1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 #include <linux/pidfs.h> 27 28 #include <linux/uaccess.h> 29 30 #include "internal.h" 31 32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 33 struct kstat *stat, u32 request_mask, 34 unsigned int query_flags) 35 { 36 struct inode *inode = d_inode(path->dentry); 37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 39 return 0; 40 } 41 EXPORT_SYMBOL(simple_getattr); 42 43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 44 { 45 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 46 47 buf->f_fsid = u64_to_fsid(id); 48 buf->f_type = dentry->d_sb->s_magic; 49 buf->f_bsize = PAGE_SIZE; 50 buf->f_namelen = NAME_MAX; 51 return 0; 52 } 53 EXPORT_SYMBOL(simple_statfs); 54 55 /* 56 * Retaining negative dentries for an in-memory filesystem just wastes 57 * memory and lookup time: arrange for them to be deleted immediately. 58 */ 59 int always_delete_dentry(const struct dentry *dentry) 60 { 61 return 1; 62 } 63 EXPORT_SYMBOL(always_delete_dentry); 64 65 const struct dentry_operations simple_dentry_operations = { 66 .d_delete = always_delete_dentry, 67 }; 68 EXPORT_SYMBOL(simple_dentry_operations); 69 70 /* 71 * Lookup the data. This is trivial - if the dentry didn't already 72 * exist, we know it is negative. Set d_op to delete negative dentries. 73 */ 74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 75 { 76 if (dentry->d_name.len > NAME_MAX) 77 return ERR_PTR(-ENAMETOOLONG); 78 if (!dentry->d_sb->s_d_op) 79 d_set_d_op(dentry, &simple_dentry_operations); 80 d_add(dentry, NULL); 81 return NULL; 82 } 83 EXPORT_SYMBOL(simple_lookup); 84 85 int dcache_dir_open(struct inode *inode, struct file *file) 86 { 87 file->private_data = d_alloc_cursor(file->f_path.dentry); 88 89 return file->private_data ? 0 : -ENOMEM; 90 } 91 EXPORT_SYMBOL(dcache_dir_open); 92 93 int dcache_dir_close(struct inode *inode, struct file *file) 94 { 95 dput(file->private_data); 96 return 0; 97 } 98 EXPORT_SYMBOL(dcache_dir_close); 99 100 /* parent is locked at least shared */ 101 /* 102 * Returns an element of siblings' list. 103 * We are looking for <count>th positive after <p>; if 104 * found, dentry is grabbed and returned to caller. 105 * If no such element exists, NULL is returned. 106 */ 107 static struct dentry *scan_positives(struct dentry *cursor, 108 struct hlist_node **p, 109 loff_t count, 110 struct dentry *last) 111 { 112 struct dentry *dentry = cursor->d_parent, *found = NULL; 113 114 spin_lock(&dentry->d_lock); 115 while (*p) { 116 struct dentry *d = hlist_entry(*p, struct dentry, d_sib); 117 p = &d->d_sib.next; 118 // we must at least skip cursors, to avoid livelocks 119 if (d->d_flags & DCACHE_DENTRY_CURSOR) 120 continue; 121 if (simple_positive(d) && !--count) { 122 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 123 if (simple_positive(d)) 124 found = dget_dlock(d); 125 spin_unlock(&d->d_lock); 126 if (likely(found)) 127 break; 128 count = 1; 129 } 130 if (need_resched()) { 131 if (!hlist_unhashed(&cursor->d_sib)) 132 __hlist_del(&cursor->d_sib); 133 hlist_add_behind(&cursor->d_sib, &d->d_sib); 134 p = &cursor->d_sib.next; 135 spin_unlock(&dentry->d_lock); 136 cond_resched(); 137 spin_lock(&dentry->d_lock); 138 } 139 } 140 spin_unlock(&dentry->d_lock); 141 dput(last); 142 return found; 143 } 144 145 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 146 { 147 struct dentry *dentry = file->f_path.dentry; 148 switch (whence) { 149 case 1: 150 offset += file->f_pos; 151 fallthrough; 152 case 0: 153 if (offset >= 0) 154 break; 155 fallthrough; 156 default: 157 return -EINVAL; 158 } 159 if (offset != file->f_pos) { 160 struct dentry *cursor = file->private_data; 161 struct dentry *to = NULL; 162 163 inode_lock_shared(dentry->d_inode); 164 165 if (offset > 2) 166 to = scan_positives(cursor, &dentry->d_children.first, 167 offset - 2, NULL); 168 spin_lock(&dentry->d_lock); 169 hlist_del_init(&cursor->d_sib); 170 if (to) 171 hlist_add_behind(&cursor->d_sib, &to->d_sib); 172 spin_unlock(&dentry->d_lock); 173 dput(to); 174 175 file->f_pos = offset; 176 177 inode_unlock_shared(dentry->d_inode); 178 } 179 return offset; 180 } 181 EXPORT_SYMBOL(dcache_dir_lseek); 182 183 /* 184 * Directory is locked and all positive dentries in it are safe, since 185 * for ramfs-type trees they can't go away without unlink() or rmdir(), 186 * both impossible due to the lock on directory. 187 */ 188 189 int dcache_readdir(struct file *file, struct dir_context *ctx) 190 { 191 struct dentry *dentry = file->f_path.dentry; 192 struct dentry *cursor = file->private_data; 193 struct dentry *next = NULL; 194 struct hlist_node **p; 195 196 if (!dir_emit_dots(file, ctx)) 197 return 0; 198 199 if (ctx->pos == 2) 200 p = &dentry->d_children.first; 201 else 202 p = &cursor->d_sib.next; 203 204 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 205 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 206 d_inode(next)->i_ino, 207 fs_umode_to_dtype(d_inode(next)->i_mode))) 208 break; 209 ctx->pos++; 210 p = &next->d_sib.next; 211 } 212 spin_lock(&dentry->d_lock); 213 hlist_del_init(&cursor->d_sib); 214 if (next) 215 hlist_add_before(&cursor->d_sib, &next->d_sib); 216 spin_unlock(&dentry->d_lock); 217 dput(next); 218 219 return 0; 220 } 221 EXPORT_SYMBOL(dcache_readdir); 222 223 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 224 { 225 return -EISDIR; 226 } 227 EXPORT_SYMBOL(generic_read_dir); 228 229 const struct file_operations simple_dir_operations = { 230 .open = dcache_dir_open, 231 .release = dcache_dir_close, 232 .llseek = dcache_dir_lseek, 233 .read = generic_read_dir, 234 .iterate_shared = dcache_readdir, 235 .fsync = noop_fsync, 236 }; 237 EXPORT_SYMBOL(simple_dir_operations); 238 239 const struct inode_operations simple_dir_inode_operations = { 240 .lookup = simple_lookup, 241 }; 242 EXPORT_SYMBOL(simple_dir_inode_operations); 243 244 /* 0 is '.', 1 is '..', so always start with offset 2 or more */ 245 enum { 246 DIR_OFFSET_MIN = 2, 247 }; 248 249 static void offset_set(struct dentry *dentry, long offset) 250 { 251 dentry->d_fsdata = (void *)offset; 252 } 253 254 static long dentry2offset(struct dentry *dentry) 255 { 256 return (long)dentry->d_fsdata; 257 } 258 259 static struct lock_class_key simple_offset_lock_class; 260 261 /** 262 * simple_offset_init - initialize an offset_ctx 263 * @octx: directory offset map to be initialized 264 * 265 */ 266 void simple_offset_init(struct offset_ctx *octx) 267 { 268 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE); 269 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class); 270 octx->next_offset = DIR_OFFSET_MIN; 271 } 272 273 /** 274 * simple_offset_add - Add an entry to a directory's offset map 275 * @octx: directory offset ctx to be updated 276 * @dentry: new dentry being added 277 * 278 * Returns zero on success. @octx and the dentry's offset are updated. 279 * Otherwise, a negative errno value is returned. 280 */ 281 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 282 { 283 unsigned long offset; 284 int ret; 285 286 if (dentry2offset(dentry) != 0) 287 return -EBUSY; 288 289 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN, 290 LONG_MAX, &octx->next_offset, GFP_KERNEL); 291 if (ret < 0) 292 return ret; 293 294 offset_set(dentry, offset); 295 return 0; 296 } 297 298 /** 299 * simple_offset_remove - Remove an entry to a directory's offset map 300 * @octx: directory offset ctx to be updated 301 * @dentry: dentry being removed 302 * 303 */ 304 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 305 { 306 long offset; 307 308 offset = dentry2offset(dentry); 309 if (offset == 0) 310 return; 311 312 mtree_erase(&octx->mt, offset); 313 offset_set(dentry, 0); 314 } 315 316 /** 317 * simple_offset_empty - Check if a dentry can be unlinked 318 * @dentry: dentry to be tested 319 * 320 * Returns 0 if @dentry is a non-empty directory; otherwise returns 1. 321 */ 322 int simple_offset_empty(struct dentry *dentry) 323 { 324 struct inode *inode = d_inode(dentry); 325 struct offset_ctx *octx; 326 struct dentry *child; 327 unsigned long index; 328 int ret = 1; 329 330 if (!inode || !S_ISDIR(inode->i_mode)) 331 return ret; 332 333 index = DIR_OFFSET_MIN; 334 octx = inode->i_op->get_offset_ctx(inode); 335 mt_for_each(&octx->mt, child, index, LONG_MAX) { 336 spin_lock(&child->d_lock); 337 if (simple_positive(child)) { 338 spin_unlock(&child->d_lock); 339 ret = 0; 340 break; 341 } 342 spin_unlock(&child->d_lock); 343 } 344 345 return ret; 346 } 347 348 /** 349 * simple_offset_rename_exchange - exchange rename with directory offsets 350 * @old_dir: parent of dentry being moved 351 * @old_dentry: dentry being moved 352 * @new_dir: destination parent 353 * @new_dentry: destination dentry 354 * 355 * Returns zero on success. Otherwise a negative errno is returned and the 356 * rename is rolled back. 357 */ 358 int simple_offset_rename_exchange(struct inode *old_dir, 359 struct dentry *old_dentry, 360 struct inode *new_dir, 361 struct dentry *new_dentry) 362 { 363 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 364 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 365 long old_index = dentry2offset(old_dentry); 366 long new_index = dentry2offset(new_dentry); 367 int ret; 368 369 simple_offset_remove(old_ctx, old_dentry); 370 simple_offset_remove(new_ctx, new_dentry); 371 372 ret = simple_offset_add(new_ctx, old_dentry); 373 if (ret) 374 goto out_restore; 375 376 ret = simple_offset_add(old_ctx, new_dentry); 377 if (ret) { 378 simple_offset_remove(new_ctx, old_dentry); 379 goto out_restore; 380 } 381 382 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 383 if (ret) { 384 simple_offset_remove(new_ctx, old_dentry); 385 simple_offset_remove(old_ctx, new_dentry); 386 goto out_restore; 387 } 388 return 0; 389 390 out_restore: 391 offset_set(old_dentry, old_index); 392 mtree_store(&old_ctx->mt, old_index, old_dentry, GFP_KERNEL); 393 offset_set(new_dentry, new_index); 394 mtree_store(&new_ctx->mt, new_index, new_dentry, GFP_KERNEL); 395 return ret; 396 } 397 398 /** 399 * simple_offset_destroy - Release offset map 400 * @octx: directory offset ctx that is about to be destroyed 401 * 402 * During fs teardown (eg. umount), a directory's offset map might still 403 * contain entries. xa_destroy() cleans out anything that remains. 404 */ 405 void simple_offset_destroy(struct offset_ctx *octx) 406 { 407 mtree_destroy(&octx->mt); 408 } 409 410 /** 411 * offset_dir_llseek - Advance the read position of a directory descriptor 412 * @file: an open directory whose position is to be updated 413 * @offset: a byte offset 414 * @whence: enumerator describing the starting position for this update 415 * 416 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 417 * 418 * Returns the updated read position if successful; otherwise a 419 * negative errno is returned and the read position remains unchanged. 420 */ 421 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 422 { 423 switch (whence) { 424 case SEEK_CUR: 425 offset += file->f_pos; 426 fallthrough; 427 case SEEK_SET: 428 if (offset >= 0) 429 break; 430 fallthrough; 431 default: 432 return -EINVAL; 433 } 434 435 /* In this case, ->private_data is protected by f_pos_lock */ 436 file->private_data = NULL; 437 return vfs_setpos(file, offset, LONG_MAX); 438 } 439 440 static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset) 441 { 442 MA_STATE(mas, &octx->mt, offset, offset); 443 struct dentry *child, *found = NULL; 444 445 rcu_read_lock(); 446 child = mas_find(&mas, LONG_MAX); 447 if (!child) 448 goto out; 449 spin_lock(&child->d_lock); 450 if (simple_positive(child)) 451 found = dget_dlock(child); 452 spin_unlock(&child->d_lock); 453 out: 454 rcu_read_unlock(); 455 return found; 456 } 457 458 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 459 { 460 struct inode *inode = d_inode(dentry); 461 long offset = dentry2offset(dentry); 462 463 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 464 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 465 } 466 467 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx) 468 { 469 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode); 470 struct dentry *dentry; 471 472 while (true) { 473 dentry = offset_find_next(octx, ctx->pos); 474 if (!dentry) 475 return ERR_PTR(-ENOENT); 476 477 if (!offset_dir_emit(ctx, dentry)) { 478 dput(dentry); 479 break; 480 } 481 482 ctx->pos = dentry2offset(dentry) + 1; 483 dput(dentry); 484 } 485 return NULL; 486 } 487 488 /** 489 * offset_readdir - Emit entries starting at offset @ctx->pos 490 * @file: an open directory to iterate over 491 * @ctx: directory iteration context 492 * 493 * Caller must hold @file's i_rwsem to prevent insertion or removal of 494 * entries during this call. 495 * 496 * On entry, @ctx->pos contains an offset that represents the first entry 497 * to be read from the directory. 498 * 499 * The operation continues until there are no more entries to read, or 500 * until the ctx->actor indicates there is no more space in the caller's 501 * output buffer. 502 * 503 * On return, @ctx->pos contains an offset that will read the next entry 504 * in this directory when offset_readdir() is called again with @ctx. 505 * 506 * Return values: 507 * %0 - Complete 508 */ 509 static int offset_readdir(struct file *file, struct dir_context *ctx) 510 { 511 struct dentry *dir = file->f_path.dentry; 512 513 lockdep_assert_held(&d_inode(dir)->i_rwsem); 514 515 if (!dir_emit_dots(file, ctx)) 516 return 0; 517 518 /* In this case, ->private_data is protected by f_pos_lock */ 519 if (ctx->pos == DIR_OFFSET_MIN) 520 file->private_data = NULL; 521 else if (file->private_data == ERR_PTR(-ENOENT)) 522 return 0; 523 file->private_data = offset_iterate_dir(d_inode(dir), ctx); 524 return 0; 525 } 526 527 const struct file_operations simple_offset_dir_operations = { 528 .llseek = offset_dir_llseek, 529 .iterate_shared = offset_readdir, 530 .read = generic_read_dir, 531 .fsync = noop_fsync, 532 }; 533 534 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 535 { 536 struct dentry *child = NULL, *d; 537 538 spin_lock(&parent->d_lock); 539 d = prev ? d_next_sibling(prev) : d_first_child(parent); 540 hlist_for_each_entry_from(d, d_sib) { 541 if (simple_positive(d)) { 542 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 543 if (simple_positive(d)) 544 child = dget_dlock(d); 545 spin_unlock(&d->d_lock); 546 if (likely(child)) 547 break; 548 } 549 } 550 spin_unlock(&parent->d_lock); 551 dput(prev); 552 return child; 553 } 554 555 void simple_recursive_removal(struct dentry *dentry, 556 void (*callback)(struct dentry *)) 557 { 558 struct dentry *this = dget(dentry); 559 while (true) { 560 struct dentry *victim = NULL, *child; 561 struct inode *inode = this->d_inode; 562 563 inode_lock(inode); 564 if (d_is_dir(this)) 565 inode->i_flags |= S_DEAD; 566 while ((child = find_next_child(this, victim)) == NULL) { 567 // kill and ascend 568 // update metadata while it's still locked 569 inode_set_ctime_current(inode); 570 clear_nlink(inode); 571 inode_unlock(inode); 572 victim = this; 573 this = this->d_parent; 574 inode = this->d_inode; 575 inode_lock(inode); 576 if (simple_positive(victim)) { 577 d_invalidate(victim); // avoid lost mounts 578 if (d_is_dir(victim)) 579 fsnotify_rmdir(inode, victim); 580 else 581 fsnotify_unlink(inode, victim); 582 if (callback) 583 callback(victim); 584 dput(victim); // unpin it 585 } 586 if (victim == dentry) { 587 inode_set_mtime_to_ts(inode, 588 inode_set_ctime_current(inode)); 589 if (d_is_dir(dentry)) 590 drop_nlink(inode); 591 inode_unlock(inode); 592 dput(dentry); 593 return; 594 } 595 } 596 inode_unlock(inode); 597 this = child; 598 } 599 } 600 EXPORT_SYMBOL(simple_recursive_removal); 601 602 static const struct super_operations simple_super_operations = { 603 .statfs = simple_statfs, 604 }; 605 606 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 607 { 608 struct pseudo_fs_context *ctx = fc->fs_private; 609 struct inode *root; 610 611 s->s_maxbytes = MAX_LFS_FILESIZE; 612 s->s_blocksize = PAGE_SIZE; 613 s->s_blocksize_bits = PAGE_SHIFT; 614 s->s_magic = ctx->magic; 615 s->s_op = ctx->ops ?: &simple_super_operations; 616 s->s_xattr = ctx->xattr; 617 s->s_time_gran = 1; 618 root = new_inode(s); 619 if (!root) 620 return -ENOMEM; 621 622 /* 623 * since this is the first inode, make it number 1. New inodes created 624 * after this must take care not to collide with it (by passing 625 * max_reserved of 1 to iunique). 626 */ 627 root->i_ino = 1; 628 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 629 simple_inode_init_ts(root); 630 s->s_root = d_make_root(root); 631 if (!s->s_root) 632 return -ENOMEM; 633 s->s_d_op = ctx->dops; 634 return 0; 635 } 636 637 static int pseudo_fs_get_tree(struct fs_context *fc) 638 { 639 return get_tree_nodev(fc, pseudo_fs_fill_super); 640 } 641 642 static void pseudo_fs_free(struct fs_context *fc) 643 { 644 kfree(fc->fs_private); 645 } 646 647 static const struct fs_context_operations pseudo_fs_context_ops = { 648 .free = pseudo_fs_free, 649 .get_tree = pseudo_fs_get_tree, 650 }; 651 652 /* 653 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 654 * will never be mountable) 655 */ 656 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 657 unsigned long magic) 658 { 659 struct pseudo_fs_context *ctx; 660 661 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 662 if (likely(ctx)) { 663 ctx->magic = magic; 664 fc->fs_private = ctx; 665 fc->ops = &pseudo_fs_context_ops; 666 fc->sb_flags |= SB_NOUSER; 667 fc->global = true; 668 } 669 return ctx; 670 } 671 EXPORT_SYMBOL(init_pseudo); 672 673 int simple_open(struct inode *inode, struct file *file) 674 { 675 if (inode->i_private) 676 file->private_data = inode->i_private; 677 return 0; 678 } 679 EXPORT_SYMBOL(simple_open); 680 681 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 682 { 683 struct inode *inode = d_inode(old_dentry); 684 685 inode_set_mtime_to_ts(dir, 686 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 687 inc_nlink(inode); 688 ihold(inode); 689 dget(dentry); 690 d_instantiate(dentry, inode); 691 return 0; 692 } 693 EXPORT_SYMBOL(simple_link); 694 695 int simple_empty(struct dentry *dentry) 696 { 697 struct dentry *child; 698 int ret = 0; 699 700 spin_lock(&dentry->d_lock); 701 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 702 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 703 if (simple_positive(child)) { 704 spin_unlock(&child->d_lock); 705 goto out; 706 } 707 spin_unlock(&child->d_lock); 708 } 709 ret = 1; 710 out: 711 spin_unlock(&dentry->d_lock); 712 return ret; 713 } 714 EXPORT_SYMBOL(simple_empty); 715 716 int simple_unlink(struct inode *dir, struct dentry *dentry) 717 { 718 struct inode *inode = d_inode(dentry); 719 720 inode_set_mtime_to_ts(dir, 721 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 722 drop_nlink(inode); 723 dput(dentry); 724 return 0; 725 } 726 EXPORT_SYMBOL(simple_unlink); 727 728 int simple_rmdir(struct inode *dir, struct dentry *dentry) 729 { 730 if (!simple_empty(dentry)) 731 return -ENOTEMPTY; 732 733 drop_nlink(d_inode(dentry)); 734 simple_unlink(dir, dentry); 735 drop_nlink(dir); 736 return 0; 737 } 738 EXPORT_SYMBOL(simple_rmdir); 739 740 /** 741 * simple_rename_timestamp - update the various inode timestamps for rename 742 * @old_dir: old parent directory 743 * @old_dentry: dentry that is being renamed 744 * @new_dir: new parent directory 745 * @new_dentry: target for rename 746 * 747 * POSIX mandates that the old and new parent directories have their ctime and 748 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 749 * their ctime updated. 750 */ 751 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 752 struct inode *new_dir, struct dentry *new_dentry) 753 { 754 struct inode *newino = d_inode(new_dentry); 755 756 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 757 if (new_dir != old_dir) 758 inode_set_mtime_to_ts(new_dir, 759 inode_set_ctime_current(new_dir)); 760 inode_set_ctime_current(d_inode(old_dentry)); 761 if (newino) 762 inode_set_ctime_current(newino); 763 } 764 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 765 766 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 767 struct inode *new_dir, struct dentry *new_dentry) 768 { 769 bool old_is_dir = d_is_dir(old_dentry); 770 bool new_is_dir = d_is_dir(new_dentry); 771 772 if (old_dir != new_dir && old_is_dir != new_is_dir) { 773 if (old_is_dir) { 774 drop_nlink(old_dir); 775 inc_nlink(new_dir); 776 } else { 777 drop_nlink(new_dir); 778 inc_nlink(old_dir); 779 } 780 } 781 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(simple_rename_exchange); 785 786 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 787 struct dentry *old_dentry, struct inode *new_dir, 788 struct dentry *new_dentry, unsigned int flags) 789 { 790 int they_are_dirs = d_is_dir(old_dentry); 791 792 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 793 return -EINVAL; 794 795 if (flags & RENAME_EXCHANGE) 796 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 797 798 if (!simple_empty(new_dentry)) 799 return -ENOTEMPTY; 800 801 if (d_really_is_positive(new_dentry)) { 802 simple_unlink(new_dir, new_dentry); 803 if (they_are_dirs) { 804 drop_nlink(d_inode(new_dentry)); 805 drop_nlink(old_dir); 806 } 807 } else if (they_are_dirs) { 808 drop_nlink(old_dir); 809 inc_nlink(new_dir); 810 } 811 812 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 813 return 0; 814 } 815 EXPORT_SYMBOL(simple_rename); 816 817 /** 818 * simple_setattr - setattr for simple filesystem 819 * @idmap: idmap of the target mount 820 * @dentry: dentry 821 * @iattr: iattr structure 822 * 823 * Returns 0 on success, -error on failure. 824 * 825 * simple_setattr is a simple ->setattr implementation without a proper 826 * implementation of size changes. 827 * 828 * It can either be used for in-memory filesystems or special files 829 * on simple regular filesystems. Anything that needs to change on-disk 830 * or wire state on size changes needs its own setattr method. 831 */ 832 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 833 struct iattr *iattr) 834 { 835 struct inode *inode = d_inode(dentry); 836 int error; 837 838 error = setattr_prepare(idmap, dentry, iattr); 839 if (error) 840 return error; 841 842 if (iattr->ia_valid & ATTR_SIZE) 843 truncate_setsize(inode, iattr->ia_size); 844 setattr_copy(idmap, inode, iattr); 845 mark_inode_dirty(inode); 846 return 0; 847 } 848 EXPORT_SYMBOL(simple_setattr); 849 850 static int simple_read_folio(struct file *file, struct folio *folio) 851 { 852 folio_zero_range(folio, 0, folio_size(folio)); 853 flush_dcache_folio(folio); 854 folio_mark_uptodate(folio); 855 folio_unlock(folio); 856 return 0; 857 } 858 859 int simple_write_begin(struct file *file, struct address_space *mapping, 860 loff_t pos, unsigned len, 861 struct page **pagep, void **fsdata) 862 { 863 struct folio *folio; 864 865 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 866 mapping_gfp_mask(mapping)); 867 if (IS_ERR(folio)) 868 return PTR_ERR(folio); 869 870 *pagep = &folio->page; 871 872 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 873 size_t from = offset_in_folio(folio, pos); 874 875 folio_zero_segments(folio, 0, from, 876 from + len, folio_size(folio)); 877 } 878 return 0; 879 } 880 EXPORT_SYMBOL(simple_write_begin); 881 882 /** 883 * simple_write_end - .write_end helper for non-block-device FSes 884 * @file: See .write_end of address_space_operations 885 * @mapping: " 886 * @pos: " 887 * @len: " 888 * @copied: " 889 * @page: " 890 * @fsdata: " 891 * 892 * simple_write_end does the minimum needed for updating a page after writing is 893 * done. It has the same API signature as the .write_end of 894 * address_space_operations vector. So it can just be set onto .write_end for 895 * FSes that don't need any other processing. i_mutex is assumed to be held. 896 * Block based filesystems should use generic_write_end(). 897 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 898 * is not called, so a filesystem that actually does store data in .write_inode 899 * should extend on what's done here with a call to mark_inode_dirty() in the 900 * case that i_size has changed. 901 * 902 * Use *ONLY* with simple_read_folio() 903 */ 904 static int simple_write_end(struct file *file, struct address_space *mapping, 905 loff_t pos, unsigned len, unsigned copied, 906 struct page *page, void *fsdata) 907 { 908 struct folio *folio = page_folio(page); 909 struct inode *inode = folio->mapping->host; 910 loff_t last_pos = pos + copied; 911 912 /* zero the stale part of the folio if we did a short copy */ 913 if (!folio_test_uptodate(folio)) { 914 if (copied < len) { 915 size_t from = offset_in_folio(folio, pos); 916 917 folio_zero_range(folio, from + copied, len - copied); 918 } 919 folio_mark_uptodate(folio); 920 } 921 /* 922 * No need to use i_size_read() here, the i_size 923 * cannot change under us because we hold the i_mutex. 924 */ 925 if (last_pos > inode->i_size) 926 i_size_write(inode, last_pos); 927 928 folio_mark_dirty(folio); 929 folio_unlock(folio); 930 folio_put(folio); 931 932 return copied; 933 } 934 935 /* 936 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 937 */ 938 const struct address_space_operations ram_aops = { 939 .read_folio = simple_read_folio, 940 .write_begin = simple_write_begin, 941 .write_end = simple_write_end, 942 .dirty_folio = noop_dirty_folio, 943 }; 944 EXPORT_SYMBOL(ram_aops); 945 946 /* 947 * the inodes created here are not hashed. If you use iunique to generate 948 * unique inode values later for this filesystem, then you must take care 949 * to pass it an appropriate max_reserved value to avoid collisions. 950 */ 951 int simple_fill_super(struct super_block *s, unsigned long magic, 952 const struct tree_descr *files) 953 { 954 struct inode *inode; 955 struct dentry *dentry; 956 int i; 957 958 s->s_blocksize = PAGE_SIZE; 959 s->s_blocksize_bits = PAGE_SHIFT; 960 s->s_magic = magic; 961 s->s_op = &simple_super_operations; 962 s->s_time_gran = 1; 963 964 inode = new_inode(s); 965 if (!inode) 966 return -ENOMEM; 967 /* 968 * because the root inode is 1, the files array must not contain an 969 * entry at index 1 970 */ 971 inode->i_ino = 1; 972 inode->i_mode = S_IFDIR | 0755; 973 simple_inode_init_ts(inode); 974 inode->i_op = &simple_dir_inode_operations; 975 inode->i_fop = &simple_dir_operations; 976 set_nlink(inode, 2); 977 s->s_root = d_make_root(inode); 978 if (!s->s_root) 979 return -ENOMEM; 980 for (i = 0; !files->name || files->name[0]; i++, files++) { 981 if (!files->name) 982 continue; 983 984 /* warn if it tries to conflict with the root inode */ 985 if (unlikely(i == 1)) 986 printk(KERN_WARNING "%s: %s passed in a files array" 987 "with an index of 1!\n", __func__, 988 s->s_type->name); 989 990 dentry = d_alloc_name(s->s_root, files->name); 991 if (!dentry) 992 return -ENOMEM; 993 inode = new_inode(s); 994 if (!inode) { 995 dput(dentry); 996 return -ENOMEM; 997 } 998 inode->i_mode = S_IFREG | files->mode; 999 simple_inode_init_ts(inode); 1000 inode->i_fop = files->ops; 1001 inode->i_ino = i; 1002 d_add(dentry, inode); 1003 } 1004 return 0; 1005 } 1006 EXPORT_SYMBOL(simple_fill_super); 1007 1008 static DEFINE_SPINLOCK(pin_fs_lock); 1009 1010 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 1011 { 1012 struct vfsmount *mnt = NULL; 1013 spin_lock(&pin_fs_lock); 1014 if (unlikely(!*mount)) { 1015 spin_unlock(&pin_fs_lock); 1016 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 1017 if (IS_ERR(mnt)) 1018 return PTR_ERR(mnt); 1019 spin_lock(&pin_fs_lock); 1020 if (!*mount) 1021 *mount = mnt; 1022 } 1023 mntget(*mount); 1024 ++*count; 1025 spin_unlock(&pin_fs_lock); 1026 mntput(mnt); 1027 return 0; 1028 } 1029 EXPORT_SYMBOL(simple_pin_fs); 1030 1031 void simple_release_fs(struct vfsmount **mount, int *count) 1032 { 1033 struct vfsmount *mnt; 1034 spin_lock(&pin_fs_lock); 1035 mnt = *mount; 1036 if (!--*count) 1037 *mount = NULL; 1038 spin_unlock(&pin_fs_lock); 1039 mntput(mnt); 1040 } 1041 EXPORT_SYMBOL(simple_release_fs); 1042 1043 /** 1044 * simple_read_from_buffer - copy data from the buffer to user space 1045 * @to: the user space buffer to read to 1046 * @count: the maximum number of bytes to read 1047 * @ppos: the current position in the buffer 1048 * @from: the buffer to read from 1049 * @available: the size of the buffer 1050 * 1051 * The simple_read_from_buffer() function reads up to @count bytes from the 1052 * buffer @from at offset @ppos into the user space address starting at @to. 1053 * 1054 * On success, the number of bytes read is returned and the offset @ppos is 1055 * advanced by this number, or negative value is returned on error. 1056 **/ 1057 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1058 const void *from, size_t available) 1059 { 1060 loff_t pos = *ppos; 1061 size_t ret; 1062 1063 if (pos < 0) 1064 return -EINVAL; 1065 if (pos >= available || !count) 1066 return 0; 1067 if (count > available - pos) 1068 count = available - pos; 1069 ret = copy_to_user(to, from + pos, count); 1070 if (ret == count) 1071 return -EFAULT; 1072 count -= ret; 1073 *ppos = pos + count; 1074 return count; 1075 } 1076 EXPORT_SYMBOL(simple_read_from_buffer); 1077 1078 /** 1079 * simple_write_to_buffer - copy data from user space to the buffer 1080 * @to: the buffer to write to 1081 * @available: the size of the buffer 1082 * @ppos: the current position in the buffer 1083 * @from: the user space buffer to read from 1084 * @count: the maximum number of bytes to read 1085 * 1086 * The simple_write_to_buffer() function reads up to @count bytes from the user 1087 * space address starting at @from into the buffer @to at offset @ppos. 1088 * 1089 * On success, the number of bytes written is returned and the offset @ppos is 1090 * advanced by this number, or negative value is returned on error. 1091 **/ 1092 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1093 const void __user *from, size_t count) 1094 { 1095 loff_t pos = *ppos; 1096 size_t res; 1097 1098 if (pos < 0) 1099 return -EINVAL; 1100 if (pos >= available || !count) 1101 return 0; 1102 if (count > available - pos) 1103 count = available - pos; 1104 res = copy_from_user(to + pos, from, count); 1105 if (res == count) 1106 return -EFAULT; 1107 count -= res; 1108 *ppos = pos + count; 1109 return count; 1110 } 1111 EXPORT_SYMBOL(simple_write_to_buffer); 1112 1113 /** 1114 * memory_read_from_buffer - copy data from the buffer 1115 * @to: the kernel space buffer to read to 1116 * @count: the maximum number of bytes to read 1117 * @ppos: the current position in the buffer 1118 * @from: the buffer to read from 1119 * @available: the size of the buffer 1120 * 1121 * The memory_read_from_buffer() function reads up to @count bytes from the 1122 * buffer @from at offset @ppos into the kernel space address starting at @to. 1123 * 1124 * On success, the number of bytes read is returned and the offset @ppos is 1125 * advanced by this number, or negative value is returned on error. 1126 **/ 1127 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1128 const void *from, size_t available) 1129 { 1130 loff_t pos = *ppos; 1131 1132 if (pos < 0) 1133 return -EINVAL; 1134 if (pos >= available) 1135 return 0; 1136 if (count > available - pos) 1137 count = available - pos; 1138 memcpy(to, from + pos, count); 1139 *ppos = pos + count; 1140 1141 return count; 1142 } 1143 EXPORT_SYMBOL(memory_read_from_buffer); 1144 1145 /* 1146 * Transaction based IO. 1147 * The file expects a single write which triggers the transaction, and then 1148 * possibly a read which collects the result - which is stored in a 1149 * file-local buffer. 1150 */ 1151 1152 void simple_transaction_set(struct file *file, size_t n) 1153 { 1154 struct simple_transaction_argresp *ar = file->private_data; 1155 1156 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1157 1158 /* 1159 * The barrier ensures that ar->size will really remain zero until 1160 * ar->data is ready for reading. 1161 */ 1162 smp_mb(); 1163 ar->size = n; 1164 } 1165 EXPORT_SYMBOL(simple_transaction_set); 1166 1167 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1168 { 1169 struct simple_transaction_argresp *ar; 1170 static DEFINE_SPINLOCK(simple_transaction_lock); 1171 1172 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1173 return ERR_PTR(-EFBIG); 1174 1175 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1176 if (!ar) 1177 return ERR_PTR(-ENOMEM); 1178 1179 spin_lock(&simple_transaction_lock); 1180 1181 /* only one write allowed per open */ 1182 if (file->private_data) { 1183 spin_unlock(&simple_transaction_lock); 1184 free_page((unsigned long)ar); 1185 return ERR_PTR(-EBUSY); 1186 } 1187 1188 file->private_data = ar; 1189 1190 spin_unlock(&simple_transaction_lock); 1191 1192 if (copy_from_user(ar->data, buf, size)) 1193 return ERR_PTR(-EFAULT); 1194 1195 return ar->data; 1196 } 1197 EXPORT_SYMBOL(simple_transaction_get); 1198 1199 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1200 { 1201 struct simple_transaction_argresp *ar = file->private_data; 1202 1203 if (!ar) 1204 return 0; 1205 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1206 } 1207 EXPORT_SYMBOL(simple_transaction_read); 1208 1209 int simple_transaction_release(struct inode *inode, struct file *file) 1210 { 1211 free_page((unsigned long)file->private_data); 1212 return 0; 1213 } 1214 EXPORT_SYMBOL(simple_transaction_release); 1215 1216 /* Simple attribute files */ 1217 1218 struct simple_attr { 1219 int (*get)(void *, u64 *); 1220 int (*set)(void *, u64); 1221 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1222 char set_buf[24]; 1223 void *data; 1224 const char *fmt; /* format for read operation */ 1225 struct mutex mutex; /* protects access to these buffers */ 1226 }; 1227 1228 /* simple_attr_open is called by an actual attribute open file operation 1229 * to set the attribute specific access operations. */ 1230 int simple_attr_open(struct inode *inode, struct file *file, 1231 int (*get)(void *, u64 *), int (*set)(void *, u64), 1232 const char *fmt) 1233 { 1234 struct simple_attr *attr; 1235 1236 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1237 if (!attr) 1238 return -ENOMEM; 1239 1240 attr->get = get; 1241 attr->set = set; 1242 attr->data = inode->i_private; 1243 attr->fmt = fmt; 1244 mutex_init(&attr->mutex); 1245 1246 file->private_data = attr; 1247 1248 return nonseekable_open(inode, file); 1249 } 1250 EXPORT_SYMBOL_GPL(simple_attr_open); 1251 1252 int simple_attr_release(struct inode *inode, struct file *file) 1253 { 1254 kfree(file->private_data); 1255 return 0; 1256 } 1257 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1258 1259 /* read from the buffer that is filled with the get function */ 1260 ssize_t simple_attr_read(struct file *file, char __user *buf, 1261 size_t len, loff_t *ppos) 1262 { 1263 struct simple_attr *attr; 1264 size_t size; 1265 ssize_t ret; 1266 1267 attr = file->private_data; 1268 1269 if (!attr->get) 1270 return -EACCES; 1271 1272 ret = mutex_lock_interruptible(&attr->mutex); 1273 if (ret) 1274 return ret; 1275 1276 if (*ppos && attr->get_buf[0]) { 1277 /* continued read */ 1278 size = strlen(attr->get_buf); 1279 } else { 1280 /* first read */ 1281 u64 val; 1282 ret = attr->get(attr->data, &val); 1283 if (ret) 1284 goto out; 1285 1286 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1287 attr->fmt, (unsigned long long)val); 1288 } 1289 1290 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1291 out: 1292 mutex_unlock(&attr->mutex); 1293 return ret; 1294 } 1295 EXPORT_SYMBOL_GPL(simple_attr_read); 1296 1297 /* interpret the buffer as a number to call the set function with */ 1298 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1299 size_t len, loff_t *ppos, bool is_signed) 1300 { 1301 struct simple_attr *attr; 1302 unsigned long long val; 1303 size_t size; 1304 ssize_t ret; 1305 1306 attr = file->private_data; 1307 if (!attr->set) 1308 return -EACCES; 1309 1310 ret = mutex_lock_interruptible(&attr->mutex); 1311 if (ret) 1312 return ret; 1313 1314 ret = -EFAULT; 1315 size = min(sizeof(attr->set_buf) - 1, len); 1316 if (copy_from_user(attr->set_buf, buf, size)) 1317 goto out; 1318 1319 attr->set_buf[size] = '\0'; 1320 if (is_signed) 1321 ret = kstrtoll(attr->set_buf, 0, &val); 1322 else 1323 ret = kstrtoull(attr->set_buf, 0, &val); 1324 if (ret) 1325 goto out; 1326 ret = attr->set(attr->data, val); 1327 if (ret == 0) 1328 ret = len; /* on success, claim we got the whole input */ 1329 out: 1330 mutex_unlock(&attr->mutex); 1331 return ret; 1332 } 1333 1334 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1335 size_t len, loff_t *ppos) 1336 { 1337 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1338 } 1339 EXPORT_SYMBOL_GPL(simple_attr_write); 1340 1341 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1342 size_t len, loff_t *ppos) 1343 { 1344 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1345 } 1346 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1347 1348 /** 1349 * generic_encode_ino32_fh - generic export_operations->encode_fh function 1350 * @inode: the object to encode 1351 * @fh: where to store the file handle fragment 1352 * @max_len: maximum length to store there (in 4 byte units) 1353 * @parent: parent directory inode, if wanted 1354 * 1355 * This generic encode_fh function assumes that the 32 inode number 1356 * is suitable for locating an inode, and that the generation number 1357 * can be used to check that it is still valid. It places them in the 1358 * filehandle fragment where export_decode_fh expects to find them. 1359 */ 1360 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, 1361 struct inode *parent) 1362 { 1363 struct fid *fid = (void *)fh; 1364 int len = *max_len; 1365 int type = FILEID_INO32_GEN; 1366 1367 if (parent && (len < 4)) { 1368 *max_len = 4; 1369 return FILEID_INVALID; 1370 } else if (len < 2) { 1371 *max_len = 2; 1372 return FILEID_INVALID; 1373 } 1374 1375 len = 2; 1376 fid->i32.ino = inode->i_ino; 1377 fid->i32.gen = inode->i_generation; 1378 if (parent) { 1379 fid->i32.parent_ino = parent->i_ino; 1380 fid->i32.parent_gen = parent->i_generation; 1381 len = 4; 1382 type = FILEID_INO32_GEN_PARENT; 1383 } 1384 *max_len = len; 1385 return type; 1386 } 1387 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); 1388 1389 /** 1390 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1391 * @sb: filesystem to do the file handle conversion on 1392 * @fid: file handle to convert 1393 * @fh_len: length of the file handle in bytes 1394 * @fh_type: type of file handle 1395 * @get_inode: filesystem callback to retrieve inode 1396 * 1397 * This function decodes @fid as long as it has one of the well-known 1398 * Linux filehandle types and calls @get_inode on it to retrieve the 1399 * inode for the object specified in the file handle. 1400 */ 1401 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1402 int fh_len, int fh_type, struct inode *(*get_inode) 1403 (struct super_block *sb, u64 ino, u32 gen)) 1404 { 1405 struct inode *inode = NULL; 1406 1407 if (fh_len < 2) 1408 return NULL; 1409 1410 switch (fh_type) { 1411 case FILEID_INO32_GEN: 1412 case FILEID_INO32_GEN_PARENT: 1413 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1414 break; 1415 } 1416 1417 return d_obtain_alias(inode); 1418 } 1419 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1420 1421 /** 1422 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1423 * @sb: filesystem to do the file handle conversion on 1424 * @fid: file handle to convert 1425 * @fh_len: length of the file handle in bytes 1426 * @fh_type: type of file handle 1427 * @get_inode: filesystem callback to retrieve inode 1428 * 1429 * This function decodes @fid as long as it has one of the well-known 1430 * Linux filehandle types and calls @get_inode on it to retrieve the 1431 * inode for the _parent_ object specified in the file handle if it 1432 * is specified in the file handle, or NULL otherwise. 1433 */ 1434 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1435 int fh_len, int fh_type, struct inode *(*get_inode) 1436 (struct super_block *sb, u64 ino, u32 gen)) 1437 { 1438 struct inode *inode = NULL; 1439 1440 if (fh_len <= 2) 1441 return NULL; 1442 1443 switch (fh_type) { 1444 case FILEID_INO32_GEN_PARENT: 1445 inode = get_inode(sb, fid->i32.parent_ino, 1446 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1447 break; 1448 } 1449 1450 return d_obtain_alias(inode); 1451 } 1452 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1453 1454 /** 1455 * __generic_file_fsync - generic fsync implementation for simple filesystems 1456 * 1457 * @file: file to synchronize 1458 * @start: start offset in bytes 1459 * @end: end offset in bytes (inclusive) 1460 * @datasync: only synchronize essential metadata if true 1461 * 1462 * This is a generic implementation of the fsync method for simple 1463 * filesystems which track all non-inode metadata in the buffers list 1464 * hanging off the address_space structure. 1465 */ 1466 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1467 int datasync) 1468 { 1469 struct inode *inode = file->f_mapping->host; 1470 int err; 1471 int ret; 1472 1473 err = file_write_and_wait_range(file, start, end); 1474 if (err) 1475 return err; 1476 1477 inode_lock(inode); 1478 ret = sync_mapping_buffers(inode->i_mapping); 1479 if (!(inode->i_state & I_DIRTY_ALL)) 1480 goto out; 1481 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1482 goto out; 1483 1484 err = sync_inode_metadata(inode, 1); 1485 if (ret == 0) 1486 ret = err; 1487 1488 out: 1489 inode_unlock(inode); 1490 /* check and advance again to catch errors after syncing out buffers */ 1491 err = file_check_and_advance_wb_err(file); 1492 if (ret == 0) 1493 ret = err; 1494 return ret; 1495 } 1496 EXPORT_SYMBOL(__generic_file_fsync); 1497 1498 /** 1499 * generic_file_fsync - generic fsync implementation for simple filesystems 1500 * with flush 1501 * @file: file to synchronize 1502 * @start: start offset in bytes 1503 * @end: end offset in bytes (inclusive) 1504 * @datasync: only synchronize essential metadata if true 1505 * 1506 */ 1507 1508 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1509 int datasync) 1510 { 1511 struct inode *inode = file->f_mapping->host; 1512 int err; 1513 1514 err = __generic_file_fsync(file, start, end, datasync); 1515 if (err) 1516 return err; 1517 return blkdev_issue_flush(inode->i_sb->s_bdev); 1518 } 1519 EXPORT_SYMBOL(generic_file_fsync); 1520 1521 /** 1522 * generic_check_addressable - Check addressability of file system 1523 * @blocksize_bits: log of file system block size 1524 * @num_blocks: number of blocks in file system 1525 * 1526 * Determine whether a file system with @num_blocks blocks (and a 1527 * block size of 2**@blocksize_bits) is addressable by the sector_t 1528 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1529 */ 1530 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1531 { 1532 u64 last_fs_block = num_blocks - 1; 1533 u64 last_fs_page = 1534 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1535 1536 if (unlikely(num_blocks == 0)) 1537 return 0; 1538 1539 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1540 return -EINVAL; 1541 1542 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1543 (last_fs_page > (pgoff_t)(~0ULL))) { 1544 return -EFBIG; 1545 } 1546 return 0; 1547 } 1548 EXPORT_SYMBOL(generic_check_addressable); 1549 1550 /* 1551 * No-op implementation of ->fsync for in-memory filesystems. 1552 */ 1553 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1554 { 1555 return 0; 1556 } 1557 EXPORT_SYMBOL(noop_fsync); 1558 1559 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1560 { 1561 /* 1562 * iomap based filesystems support direct I/O without need for 1563 * this callback. However, it still needs to be set in 1564 * inode->a_ops so that open/fcntl know that direct I/O is 1565 * generally supported. 1566 */ 1567 return -EINVAL; 1568 } 1569 EXPORT_SYMBOL_GPL(noop_direct_IO); 1570 1571 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1572 void kfree_link(void *p) 1573 { 1574 kfree(p); 1575 } 1576 EXPORT_SYMBOL(kfree_link); 1577 1578 struct inode *alloc_anon_inode(struct super_block *s) 1579 { 1580 static const struct address_space_operations anon_aops = { 1581 .dirty_folio = noop_dirty_folio, 1582 }; 1583 struct inode *inode = new_inode_pseudo(s); 1584 1585 if (!inode) 1586 return ERR_PTR(-ENOMEM); 1587 1588 inode->i_ino = get_next_ino(); 1589 inode->i_mapping->a_ops = &anon_aops; 1590 1591 /* 1592 * Mark the inode dirty from the very beginning, 1593 * that way it will never be moved to the dirty 1594 * list because mark_inode_dirty() will think 1595 * that it already _is_ on the dirty list. 1596 */ 1597 inode->i_state = I_DIRTY; 1598 inode->i_mode = S_IRUSR | S_IWUSR; 1599 inode->i_uid = current_fsuid(); 1600 inode->i_gid = current_fsgid(); 1601 inode->i_flags |= S_PRIVATE; 1602 simple_inode_init_ts(inode); 1603 return inode; 1604 } 1605 EXPORT_SYMBOL(alloc_anon_inode); 1606 1607 /** 1608 * simple_nosetlease - generic helper for prohibiting leases 1609 * @filp: file pointer 1610 * @arg: type of lease to obtain 1611 * @flp: new lease supplied for insertion 1612 * @priv: private data for lm_setup operation 1613 * 1614 * Generic helper for filesystems that do not wish to allow leases to be set. 1615 * All arguments are ignored and it just returns -EINVAL. 1616 */ 1617 int 1618 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp, 1619 void **priv) 1620 { 1621 return -EINVAL; 1622 } 1623 EXPORT_SYMBOL(simple_nosetlease); 1624 1625 /** 1626 * simple_get_link - generic helper to get the target of "fast" symlinks 1627 * @dentry: not used here 1628 * @inode: the symlink inode 1629 * @done: not used here 1630 * 1631 * Generic helper for filesystems to use for symlink inodes where a pointer to 1632 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1633 * since as an optimization the path lookup code uses any non-NULL ->i_link 1634 * directly, without calling ->get_link(). But ->get_link() still must be set, 1635 * to mark the inode_operations as being for a symlink. 1636 * 1637 * Return: the symlink target 1638 */ 1639 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1640 struct delayed_call *done) 1641 { 1642 return inode->i_link; 1643 } 1644 EXPORT_SYMBOL(simple_get_link); 1645 1646 const struct inode_operations simple_symlink_inode_operations = { 1647 .get_link = simple_get_link, 1648 }; 1649 EXPORT_SYMBOL(simple_symlink_inode_operations); 1650 1651 /* 1652 * Operations for a permanently empty directory. 1653 */ 1654 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1655 { 1656 return ERR_PTR(-ENOENT); 1657 } 1658 1659 static int empty_dir_getattr(struct mnt_idmap *idmap, 1660 const struct path *path, struct kstat *stat, 1661 u32 request_mask, unsigned int query_flags) 1662 { 1663 struct inode *inode = d_inode(path->dentry); 1664 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1665 return 0; 1666 } 1667 1668 static int empty_dir_setattr(struct mnt_idmap *idmap, 1669 struct dentry *dentry, struct iattr *attr) 1670 { 1671 return -EPERM; 1672 } 1673 1674 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1675 { 1676 return -EOPNOTSUPP; 1677 } 1678 1679 static const struct inode_operations empty_dir_inode_operations = { 1680 .lookup = empty_dir_lookup, 1681 .permission = generic_permission, 1682 .setattr = empty_dir_setattr, 1683 .getattr = empty_dir_getattr, 1684 .listxattr = empty_dir_listxattr, 1685 }; 1686 1687 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1688 { 1689 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1690 return generic_file_llseek_size(file, offset, whence, 2, 2); 1691 } 1692 1693 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1694 { 1695 dir_emit_dots(file, ctx); 1696 return 0; 1697 } 1698 1699 static const struct file_operations empty_dir_operations = { 1700 .llseek = empty_dir_llseek, 1701 .read = generic_read_dir, 1702 .iterate_shared = empty_dir_readdir, 1703 .fsync = noop_fsync, 1704 }; 1705 1706 1707 void make_empty_dir_inode(struct inode *inode) 1708 { 1709 set_nlink(inode, 2); 1710 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1711 inode->i_uid = GLOBAL_ROOT_UID; 1712 inode->i_gid = GLOBAL_ROOT_GID; 1713 inode->i_rdev = 0; 1714 inode->i_size = 0; 1715 inode->i_blkbits = PAGE_SHIFT; 1716 inode->i_blocks = 0; 1717 1718 inode->i_op = &empty_dir_inode_operations; 1719 inode->i_opflags &= ~IOP_XATTR; 1720 inode->i_fop = &empty_dir_operations; 1721 } 1722 1723 bool is_empty_dir_inode(struct inode *inode) 1724 { 1725 return (inode->i_fop == &empty_dir_operations) && 1726 (inode->i_op == &empty_dir_inode_operations); 1727 } 1728 1729 #if IS_ENABLED(CONFIG_UNICODE) 1730 /** 1731 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1732 * @dentry: dentry whose name we are checking against 1733 * @len: len of name of dentry 1734 * @str: str pointer to name of dentry 1735 * @name: Name to compare against 1736 * 1737 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1738 */ 1739 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1740 const char *str, const struct qstr *name) 1741 { 1742 const struct dentry *parent; 1743 const struct inode *dir; 1744 char strbuf[DNAME_INLINE_LEN]; 1745 struct qstr qstr; 1746 1747 /* 1748 * Attempt a case-sensitive match first. It is cheaper and 1749 * should cover most lookups, including all the sane 1750 * applications that expect a case-sensitive filesystem. 1751 * 1752 * This comparison is safe under RCU because the caller 1753 * guarantees the consistency between str and len. See 1754 * __d_lookup_rcu_op_compare() for details. 1755 */ 1756 if (len == name->len && !memcmp(str, name->name, len)) 1757 return 0; 1758 1759 parent = READ_ONCE(dentry->d_parent); 1760 dir = READ_ONCE(parent->d_inode); 1761 if (!dir || !IS_CASEFOLDED(dir)) 1762 return 1; 1763 1764 /* 1765 * If the dentry name is stored in-line, then it may be concurrently 1766 * modified by a rename. If this happens, the VFS will eventually retry 1767 * the lookup, so it doesn't matter what ->d_compare() returns. 1768 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1769 * string. Therefore, we have to copy the name into a temporary buffer. 1770 */ 1771 if (len <= DNAME_INLINE_LEN - 1) { 1772 memcpy(strbuf, str, len); 1773 strbuf[len] = 0; 1774 str = strbuf; 1775 /* prevent compiler from optimizing out the temporary buffer */ 1776 barrier(); 1777 } 1778 qstr.len = len; 1779 qstr.name = str; 1780 1781 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr); 1782 } 1783 1784 /** 1785 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1786 * @dentry: dentry of the parent directory 1787 * @str: qstr of name whose hash we should fill in 1788 * 1789 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1790 */ 1791 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1792 { 1793 const struct inode *dir = READ_ONCE(dentry->d_inode); 1794 struct super_block *sb = dentry->d_sb; 1795 const struct unicode_map *um = sb->s_encoding; 1796 int ret; 1797 1798 if (!dir || !IS_CASEFOLDED(dir)) 1799 return 0; 1800 1801 ret = utf8_casefold_hash(um, dentry, str); 1802 if (ret < 0 && sb_has_strict_encoding(sb)) 1803 return -EINVAL; 1804 return 0; 1805 } 1806 1807 static const struct dentry_operations generic_ci_dentry_ops = { 1808 .d_hash = generic_ci_d_hash, 1809 .d_compare = generic_ci_d_compare, 1810 #ifdef CONFIG_FS_ENCRYPTION 1811 .d_revalidate = fscrypt_d_revalidate, 1812 #endif 1813 }; 1814 #endif 1815 1816 #ifdef CONFIG_FS_ENCRYPTION 1817 static const struct dentry_operations generic_encrypted_dentry_ops = { 1818 .d_revalidate = fscrypt_d_revalidate, 1819 }; 1820 #endif 1821 1822 /** 1823 * generic_set_sb_d_ops - helper for choosing the set of 1824 * filesystem-wide dentry operations for the enabled features 1825 * @sb: superblock to be configured 1826 * 1827 * Filesystems supporting casefolding and/or fscrypt can call this 1828 * helper at mount-time to configure sb->s_d_op to best set of dentry 1829 * operations required for the enabled features. The helper must be 1830 * called after these have been configured, but before the root dentry 1831 * is created. 1832 */ 1833 void generic_set_sb_d_ops(struct super_block *sb) 1834 { 1835 #if IS_ENABLED(CONFIG_UNICODE) 1836 if (sb->s_encoding) { 1837 sb->s_d_op = &generic_ci_dentry_ops; 1838 return; 1839 } 1840 #endif 1841 #ifdef CONFIG_FS_ENCRYPTION 1842 if (sb->s_cop) { 1843 sb->s_d_op = &generic_encrypted_dentry_ops; 1844 return; 1845 } 1846 #endif 1847 } 1848 EXPORT_SYMBOL(generic_set_sb_d_ops); 1849 1850 /** 1851 * inode_maybe_inc_iversion - increments i_version 1852 * @inode: inode with the i_version that should be updated 1853 * @force: increment the counter even if it's not necessary? 1854 * 1855 * Every time the inode is modified, the i_version field must be seen to have 1856 * changed by any observer. 1857 * 1858 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1859 * the value, and clear the queried flag. 1860 * 1861 * In the common case where neither is set, then we can return "false" without 1862 * updating i_version. 1863 * 1864 * If this function returns false, and no other metadata has changed, then we 1865 * can avoid logging the metadata. 1866 */ 1867 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1868 { 1869 u64 cur, new; 1870 1871 /* 1872 * The i_version field is not strictly ordered with any other inode 1873 * information, but the legacy inode_inc_iversion code used a spinlock 1874 * to serialize increments. 1875 * 1876 * Here, we add full memory barriers to ensure that any de-facto 1877 * ordering with other info is preserved. 1878 * 1879 * This barrier pairs with the barrier in inode_query_iversion() 1880 */ 1881 smp_mb(); 1882 cur = inode_peek_iversion_raw(inode); 1883 do { 1884 /* If flag is clear then we needn't do anything */ 1885 if (!force && !(cur & I_VERSION_QUERIED)) 1886 return false; 1887 1888 /* Since lowest bit is flag, add 2 to avoid it */ 1889 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 1890 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1891 return true; 1892 } 1893 EXPORT_SYMBOL(inode_maybe_inc_iversion); 1894 1895 /** 1896 * inode_query_iversion - read i_version for later use 1897 * @inode: inode from which i_version should be read 1898 * 1899 * Read the inode i_version counter. This should be used by callers that wish 1900 * to store the returned i_version for later comparison. This will guarantee 1901 * that a later query of the i_version will result in a different value if 1902 * anything has changed. 1903 * 1904 * In this implementation, we fetch the current value, set the QUERIED flag and 1905 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 1906 * that fails, we try again with the newly fetched value from the cmpxchg. 1907 */ 1908 u64 inode_query_iversion(struct inode *inode) 1909 { 1910 u64 cur, new; 1911 1912 cur = inode_peek_iversion_raw(inode); 1913 do { 1914 /* If flag is already set, then no need to swap */ 1915 if (cur & I_VERSION_QUERIED) { 1916 /* 1917 * This barrier (and the implicit barrier in the 1918 * cmpxchg below) pairs with the barrier in 1919 * inode_maybe_inc_iversion(). 1920 */ 1921 smp_mb(); 1922 break; 1923 } 1924 1925 new = cur | I_VERSION_QUERIED; 1926 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1927 return cur >> I_VERSION_QUERIED_SHIFT; 1928 } 1929 EXPORT_SYMBOL(inode_query_iversion); 1930 1931 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 1932 ssize_t direct_written, ssize_t buffered_written) 1933 { 1934 struct address_space *mapping = iocb->ki_filp->f_mapping; 1935 loff_t pos = iocb->ki_pos - buffered_written; 1936 loff_t end = iocb->ki_pos - 1; 1937 int err; 1938 1939 /* 1940 * If the buffered write fallback returned an error, we want to return 1941 * the number of bytes which were written by direct I/O, or the error 1942 * code if that was zero. 1943 * 1944 * Note that this differs from normal direct-io semantics, which will 1945 * return -EFOO even if some bytes were written. 1946 */ 1947 if (unlikely(buffered_written < 0)) { 1948 if (direct_written) 1949 return direct_written; 1950 return buffered_written; 1951 } 1952 1953 /* 1954 * We need to ensure that the page cache pages are written to disk and 1955 * invalidated to preserve the expected O_DIRECT semantics. 1956 */ 1957 err = filemap_write_and_wait_range(mapping, pos, end); 1958 if (err < 0) { 1959 /* 1960 * We don't know how much we wrote, so just return the number of 1961 * bytes which were direct-written 1962 */ 1963 iocb->ki_pos -= buffered_written; 1964 if (direct_written) 1965 return direct_written; 1966 return err; 1967 } 1968 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 1969 return direct_written + buffered_written; 1970 } 1971 EXPORT_SYMBOL_GPL(direct_write_fallback); 1972 1973 /** 1974 * simple_inode_init_ts - initialize the timestamps for a new inode 1975 * @inode: inode to be initialized 1976 * 1977 * When a new inode is created, most filesystems set the timestamps to the 1978 * current time. Add a helper to do this. 1979 */ 1980 struct timespec64 simple_inode_init_ts(struct inode *inode) 1981 { 1982 struct timespec64 ts = inode_set_ctime_current(inode); 1983 1984 inode_set_atime_to_ts(inode, ts); 1985 inode_set_mtime_to_ts(inode, ts); 1986 return ts; 1987 } 1988 EXPORT_SYMBOL(simple_inode_init_ts); 1989 1990 static inline struct dentry *get_stashed_dentry(struct dentry *stashed) 1991 { 1992 struct dentry *dentry; 1993 1994 guard(rcu)(); 1995 dentry = READ_ONCE(stashed); 1996 if (!dentry) 1997 return NULL; 1998 if (!lockref_get_not_dead(&dentry->d_lockref)) 1999 return NULL; 2000 return dentry; 2001 } 2002 2003 static struct dentry *prepare_anon_dentry(struct dentry **stashed, 2004 struct super_block *sb, 2005 void *data) 2006 { 2007 struct dentry *dentry; 2008 struct inode *inode; 2009 const struct stashed_operations *sops = sb->s_fs_info; 2010 int ret; 2011 2012 inode = new_inode_pseudo(sb); 2013 if (!inode) { 2014 sops->put_data(data); 2015 return ERR_PTR(-ENOMEM); 2016 } 2017 2018 inode->i_flags |= S_IMMUTABLE; 2019 inode->i_mode = S_IFREG; 2020 simple_inode_init_ts(inode); 2021 2022 ret = sops->init_inode(inode, data); 2023 if (ret < 0) { 2024 iput(inode); 2025 return ERR_PTR(ret); 2026 } 2027 2028 /* Notice when this is changed. */ 2029 WARN_ON_ONCE(!S_ISREG(inode->i_mode)); 2030 WARN_ON_ONCE(!IS_IMMUTABLE(inode)); 2031 2032 dentry = d_alloc_anon(sb); 2033 if (!dentry) { 2034 iput(inode); 2035 return ERR_PTR(-ENOMEM); 2036 } 2037 2038 /* Store address of location where dentry's supposed to be stashed. */ 2039 dentry->d_fsdata = stashed; 2040 2041 /* @data is now owned by the fs */ 2042 d_instantiate(dentry, inode); 2043 return dentry; 2044 } 2045 2046 static struct dentry *stash_dentry(struct dentry **stashed, 2047 struct dentry *dentry) 2048 { 2049 guard(rcu)(); 2050 for (;;) { 2051 struct dentry *old; 2052 2053 /* Assume any old dentry was cleared out. */ 2054 old = cmpxchg(stashed, NULL, dentry); 2055 if (likely(!old)) 2056 return dentry; 2057 2058 /* Check if somebody else installed a reusable dentry. */ 2059 if (lockref_get_not_dead(&old->d_lockref)) 2060 return old; 2061 2062 /* There's an old dead dentry there, try to take it over. */ 2063 if (likely(try_cmpxchg(stashed, &old, dentry))) 2064 return dentry; 2065 } 2066 } 2067 2068 /** 2069 * path_from_stashed - create path from stashed or new dentry 2070 * @stashed: where to retrieve or stash dentry 2071 * @mnt: mnt of the filesystems to use 2072 * @data: data to store in inode->i_private 2073 * @path: path to create 2074 * 2075 * The function tries to retrieve a stashed dentry from @stashed. If the dentry 2076 * is still valid then it will be reused. If the dentry isn't able the function 2077 * will allocate a new dentry and inode. It will then check again whether it 2078 * can reuse an existing dentry in case one has been added in the meantime or 2079 * update @stashed with the newly added dentry. 2080 * 2081 * Special-purpose helper for nsfs and pidfs. 2082 * 2083 * Return: On success zero and on failure a negative error is returned. 2084 */ 2085 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data, 2086 struct path *path) 2087 { 2088 struct dentry *dentry; 2089 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info; 2090 2091 /* See if dentry can be reused. */ 2092 path->dentry = get_stashed_dentry(*stashed); 2093 if (path->dentry) { 2094 sops->put_data(data); 2095 goto out_path; 2096 } 2097 2098 /* Allocate a new dentry. */ 2099 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data); 2100 if (IS_ERR(dentry)) 2101 return PTR_ERR(dentry); 2102 2103 /* Added a new dentry. @data is now owned by the filesystem. */ 2104 path->dentry = stash_dentry(stashed, dentry); 2105 if (path->dentry != dentry) 2106 dput(dentry); 2107 2108 out_path: 2109 WARN_ON_ONCE(path->dentry->d_fsdata != stashed); 2110 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data); 2111 path->mnt = mntget(mnt); 2112 return 0; 2113 } 2114 2115 void stashed_dentry_prune(struct dentry *dentry) 2116 { 2117 struct dentry **stashed = dentry->d_fsdata; 2118 struct inode *inode = d_inode(dentry); 2119 2120 if (WARN_ON_ONCE(!stashed)) 2121 return; 2122 2123 if (!inode) 2124 return; 2125 2126 /* 2127 * Only replace our own @dentry as someone else might've 2128 * already cleared out @dentry and stashed their own 2129 * dentry in there. 2130 */ 2131 cmpxchg(stashed, dentry, NULL); 2132 } 2133