1093 static DEFINE_SPINLOCK(pin_fs_lock);
1094 
1095 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1096 {
1097 	struct vfsmount *mnt = NULL;
1098 	spin_lock(&pin_fs_lock);
1099 	if (unlikely(!*mount)) {
1100 		spin_unlock(&pin_fs_lock);
1101 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1102 		if (IS_ERR(mnt))
1103 			return PTR_ERR(mnt);
1104 		spin_lock(&pin_fs_lock);
1105 		if (!*mount)
1106 			*mount = mnt;
1107 	}
1108 	mntget(*mount);
1109 	++*count;
1110 	spin_unlock(&pin_fs_lock);
1111 	mntput(mnt);
1112 	return 0;
1113 }
1114 EXPORT_SYMBOL(simple_pin_fs);
1115 
1116 void simple_release_fs(struct vfsmount **mount, int *count)
1117 {
1118 	struct vfsmount *mnt;
1119 	spin_lock(&pin_fs_lock);
1120 	mnt = *mount;
1121 	if (!--*count)
1122 		*mount = NULL;
1123 	spin_unlock(&pin_fs_lock);
1124 	mntput(mnt);
1125 }
1126 EXPORT_SYMBOL(simple_release_fs);
1127 
1128 /**
1129  * simple_read_from_buffer - copy data from the buffer to user space
1130  * @to: the user space buffer to read to
1131  * @count: the maximum number of bytes to read
1132  * @ppos: the current position in the buffer
1133  * @from: the buffer to read from
1134  * @available: the size of the buffer
1135  *
1136  * The simple_read_from_buffer() function reads up to @count bytes from the
1137  * buffer @from at offset @ppos into the user space address starting at @to.
1138  *
1139  * On success, the number of bytes read is returned and the offset @ppos is
1140  * advanced by this number, or negative value is returned on error.
1141  **/
1142 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1143 				const void *from, size_t available)
1144 {
1145 	loff_t pos = *ppos;
1146 	size_t ret;
1147 
1148 	if (pos < 0)
1149 		return -EINVAL;
1150 	if (pos >= available || !count)
1151 		return 0;
1152 	if (count > available - pos)
1153 		count = available - pos;
1154 	ret = copy_to_user(to, from + pos, count);
1155 	if (ret == count)
1156 		return -EFAULT;
1157 	count -= ret;
1158 	*ppos = pos + count;
1159 	return count;
1160 }
1161 EXPORT_SYMBOL(simple_read_from_buffer);
1162 
1163 /**
1164  * simple_write_to_buffer - copy data from user space to the buffer
1165  * @to: the buffer to write to
1166  * @available: the size of the buffer
1167  * @ppos: the current position in the buffer
1168  * @from: the user space buffer to read from
1169  * @count: the maximum number of bytes to read
1170  *
1171  * The simple_write_to_buffer() function reads up to @count bytes from the user
1172  * space address starting at @from into the buffer @to at offset @ppos.
1173  *
1174  * On success, the number of bytes written is returned and the offset @ppos is
1175  * advanced by this number, or negative value is returned on error.
1176  **/
1177 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1178 		const void __user *from, size_t count)
1179 {
1180 	loff_t pos = *ppos;
1181 	size_t res;
1182 
1183 	if (pos < 0)
1184 		return -EINVAL;
1185 	if (pos >= available || !count)
1186 		return 0;
1187 	if (count > available - pos)
1188 		count = available - pos;
1189 	res = copy_from_user(to + pos, from, count);
1190 	if (res == count)
1191 		return -EFAULT;
1192 	count -= res;
1193 	*ppos = pos + count;
1194 	return count;
1195 }
1196 EXPORT_SYMBOL(simple_write_to_buffer);
1197 
1198 /**
1199  * memory_read_from_buffer - copy data from the buffer
1200  * @to: the kernel space buffer to read to
1201  * @count: the maximum number of bytes to read
1202  * @ppos: the current position in the buffer
1203  * @from: the buffer to read from
1204  * @available: the size of the buffer
1205  *
1206  * The memory_read_from_buffer() function reads up to @count bytes from the
1207  * buffer @from at offset @ppos into the kernel space address starting at @to.
1208  *
1209  * On success, the number of bytes read is returned and the offset @ppos is
1210  * advanced by this number, or negative value is returned on error.
1211  **/
1212 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1213 				const void *from, size_t available)
1214 {
1215 	loff_t pos = *ppos;
1216 
1217 	if (pos < 0)
1218 		return -EINVAL;
1219 	if (pos >= available)
1220 		return 0;
1221 	if (count > available - pos)
1222 		count = available - pos;
1223 	memcpy(to, from + pos, count);
1224 	*ppos = pos + count;
1225 
1226 	return count;
1227 }
1228 EXPORT_SYMBOL(memory_read_from_buffer);
1229 
1230 /*
1231  * Transaction based IO.
1232  * The file expects a single write which triggers the transaction, and then
1233  * possibly a read which collects the result - which is stored in a
1234  * file-local buffer.
1235  */
1236 
1237 void simple_transaction_set(struct file *file, size_t n)
1238 {
1239 	struct simple_transaction_argresp *ar = file->private_data;
1240 
1241 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1242 
1243 	/*
1244 	 * The barrier ensures that ar->size will really remain zero until
1245 	 * ar->data is ready for reading.
1246 	 */
1247 	smp_mb();
1248 	ar->size = n;
1249 }
1250 EXPORT_SYMBOL(simple_transaction_set);
1251 
1252 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1253 {
1254 	struct simple_transaction_argresp *ar;
1255 	static DEFINE_SPINLOCK(simple_transaction_lock);
1256 
1257 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1258 		return ERR_PTR(-EFBIG);
1259 
1260 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1261 	if (!ar)
1262 		return ERR_PTR(-ENOMEM);
1263 
1264 	spin_lock(&simple_transaction_lock);
1265 
1266 	/* only one write allowed per open */
1267 	if (file->private_data) {
1268 		spin_unlock(&simple_transaction_lock);
1269 		free_page((unsigned long)ar);
1270 		return ERR_PTR(-EBUSY);
1271 	}
1272 
1273 	file->private_data = ar;
1274 
1275 	spin_unlock(&simple_transaction_lock);
1276 
1277 	if (copy_from_user(ar->data, buf, size))
1278 		return ERR_PTR(-EFAULT);
1279 
1280 	return ar->data;
1281 }
1282 EXPORT_SYMBOL(simple_transaction_get);
1283 
1284 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1285 {
1286 	struct simple_transaction_argresp *ar = file->private_data;
1287 
1288 	if (!ar)
1289 		return 0;
1290 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1291 }
1292 EXPORT_SYMBOL(simple_transaction_read);
1293 
1294 int simple_transaction_release(struct inode *inode, struct file *file)
1295 {
1296 	free_page((unsigned long)file->private_data);
1297 	return 0;
1298 }
1299 EXPORT_SYMBOL(simple_transaction_release);
1300 
1301 /* Simple attribute files */
1302 
1303 struct simple_attr {
1304 	int (*get)(void *, u64 *);
1305 	int (*set)(void *, u64);
1306 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1307 	char set_buf[24];
1308 	void *data;
1309 	const char *fmt;	/* format for read operation */
1310 	struct mutex mutex;	/* protects access to these buffers */
1311 };
1312 
1313 /* simple_attr_open is called by an actual attribute open file operation
1314  * to set the attribute specific access operations. */
1315 int simple_attr_open(struct inode *inode, struct file *file,
1316 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1317 		     const char *fmt)
1318 {
1319 	struct simple_attr *attr;
1320 
1321 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1322 	if (!attr)
1323 		return -ENOMEM;
1324 
1325 	attr->get = get;
1326 	attr->set = set;
1327 	attr->data = inode->i_private;
1328 	attr->fmt = fmt;
1329 	mutex_init(&attr->mutex);
1330 
1331 	file->private_data = attr;
1332 
1333 	return nonseekable_open(inode, file);
1334 }
1335 EXPORT_SYMBOL_GPL(simple_attr_open);
1336 
1337 int simple_attr_release(struct inode *inode, struct file *file)
1338 {
1339 	kfree(file->private_data);
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1343 
1344 /* read from the buffer that is filled with the get function */
1345 ssize_t simple_attr_read(struct file *file, char __user *buf,
1346 			 size_t len, loff_t *ppos)
1347 {
1348 	struct simple_attr *attr;
1349 	size_t size;
1350 	ssize_t ret;
1351 
1352 	attr = file->private_data;
1353 
1354 	if (!attr->get)
1355 		return -EACCES;
1356 
1357 	ret = mutex_lock_interruptible(&attr->mutex);
1358 	if (ret)
1359 		return ret;
1360 
1361 	if (*ppos && attr->get_buf[0]) {
1362 		/* continued read */
1363 		size = strlen(attr->get_buf);
1364 	} else {
1365 		/* first read */
1366 		u64 val;
1367 		ret = attr->get(attr->data, &val);
1368 		if (ret)
1369 			goto out;
1370 
1371 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1372 				 attr->fmt, (unsigned long long)val);
1373 	}
1374 
1375 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1376 out:
1377 	mutex_unlock(&attr->mutex);
1378 	return ret;
1379 }
1380 EXPORT_SYMBOL_GPL(simple_attr_read);
1381 
1382 /* interpret the buffer as a number to call the set function with */
1383 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1384 			  size_t len, loff_t *ppos, bool is_signed)
1385 {
1386 	struct simple_attr *attr;
1387 	unsigned long long val;
1388 	size_t size;
1389 	ssize_t ret;
1390 
1391 	attr = file->private_data;
1392 	if (!attr->set)
1393 		return -EACCES;
1394 
1395 	ret = mutex_lock_interruptible(&attr->mutex);
1396 	if (ret)
1397 		return ret;
1398 
1399 	ret = -EFAULT;
1400 	size = min(sizeof(attr->set_buf) - 1, len);
1401 	if (copy_from_user(attr->set_buf, buf, size))
1402 		goto out;
1403 
1404 	attr->set_buf[size] = '\0';
1405 	if (is_signed)
1406 		ret = kstrtoll(attr->set_buf, 0, &val);
1407 	else
1408 		ret = kstrtoull(attr->set_buf, 0, &val);
1409 	if (ret)
1410 		goto out;
1411 	ret = attr->set(attr->data, val);
1412 	if (ret == 0)
1413 		ret = len; /* on success, claim we got the whole input */
1414 out:
1415 	mutex_unlock(&attr->mutex);
1416 	return ret;
1417 }
1418 
1419 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1420 			  size_t len, loff_t *ppos)
1421 {
1422 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1423 }
1424 EXPORT_SYMBOL_GPL(simple_attr_write);
1425 
1426 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1427 			  size_t len, loff_t *ppos)
1428 {
1429 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1430 }
1431 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1432 
1433 /**
1434  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1435  * @inode:   the object to encode
1436  * @fh:      where to store the file handle fragment
1437  * @max_len: maximum length to store there (in 4 byte units)
1438  * @parent:  parent directory inode, if wanted
1439  *
1440  * This generic encode_fh function assumes that the 32 inode number
1441  * is suitable for locating an inode, and that the generation number
1442  * can be used to check that it is still valid.  It places them in the
1443  * filehandle fragment where export_decode_fh expects to find them.
1444  */
1445 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1446 			    struct inode *parent)
1447 {
1448 	struct fid *fid = (void *)fh;
1449 	int len = *max_len;
1450 	int type = FILEID_INO32_GEN;
1451 
1452 	if (parent && (len < 4)) {
1453 		*max_len = 4;
1454 		return FILEID_INVALID;
1455 	} else if (len < 2) {
1456 		*max_len = 2;
1457 		return FILEID_INVALID;
1458 	}
1459 
1460 	len = 2;
1461 	fid->i32.ino = inode->i_ino;
1462 	fid->i32.gen = inode->i_generation;
1463 	if (parent) {
1464 		fid->i32.parent_ino = parent->i_ino;
1465 		fid->i32.parent_gen = parent->i_generation;
1466 		len = 4;
1467 		type = FILEID_INO32_GEN_PARENT;
1468 	}
1469 	*max_len = len;
1470 	return type;
1471 }
1472 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1473 
1474 /**
1475  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1476  * @sb:		filesystem to do the file handle conversion on
1477  * @fid:	file handle to convert
1478  * @fh_len:	length of the file handle in bytes
1479  * @fh_type:	type of file handle
1480  * @get_inode:	filesystem callback to retrieve inode
1481  *
1482  * This function decodes @fid as long as it has one of the well-known
1483  * Linux filehandle types and calls @get_inode on it to retrieve the
1484  * inode for the object specified in the file handle.
1485  */
1486 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1487 		int fh_len, int fh_type, struct inode *(*get_inode)
1488 			(struct super_block *sb, u64 ino, u32 gen))
1489 {
1490 	struct inode *inode = NULL;
1491 
1492 	if (fh_len < 2)
1493 		return NULL;
1494 
1495 	switch (fh_type) {
1496 	case FILEID_INO32_GEN:
1497 	case FILEID_INO32_GEN_PARENT:
1498 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1499 		break;
1500 	}
1501 
1502 	return d_obtain_alias(inode);
1503 }
1504 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1505 
1506 /**
1507  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1508  * @sb:		filesystem to do the file handle conversion on
1509  * @fid:	file handle to convert
1510  * @fh_len:	length of the file handle in bytes
1511  * @fh_type:	type of file handle
1512  * @get_inode:	filesystem callback to retrieve inode
1513  *
1514  * This function decodes @fid as long as it has one of the well-known
1515  * Linux filehandle types and calls @get_inode on it to retrieve the
1516  * inode for the _parent_ object specified in the file handle if it
1517  * is specified in the file handle, or NULL otherwise.
1518  */
1519 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1520 		int fh_len, int fh_type, struct inode *(*get_inode)
1521 			(struct super_block *sb, u64 ino, u32 gen))
1522 {
1523 	struct inode *inode = NULL;
1524 
1525 	if (fh_len <= 2)
1526 		return NULL;
1527 
1528 	switch (fh_type) {
1529 	case FILEID_INO32_GEN_PARENT:
1530 		inode = get_inode(sb, fid->i32.parent_ino,
1531 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1532 		break;
1533 	}
1534 
1535 	return d_obtain_alias(inode);
1536 }
1537 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1538 
1539 /**
1540  * __generic_file_fsync - generic fsync implementation for simple filesystems
1541  *
1542  * @file:	file to synchronize
1543  * @start:	start offset in bytes
1544  * @end:	end offset in bytes (inclusive)
1545  * @datasync:	only synchronize essential metadata if true
1546  *
1547  * This is a generic implementation of the fsync method for simple
1548  * filesystems which track all non-inode metadata in the buffers list
1549  * hanging off the address_space structure.
1550  */
1551 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1552 				 int datasync)
1553 {
1554 	struct inode *inode = file->f_mapping->host;
1555 	int err;
1556 	int ret;
1557 
1558 	err = file_write_and_wait_range(file, start, end);
1559 	if (err)
1560 		return err;
1561 
1562 	inode_lock(inode);
1563 	ret = sync_mapping_buffers(inode->i_mapping);
1564 	if (!(inode_state_read_once(inode) & I_DIRTY_ALL))
1565 		goto out;
1566 	if (datasync && !(inode_state_read_once(inode) & I_DIRTY_DATASYNC))
1567 		goto out;
1568 
1569 	err = sync_inode_metadata(inode, 1);
1570 	if (ret == 0)
1571 		ret = err;
1572 
1573 out:
1574 	inode_unlock(inode);
1575 	/* check and advance again to catch errors after syncing out buffers */
1576 	err = file_check_and_advance_wb_err(file);
1577 	if (ret == 0)
1578 		ret = err;
1579 	return ret;
1580 }
1581 EXPORT_SYMBOL(__generic_file_fsync);
1582 
1583 /**
1584  * generic_file_fsync - generic fsync implementation for simple filesystems
1585  *			with flush
1586  * @file:	file to synchronize
1587  * @start:	start offset in bytes
1588  * @end:	end offset in bytes (inclusive)
1589  * @datasync:	only synchronize essential metadata if true
1590  *
1591  */
1592 
1593 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1594 		       int datasync)
1595 {
1596 	struct inode *inode = file->f_mapping->host;
1597 	int err;
1598 
1599 	err = __generic_file_fsync(file, start, end, datasync);
1600 	if (err)
1601 		return err;
1602 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1603 }
1604 EXPORT_SYMBOL(generic_file_fsync);
1605 
1606 /**
1607  * generic_check_addressable - Check addressability of file system
1608  * @blocksize_bits:	log of file system block size
1609  * @num_blocks:		number of blocks in file system
1610  *
1611  * Determine whether a file system with @num_blocks blocks (and a
1612  * block size of 2**@blocksize_bits) is addressable by the sector_t
1613  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1614  */
1615 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1616 {
1617 	u64 last_fs_block = num_blocks - 1;
1618 	u64 last_fs_page, max_bytes;
1619 
1620 	if (check_shl_overflow(num_blocks, blocksize_bits, &max_bytes))
1621 		return -EFBIG;
1622 
1623 	last_fs_page = (max_bytes >> PAGE_SHIFT) - 1;
1624 
1625 	if (unlikely(num_blocks == 0))
1626 		return 0;
1627 
1628 	if (blocksize_bits < 9)
1629 		return -EINVAL;
1630 
1631 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1632 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1633 		return -EFBIG;
1634 	}
1635 	return 0;
1636 }
1637 EXPORT_SYMBOL(generic_check_addressable);
1638 
1639 /*
1640  * No-op implementation of ->fsync for in-memory filesystems.
1641  */
1642 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1643 {
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL(noop_fsync);
1647 
1648 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1649 {
1650 	/*
1651 	 * iomap based filesystems support direct I/O without need for
1652 	 * this callback. However, it still needs to be set in
1653 	 * inode->a_ops so that open/fcntl know that direct I/O is
1654 	 * generally supported.
1655 	 */
1656 	return -EINVAL;
1657 }
1658 EXPORT_SYMBOL_GPL(noop_direct_IO);
1659 
1660 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1661 void kfree_link(void *p)
1662 {
1663 	kfree(p);
1664 }
1665 EXPORT_SYMBOL(kfree_link);
1666 
1667 struct inode *alloc_anon_inode(struct super_block *s)
1668 {
1669 	static const struct address_space_operations anon_aops = {
1670 		.dirty_folio	= noop_dirty_folio,
1671 	};
1672 	struct inode *inode = new_inode_pseudo(s);
1673 
1674 	if (!inode)
1675 		return ERR_PTR(-ENOMEM);
1676 
1677 	inode->i_ino = get_next_ino();
1678 	inode->i_mapping->a_ops = &anon_aops;
1679 
1680 	/*
1681 	 * Mark the inode dirty from the very beginning,
1682 	 * that way it will never be moved to the dirty
1683 	 * list because mark_inode_dirty() will think
1684 	 * that it already _is_ on the dirty list.
1685 	 */
1686 	inode_state_assign_raw(inode, I_DIRTY);
1687 	/*
1688 	 * Historically anonymous inodes don't have a type at all and
1689 	 * userspace has come to rely on this.
1690 	 */
1691 	inode->i_mode = S_IRUSR | S_IWUSR;
1692 	inode->i_uid = current_fsuid();
1693 	inode->i_gid = current_fsgid();
1694 	inode->i_flags |= S_PRIVATE | S_ANON_INODE;
1695 	simple_inode_init_ts(inode);
1696 	return inode;
1697 }
1698 EXPORT_SYMBOL(alloc_anon_inode);
1699 
1700 /**
1701  * simple_nosetlease - generic helper for prohibiting leases
1702  * @filp: file pointer
1703  * @arg: type of lease to obtain
1704  * @flp: new lease supplied for insertion
1705  * @priv: private data for lm_setup operation
1706  *
1707  * Generic helper for filesystems that do not wish to allow leases to be set.
1708  * All arguments are ignored and it just returns -EINVAL.
1709  */
1710 int
1711 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1712 		  void **priv)
1713 {
1714 	return -EINVAL;
1715 }
1716 EXPORT_SYMBOL(simple_nosetlease);
1717 
1718 /**
1719  * simple_get_link - generic helper to get the target of "fast" symlinks
1720  * @dentry: not used here
1721  * @inode: the symlink inode
1722  * @done: not used here
1723  *
1724  * Generic helper for filesystems to use for symlink inodes where a pointer to
1725  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1726  * since as an optimization the path lookup code uses any non-NULL ->i_link
1727  * directly, without calling ->get_link().  But ->get_link() still must be set,
1728  * to mark the inode_operations as being for a symlink.
1729  *
1730  * Return: the symlink target
1731  */
1732 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1733 			    struct delayed_call *done)
1734 {
1735 	return inode->i_link;
1736 }
1737 EXPORT_SYMBOL(simple_get_link);
1738 
1739 const struct inode_operations simple_symlink_inode_operations = {
1740 	.get_link = simple_get_link,
1741 };
1742 EXPORT_SYMBOL(simple_symlink_inode_operations);
1743 
1744 /*
1745  * Operations for a permanently empty directory.
1746  */
1747 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1748 {
1749 	return ERR_PTR(-ENOENT);
1750 }
1751 
1752 static int empty_dir_setattr(struct mnt_idmap *idmap,
1753 			     struct dentry *dentry, struct iattr *attr)
1754 {
1755 	return -EPERM;
1756 }
1757 
1758 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1759 {
1760 	return -EOPNOTSUPP;
1761 }
1762 
1763 static const struct inode_operations empty_dir_inode_operations = {
1764 	.lookup		= empty_dir_lookup,
1765 	.setattr	= empty_dir_setattr,
1766 	.listxattr	= empty_dir_listxattr,
1767 };
1768 
1769 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1770 {
1771 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1772 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1773 }
1774 
1775 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1776 {
1777 	dir_emit_dots(file, ctx);
1778 	return 0;
1779 }
1780 
1781 static const struct file_operations empty_dir_operations = {
1782 	.llseek		= empty_dir_llseek,
1783 	.read		= generic_read_dir,
1784 	.iterate_shared	= empty_dir_readdir,
1785 	.fsync		= noop_fsync,
1786 };
1787 
1788 
1789 void make_empty_dir_inode(struct inode *inode)
1790 {
1791 	set_nlink(inode, 2);
1792 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1793 	inode->i_uid = GLOBAL_ROOT_UID;
1794 	inode->i_gid = GLOBAL_ROOT_GID;
1795 	inode->i_rdev = 0;
1796 	inode->i_size = 0;
1797 	inode->i_blkbits = PAGE_SHIFT;
1798 	inode->i_blocks = 0;
1799 
1800 	inode->i_op = &empty_dir_inode_operations;
1801 	inode->i_opflags &= ~IOP_XATTR;
1802 	inode->i_fop = &empty_dir_operations;
1803 }
1804 
1805 bool is_empty_dir_inode(struct inode *inode)
1806 {
1807 	return (inode->i_fop == &empty_dir_operations) &&
1808 		(inode->i_op == &empty_dir_inode_operations);
1809 }
1810 
1811 #if IS_ENABLED(CONFIG_UNICODE)
1812 /**
1813  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1814  * @dentry:	dentry whose name we are checking against
1815  * @len:	len of name of dentry
1816  * @str:	str pointer to name of dentry
1817  * @name:	Name to compare against
1818  *
1819  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1820  */
1821 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1822 			 const char *str, const struct qstr *name)
1823 {
1824 	const struct dentry *parent;
1825 	const struct inode *dir;
1826 	union shortname_store strbuf;
1827 	struct qstr qstr;
1828 
1829 	/*
1830 	 * Attempt a case-sensitive match first. It is cheaper and
1831 	 * should cover most lookups, including all the sane
1832 	 * applications that expect a case-sensitive filesystem.
1833 	 *
1834 	 * This comparison is safe under RCU because the caller
1835 	 * guarantees the consistency between str and len. See
1836 	 * __d_lookup_rcu_op_compare() for details.
1837 	 */
1838 	if (len == name->len && !memcmp(str, name->name, len))
1839 		return 0;
1840 
1841 	parent = READ_ONCE(dentry->d_parent);
1842 	dir = READ_ONCE(parent->d_inode);
1843 	if (!dir || !IS_CASEFOLDED(dir))
1844 		return 1;
1845 
1846 	qstr.len = len;
1847 	qstr.name = str;
1848 	/*
1849 	 * If the dentry name is stored in-line, then it may be concurrently
1850 	 * modified by a rename.  If this happens, the VFS will eventually retry
1851 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1852 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1853 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1854 	 * As above, len is guaranteed to match str, so the shortname case
1855 	 * is exactly when str points to ->d_shortname.
1856 	 */
1857 	if (qstr.name == dentry->d_shortname.string) {
1858 		strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1859 		qstr.name = strbuf.string;
1860 		/* prevent compiler from optimizing out the temporary buffer */
1861 		barrier();
1862 	}
1863 
1864 	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1865 }
1866 EXPORT_SYMBOL(generic_ci_d_compare);
1867 
1868 /**
1869  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1870  * @dentry:	dentry of the parent directory
1871  * @str:	qstr of name whose hash we should fill in
1872  *
1873  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1874  */
1875 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1876 {
1877 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1878 	struct super_block *sb = dentry->d_sb;
1879 	const struct unicode_map *um = sb->s_encoding;
1880 	int ret;
1881 
1882 	if (!dir || !IS_CASEFOLDED(dir))
1883 		return 0;
1884 
1885 	ret = utf8_casefold_hash(um, dentry, str);
1886 	if (ret < 0 && sb_has_strict_encoding(sb))
1887 		return -EINVAL;
1888 	return 0;
1889 }
1890 EXPORT_SYMBOL(generic_ci_d_hash);
1891 
1892 static const struct dentry_operations generic_ci_dentry_ops = {
1893 	.d_hash = generic_ci_d_hash,
1894 	.d_compare = generic_ci_d_compare,
1895 #ifdef CONFIG_FS_ENCRYPTION
1896 	.d_revalidate = fscrypt_d_revalidate,
1897 #endif
1898 };
1899 
1900 /**
1901  * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1902  * This is a filesystem helper for comparison with directory entries.
1903  * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1904  *
1905  * @parent: Inode of the parent of the dirent under comparison
1906  * @name: name under lookup.
1907  * @folded_name: Optional pre-folded name under lookup
1908  * @de_name: Dirent name.
1909  * @de_name_len: dirent name length.
1910  *
1911  * Test whether a case-insensitive directory entry matches the filename
1912  * being searched.  If @folded_name is provided, it is used instead of
1913  * recalculating the casefold of @name.
1914  *
1915  * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1916  * < 0 on error.
1917  */
1918 int generic_ci_match(const struct inode *parent,
1919 		     const struct qstr *name,
1920 		     const struct qstr *folded_name,
1921 		     const u8 *de_name, u32 de_name_len)
1922 {
1923 	const struct super_block *sb = parent->i_sb;
1924 	const struct unicode_map *um = sb->s_encoding;
1925 	struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1926 	struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1927 	int res = 0;
1928 
1929 	if (IS_ENCRYPTED(parent)) {
1930 		const struct fscrypt_str encrypted_name =
1931 			FSTR_INIT((u8 *) de_name, de_name_len);
1932 
1933 		if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1934 			return -EINVAL;
1935 
1936 		decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1937 		if (!decrypted_name.name)
1938 			return -ENOMEM;
1939 		res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1940 						&decrypted_name);
1941 		if (res < 0) {
1942 			kfree(decrypted_name.name);
1943 			return res;
1944 		}
1945 		dirent.name = decrypted_name.name;
1946 		dirent.len = decrypted_name.len;
1947 	}
1948 
1949 	/*
1950 	 * Attempt a case-sensitive match first. It is cheaper and
1951 	 * should cover most lookups, including all the sane
1952 	 * applications that expect a case-sensitive filesystem.
1953 	 */
1954 
1955 	if (dirent.len == name->len &&
1956 	    !memcmp(name->name, dirent.name, dirent.len))
1957 		goto out;
1958 
1959 	if (folded_name->name)
1960 		res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1961 	else
1962 		res = utf8_strncasecmp(um, name, &dirent);
1963 
1964 out:
1965 	kfree(decrypted_name.name);
1966 	if (res < 0 && sb_has_strict_encoding(sb)) {
1967 		pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1968 		return 0;
1969 	}
1970 	return !res;
1971 }
1972 EXPORT_SYMBOL(generic_ci_match);
1973 #endif
1974 
1975 #ifdef CONFIG_FS_ENCRYPTION
1976 static const struct dentry_operations generic_encrypted_dentry_ops = {
1977 	.d_revalidate = fscrypt_d_revalidate,
1978 };
1979 #endif
1980 
1981 /**
1982  * generic_set_sb_d_ops - helper for choosing the set of
1983  * filesystem-wide dentry operations for the enabled features
1984  * @sb: superblock to be configured
1985  *
1986  * Filesystems supporting casefolding and/or fscrypt can call this
1987  * helper at mount-time to configure default dentry_operations to the
1988  * best set of dentry operations required for the enabled features.
1989  * The helper must be called after these have been configured, but
1990  * before the root dentry is created.
1991  */
1992 void generic_set_sb_d_ops(struct super_block *sb)
1993 {
1994 #if IS_ENABLED(CONFIG_UNICODE)
1995 	if (sb->s_encoding) {
1996 		set_default_d_op(sb, &generic_ci_dentry_ops);
1997 		return;
1998 	}
1999 #endif
2000 #ifdef CONFIG_FS_ENCRYPTION
2001 	if (sb->s_cop) {
2002 		set_default_d_op(sb, &generic_encrypted_dentry_ops);
2003 		return;
2004 	}
2005 #endif
2006 }
2007 EXPORT_SYMBOL(generic_set_sb_d_ops);
2008 
2009 /**
2010  * inode_maybe_inc_iversion - increments i_version
2011  * @inode: inode with the i_version that should be updated
2012  * @force: increment the counter even if it's not necessary?
2013  *
2014  * Every time the inode is modified, the i_version field must be seen to have
2015  * changed by any observer.
2016  *
2017  * If "force" is set or the QUERIED flag is set, then ensure that we increment
2018  * the value, and clear the queried flag.
2019  *
2020  * In the common case where neither is set, then we can return "false" without
2021  * updating i_version.
2022  *
2023  * If this function returns false, and no other metadata has changed, then we
2024  * can avoid logging the metadata.
2025  */
2026 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
2027 {
2028 	u64 cur, new;
2029 
2030 	/*
2031 	 * The i_version field is not strictly ordered with any other inode
2032 	 * information, but the legacy inode_inc_iversion code used a spinlock
2033 	 * to serialize increments.
2034 	 *
2035 	 * We add a full memory barrier to ensure that any de facto ordering
2036 	 * with other state is preserved (either implicitly coming from cmpxchg
2037 	 * or explicitly from smp_mb if we don't know upfront if we will execute
2038 	 * the former).
2039 	 *
2040 	 * These barriers pair with inode_query_iversion().
2041 	 */
2042 	cur = inode_peek_iversion_raw(inode);
2043 	if (!force && !(cur & I_VERSION_QUERIED)) {
2044 		smp_mb();
2045 		cur = inode_peek_iversion_raw(inode);
2046 	}
2047 
2048 	do {
2049 		/* If flag is clear then we needn't do anything */
2050 		if (!force && !(cur & I_VERSION_QUERIED))
2051 			return false;
2052 
2053 		/* Since lowest bit is flag, add 2 to avoid it */
2054 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2055 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2056 	return true;
2057 }
2058 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2059 
2060 /**
2061  * inode_query_iversion - read i_version for later use
2062  * @inode: inode from which i_version should be read
2063  *
2064  * Read the inode i_version counter. This should be used by callers that wish
2065  * to store the returned i_version for later comparison. This will guarantee
2066  * that a later query of the i_version will result in a different value if
2067  * anything has changed.
2068  *
2069  * In this implementation, we fetch the current value, set the QUERIED flag and
2070  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2071  * that fails, we try again with the newly fetched value from the cmpxchg.
2072  */
2073 u64 inode_query_iversion(struct inode *inode)
2074 {
2075 	u64 cur, new;
2076 	bool fenced = false;
2077 
2078 	/*
2079 	 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2080 	 * inode_maybe_inc_iversion(), see that routine for more details.
2081 	 */
2082 	cur = inode_peek_iversion_raw(inode);
2083 	do {
2084 		/* If flag is already set, then no need to swap */
2085 		if (cur & I_VERSION_QUERIED) {
2086 			if (!fenced)
2087 				smp_mb();
2088 			break;
2089 		}
2090 
2091 		fenced = true;
2092 		new = cur | I_VERSION_QUERIED;
2093 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2094 	return cur >> I_VERSION_QUERIED_SHIFT;
2095 }
2096 EXPORT_SYMBOL(inode_query_iversion);
2097 
2098 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2099 		ssize_t direct_written, ssize_t buffered_written)
2100 {
2101 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2102 	loff_t pos = iocb->ki_pos - buffered_written;
2103 	loff_t end = iocb->ki_pos - 1;
2104 	int err;
2105 
2106 	/*
2107 	 * If the buffered write fallback returned an error, we want to return
2108 	 * the number of bytes which were written by direct I/O, or the error
2109 	 * code if that was zero.
2110 	 *
2111 	 * Note that this differs from normal direct-io semantics, which will
2112 	 * return -EFOO even if some bytes were written.
2113 	 */
2114 	if (unlikely(buffered_written < 0)) {
2115 		if (direct_written)
2116 			return direct_written;
2117 		return buffered_written;
2118 	}
2119 
2120 	/*
2121 	 * We need to ensure that the page cache pages are written to disk and
2122 	 * invalidated to preserve the expected O_DIRECT semantics.
2123 	 */
2124 	err = filemap_write_and_wait_range(mapping, pos, end);
2125 	if (err < 0) {
2126 		/*
2127 		 * We don't know how much we wrote, so just return the number of
2128 		 * bytes which were direct-written
2129 		 */
2130 		iocb->ki_pos -= buffered_written;
2131 		if (direct_written)
2132 			return direct_written;
2133 		return err;
2134 	}
2135 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2136 	return direct_written + buffered_written;
2137 }
2138 EXPORT_SYMBOL_GPL(direct_write_fallback);
2139 
2140 /**
2141  * simple_inode_init_ts - initialize the timestamps for a new inode
2142  * @inode: inode to be initialized
2143  *
2144  * When a new inode is created, most filesystems set the timestamps to the
2145  * current time. Add a helper to do this.
2146  */
2147 struct timespec64 simple_inode_init_ts(struct inode *inode)
2148 {
2149 	struct timespec64 ts = inode_set_ctime_current(inode);
2150 
2151 	inode_set_atime_to_ts(inode, ts);
2152 	inode_set_mtime_to_ts(inode, ts);
2153 	return ts;
2154 }
2155 EXPORT_SYMBOL(simple_inode_init_ts);
2156 
2157 struct dentry *stashed_dentry_get(struct dentry **stashed)
2158 {
2159 	struct dentry *dentry;
2160 
2161 	guard(rcu)();
2162 	dentry = rcu_dereference(*stashed);
2163 	if (!dentry)
2164 		return NULL;
2165 	if (IS_ERR(dentry))
2166 		return dentry;
2167 	if (!lockref_get_not_dead(&dentry->d_lockref))
2168 		return NULL;
2169 	return dentry;
2170 }
2171 
2172 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2173 					  struct super_block *sb,
2174 					  void *data)
2175 {
2176 	struct dentry *dentry;
2177 	struct inode *inode;
2178 	const struct stashed_operations *sops = sb->s_fs_info;
2179 	int ret;
2180 
2181 	inode = new_inode_pseudo(sb);
2182 	if (!inode) {
2183 		sops->put_data(data);
2184 		return ERR_PTR(-ENOMEM);
2185 	}
2186 
2187 	inode->i_flags |= S_IMMUTABLE;
2188 	inode->i_mode = S_IFREG;
2189 	simple_inode_init_ts(inode);
2190 
2191 	ret = sops->init_inode(inode, data);
2192 	if (ret < 0) {
2193 		iput(inode);
2194 		return ERR_PTR(ret);
2195 	}
2196 
2197 	/* Notice when this is changed. */
2198 	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2199 
2200 	dentry = d_alloc_anon(sb);
2201 	if (!dentry) {
2202 		iput(inode);
2203 		return ERR_PTR(-ENOMEM);
2204 	}
2205 
2206 	/* Store address of location where dentry's supposed to be stashed. */
2207 	dentry->d_fsdata = stashed;
2208 
2209 	/* @data is now owned by the fs */
2210 	d_instantiate(dentry, inode);
2211 	return dentry;
2212 }
2213 
2214 struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry)
2215 {
2216 	guard(rcu)();
2217 	for (;;) {
2218 		struct dentry *old;
2219 
2220 		/* Assume any old dentry was cleared out. */
2221 		old = cmpxchg(stashed, NULL, dentry);
2222 		if (likely(!old))
2223 			return dentry;
2224 
2225 		/* Check if somebody else installed a reusable dentry. */
2226 		if (lockref_get_not_dead(&old->d_lockref))
2227 			return old;
2228 
2229 		/* There's an old dead dentry there, try to take it over. */
2230 		if (likely(try_cmpxchg(stashed, &old, dentry)))
2231 			return dentry;
2232 	}
2233 }
2234 
2235 /**
2236  * path_from_stashed - create path from stashed or new dentry
2237  * @stashed:    where to retrieve or stash dentry
2238  * @mnt:        mnt of the filesystems to use
2239  * @data:       data to store in inode->i_private
2240  * @path:       path to create
2241  *
2242  * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2243  * is still valid then it will be reused. If the dentry isn't able the function
2244  * will allocate a new dentry and inode. It will then check again whether it
2245  * can reuse an existing dentry in case one has been added in the meantime or
2246  * update @stashed with the newly added dentry.
2247  *
2248  * Special-purpose helper for nsfs and pidfs.
2249  *
2250  * Return: On success zero and on failure a negative error is returned.
2251  */
2252 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2253 		      struct path *path)
2254 {
2255 	struct dentry *dentry, *res;
2256 	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2257 
2258 	/* See if dentry can be reused. */
2259 	res = stashed_dentry_get(stashed);
2260 	if (IS_ERR(res))
2261 		return PTR_ERR(res);
2262 	if (res) {
2263 		sops->put_data(data);
2264 		goto make_path;
2265 	}
2266 
2267 	/* Allocate a new dentry. */
2268 	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2269 	if (IS_ERR(dentry))
2270 		return PTR_ERR(dentry);
2271 
2272 	/* Added a new dentry. @data is now owned by the filesystem. */
2273 	if (sops->stash_dentry)
2274 		res = sops->stash_dentry(stashed, dentry);
2275 	else
2276 		res = stash_dentry(stashed, dentry);
2277 	if (IS_ERR(res)) {
2278 		dput(dentry);
2279 		return PTR_ERR(res);
2280 	}
2281 	if (res != dentry)
2282 		dput(dentry);
2283 
2284 make_path:
2285 	path->dentry = res;
2286 	path->mnt = mntget(mnt);
2287 	VFS_WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2288 	VFS_WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2289 	return 0;
2290 }
2291 
2292 void stashed_dentry_prune(struct dentry *dentry)
2293 {
2294 	struct dentry **stashed = dentry->d_fsdata;
2295 	struct inode *inode = d_inode(dentry);
2296 
2297 	if (WARN_ON_ONCE(!stashed))
2298 		return;
2299 
2300 	if (!inode)
2301 		return;
2302 
2303 	/*
2304 	 * Only replace our own @dentry as someone else might've
2305 	 * already cleared out @dentry and stashed their own
2306 	 * dentry in there.
2307 	 */
2308 	cmpxchg(stashed, dentry, NULL);
2309 }
2310 
2311 /**
2312  * simple_start_creating - prepare to create a given name
2313  * @parent: directory in which to prepare to create the name
2314  * @name:   the name to be created
2315  *
2316  * Required lock is taken and a lookup in performed prior to creating an
2317  * object in a directory.  No permission checking is performed.
2318  *
2319  * Returns: a negative dentry on which vfs_create() or similar may
2320  *  be attempted, or an error.
2321  */
2322 struct dentry *simple_start_creating(struct dentry *parent, const char *name)
2323 {
2324 	struct qstr qname = QSTR(name);
2325 	int err;
2326 
2327 	err = lookup_noperm_common(&qname, parent);
2328 	if (err)
2329 		return ERR_PTR(err);
2330 	return start_dirop(parent, &qname, LOOKUP_CREATE | LOOKUP_EXCL);
2331 }
2332 EXPORT_SYMBOL(simple_start_creating);
2333 
2334 /* parent must have been held exclusive since simple_start_creating() */
2335 void simple_done_creating(struct dentry *child)
2336 {
2337 	inode_unlock(child->d_parent->d_inode);
2338 	dput(child);
2339 }
2340 EXPORT_SYMBOL(simple_done_creating);
2341