xref: /linux/fs/libfs.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
16 
17 #include <asm/uaccess.h>
18 
19 static inline int simple_positive(struct dentry *dentry)
20 {
21 	return dentry->d_inode && !d_unhashed(dentry);
22 }
23 
24 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
25 		   struct kstat *stat)
26 {
27 	struct inode *inode = dentry->d_inode;
28 	generic_fillattr(inode, stat);
29 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
30 	return 0;
31 }
32 
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
34 {
35 	buf->f_type = dentry->d_sb->s_magic;
36 	buf->f_bsize = PAGE_CACHE_SIZE;
37 	buf->f_namelen = NAME_MAX;
38 	return 0;
39 }
40 
41 /*
42  * Retaining negative dentries for an in-memory filesystem just wastes
43  * memory and lookup time: arrange for them to be deleted immediately.
44  */
45 static int simple_delete_dentry(const struct dentry *dentry)
46 {
47 	return 1;
48 }
49 
50 /*
51  * Lookup the data. This is trivial - if the dentry didn't already
52  * exist, we know it is negative.  Set d_op to delete negative dentries.
53  */
54 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
55 {
56 	static const struct dentry_operations simple_dentry_operations = {
57 		.d_delete = simple_delete_dentry,
58 	};
59 
60 	if (dentry->d_name.len > NAME_MAX)
61 		return ERR_PTR(-ENAMETOOLONG);
62 	d_set_d_op(dentry, &simple_dentry_operations);
63 	d_add(dentry, NULL);
64 	return NULL;
65 }
66 
67 int dcache_dir_open(struct inode *inode, struct file *file)
68 {
69 	static struct qstr cursor_name = {.len = 1, .name = "."};
70 
71 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
72 
73 	return file->private_data ? 0 : -ENOMEM;
74 }
75 
76 int dcache_dir_close(struct inode *inode, struct file *file)
77 {
78 	dput(file->private_data);
79 	return 0;
80 }
81 
82 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
83 {
84 	struct dentry *dentry = file->f_path.dentry;
85 	mutex_lock(&dentry->d_inode->i_mutex);
86 	switch (origin) {
87 		case 1:
88 			offset += file->f_pos;
89 		case 0:
90 			if (offset >= 0)
91 				break;
92 		default:
93 			mutex_unlock(&dentry->d_inode->i_mutex);
94 			return -EINVAL;
95 	}
96 	if (offset != file->f_pos) {
97 		file->f_pos = offset;
98 		if (file->f_pos >= 2) {
99 			struct list_head *p;
100 			struct dentry *cursor = file->private_data;
101 			loff_t n = file->f_pos - 2;
102 
103 			spin_lock(&dentry->d_lock);
104 			/* d_lock not required for cursor */
105 			list_del(&cursor->d_u.d_child);
106 			p = dentry->d_subdirs.next;
107 			while (n && p != &dentry->d_subdirs) {
108 				struct dentry *next;
109 				next = list_entry(p, struct dentry, d_u.d_child);
110 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
111 				if (simple_positive(next))
112 					n--;
113 				spin_unlock(&next->d_lock);
114 				p = p->next;
115 			}
116 			list_add_tail(&cursor->d_u.d_child, p);
117 			spin_unlock(&dentry->d_lock);
118 		}
119 	}
120 	mutex_unlock(&dentry->d_inode->i_mutex);
121 	return offset;
122 }
123 
124 /* Relationship between i_mode and the DT_xxx types */
125 static inline unsigned char dt_type(struct inode *inode)
126 {
127 	return (inode->i_mode >> 12) & 15;
128 }
129 
130 /*
131  * Directory is locked and all positive dentries in it are safe, since
132  * for ramfs-type trees they can't go away without unlink() or rmdir(),
133  * both impossible due to the lock on directory.
134  */
135 
136 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
137 {
138 	struct dentry *dentry = filp->f_path.dentry;
139 	struct dentry *cursor = filp->private_data;
140 	struct list_head *p, *q = &cursor->d_u.d_child;
141 	ino_t ino;
142 	int i = filp->f_pos;
143 
144 	switch (i) {
145 		case 0:
146 			ino = dentry->d_inode->i_ino;
147 			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
148 				break;
149 			filp->f_pos++;
150 			i++;
151 			/* fallthrough */
152 		case 1:
153 			ino = parent_ino(dentry);
154 			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
155 				break;
156 			filp->f_pos++;
157 			i++;
158 			/* fallthrough */
159 		default:
160 			spin_lock(&dentry->d_lock);
161 			if (filp->f_pos == 2)
162 				list_move(q, &dentry->d_subdirs);
163 
164 			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
165 				struct dentry *next;
166 				next = list_entry(p, struct dentry, d_u.d_child);
167 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
168 				if (!simple_positive(next)) {
169 					spin_unlock(&next->d_lock);
170 					continue;
171 				}
172 
173 				spin_unlock(&next->d_lock);
174 				spin_unlock(&dentry->d_lock);
175 				if (filldir(dirent, next->d_name.name,
176 					    next->d_name.len, filp->f_pos,
177 					    next->d_inode->i_ino,
178 					    dt_type(next->d_inode)) < 0)
179 					return 0;
180 				spin_lock(&dentry->d_lock);
181 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
182 				/* next is still alive */
183 				list_move(q, p);
184 				spin_unlock(&next->d_lock);
185 				p = q;
186 				filp->f_pos++;
187 			}
188 			spin_unlock(&dentry->d_lock);
189 	}
190 	return 0;
191 }
192 
193 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
194 {
195 	return -EISDIR;
196 }
197 
198 const struct file_operations simple_dir_operations = {
199 	.open		= dcache_dir_open,
200 	.release	= dcache_dir_close,
201 	.llseek		= dcache_dir_lseek,
202 	.read		= generic_read_dir,
203 	.readdir	= dcache_readdir,
204 	.fsync		= noop_fsync,
205 };
206 
207 const struct inode_operations simple_dir_inode_operations = {
208 	.lookup		= simple_lookup,
209 };
210 
211 static const struct super_operations simple_super_operations = {
212 	.statfs		= simple_statfs,
213 };
214 
215 /*
216  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
217  * will never be mountable)
218  */
219 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
220 	const struct super_operations *ops, unsigned long magic)
221 {
222 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
223 	struct dentry *dentry;
224 	struct inode *root;
225 	struct qstr d_name = {.name = name, .len = strlen(name)};
226 
227 	if (IS_ERR(s))
228 		return ERR_CAST(s);
229 
230 	s->s_flags = MS_NOUSER;
231 	s->s_maxbytes = MAX_LFS_FILESIZE;
232 	s->s_blocksize = PAGE_SIZE;
233 	s->s_blocksize_bits = PAGE_SHIFT;
234 	s->s_magic = magic;
235 	s->s_op = ops ? ops : &simple_super_operations;
236 	s->s_time_gran = 1;
237 	root = new_inode(s);
238 	if (!root)
239 		goto Enomem;
240 	/*
241 	 * since this is the first inode, make it number 1. New inodes created
242 	 * after this must take care not to collide with it (by passing
243 	 * max_reserved of 1 to iunique).
244 	 */
245 	root->i_ino = 1;
246 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
247 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
248 	dentry = d_alloc(NULL, &d_name);
249 	if (!dentry) {
250 		iput(root);
251 		goto Enomem;
252 	}
253 	dentry->d_sb = s;
254 	dentry->d_parent = dentry;
255 	d_instantiate(dentry, root);
256 	s->s_root = dentry;
257 	s->s_flags |= MS_ACTIVE;
258 	return dget(s->s_root);
259 
260 Enomem:
261 	deactivate_locked_super(s);
262 	return ERR_PTR(-ENOMEM);
263 }
264 
265 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
266 {
267 	struct inode *inode = old_dentry->d_inode;
268 
269 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
270 	inc_nlink(inode);
271 	ihold(inode);
272 	dget(dentry);
273 	d_instantiate(dentry, inode);
274 	return 0;
275 }
276 
277 int simple_empty(struct dentry *dentry)
278 {
279 	struct dentry *child;
280 	int ret = 0;
281 
282 	spin_lock(&dentry->d_lock);
283 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
284 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
285 		if (simple_positive(child)) {
286 			spin_unlock(&child->d_lock);
287 			goto out;
288 		}
289 		spin_unlock(&child->d_lock);
290 	}
291 	ret = 1;
292 out:
293 	spin_unlock(&dentry->d_lock);
294 	return ret;
295 }
296 
297 int simple_unlink(struct inode *dir, struct dentry *dentry)
298 {
299 	struct inode *inode = dentry->d_inode;
300 
301 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
302 	drop_nlink(inode);
303 	dput(dentry);
304 	return 0;
305 }
306 
307 int simple_rmdir(struct inode *dir, struct dentry *dentry)
308 {
309 	if (!simple_empty(dentry))
310 		return -ENOTEMPTY;
311 
312 	drop_nlink(dentry->d_inode);
313 	simple_unlink(dir, dentry);
314 	drop_nlink(dir);
315 	return 0;
316 }
317 
318 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
319 		struct inode *new_dir, struct dentry *new_dentry)
320 {
321 	struct inode *inode = old_dentry->d_inode;
322 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
323 
324 	if (!simple_empty(new_dentry))
325 		return -ENOTEMPTY;
326 
327 	if (new_dentry->d_inode) {
328 		simple_unlink(new_dir, new_dentry);
329 		if (they_are_dirs)
330 			drop_nlink(old_dir);
331 	} else if (they_are_dirs) {
332 		drop_nlink(old_dir);
333 		inc_nlink(new_dir);
334 	}
335 
336 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
337 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
338 
339 	return 0;
340 }
341 
342 /**
343  * simple_setattr - setattr for simple filesystem
344  * @dentry: dentry
345  * @iattr: iattr structure
346  *
347  * Returns 0 on success, -error on failure.
348  *
349  * simple_setattr is a simple ->setattr implementation without a proper
350  * implementation of size changes.
351  *
352  * It can either be used for in-memory filesystems or special files
353  * on simple regular filesystems.  Anything that needs to change on-disk
354  * or wire state on size changes needs its own setattr method.
355  */
356 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
357 {
358 	struct inode *inode = dentry->d_inode;
359 	int error;
360 
361 	WARN_ON_ONCE(inode->i_op->truncate);
362 
363 	error = inode_change_ok(inode, iattr);
364 	if (error)
365 		return error;
366 
367 	if (iattr->ia_valid & ATTR_SIZE)
368 		truncate_setsize(inode, iattr->ia_size);
369 	setattr_copy(inode, iattr);
370 	mark_inode_dirty(inode);
371 	return 0;
372 }
373 EXPORT_SYMBOL(simple_setattr);
374 
375 int simple_readpage(struct file *file, struct page *page)
376 {
377 	clear_highpage(page);
378 	flush_dcache_page(page);
379 	SetPageUptodate(page);
380 	unlock_page(page);
381 	return 0;
382 }
383 
384 int simple_write_begin(struct file *file, struct address_space *mapping,
385 			loff_t pos, unsigned len, unsigned flags,
386 			struct page **pagep, void **fsdata)
387 {
388 	struct page *page;
389 	pgoff_t index;
390 
391 	index = pos >> PAGE_CACHE_SHIFT;
392 
393 	page = grab_cache_page_write_begin(mapping, index, flags);
394 	if (!page)
395 		return -ENOMEM;
396 
397 	*pagep = page;
398 
399 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
400 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
401 
402 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
403 	}
404 	return 0;
405 }
406 
407 /**
408  * simple_write_end - .write_end helper for non-block-device FSes
409  * @available: See .write_end of address_space_operations
410  * @file: 		"
411  * @mapping: 		"
412  * @pos: 		"
413  * @len: 		"
414  * @copied: 		"
415  * @page: 		"
416  * @fsdata: 		"
417  *
418  * simple_write_end does the minimum needed for updating a page after writing is
419  * done. It has the same API signature as the .write_end of
420  * address_space_operations vector. So it can just be set onto .write_end for
421  * FSes that don't need any other processing. i_mutex is assumed to be held.
422  * Block based filesystems should use generic_write_end().
423  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
424  * is not called, so a filesystem that actually does store data in .write_inode
425  * should extend on what's done here with a call to mark_inode_dirty() in the
426  * case that i_size has changed.
427  */
428 int simple_write_end(struct file *file, struct address_space *mapping,
429 			loff_t pos, unsigned len, unsigned copied,
430 			struct page *page, void *fsdata)
431 {
432 	struct inode *inode = page->mapping->host;
433 	loff_t last_pos = pos + copied;
434 
435 	/* zero the stale part of the page if we did a short copy */
436 	if (copied < len) {
437 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
438 
439 		zero_user(page, from + copied, len - copied);
440 	}
441 
442 	if (!PageUptodate(page))
443 		SetPageUptodate(page);
444 	/*
445 	 * No need to use i_size_read() here, the i_size
446 	 * cannot change under us because we hold the i_mutex.
447 	 */
448 	if (last_pos > inode->i_size)
449 		i_size_write(inode, last_pos);
450 
451 	set_page_dirty(page);
452 	unlock_page(page);
453 	page_cache_release(page);
454 
455 	return copied;
456 }
457 
458 /*
459  * the inodes created here are not hashed. If you use iunique to generate
460  * unique inode values later for this filesystem, then you must take care
461  * to pass it an appropriate max_reserved value to avoid collisions.
462  */
463 int simple_fill_super(struct super_block *s, unsigned long magic,
464 		      struct tree_descr *files)
465 {
466 	struct inode *inode;
467 	struct dentry *root;
468 	struct dentry *dentry;
469 	int i;
470 
471 	s->s_blocksize = PAGE_CACHE_SIZE;
472 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
473 	s->s_magic = magic;
474 	s->s_op = &simple_super_operations;
475 	s->s_time_gran = 1;
476 
477 	inode = new_inode(s);
478 	if (!inode)
479 		return -ENOMEM;
480 	/*
481 	 * because the root inode is 1, the files array must not contain an
482 	 * entry at index 1
483 	 */
484 	inode->i_ino = 1;
485 	inode->i_mode = S_IFDIR | 0755;
486 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
487 	inode->i_op = &simple_dir_inode_operations;
488 	inode->i_fop = &simple_dir_operations;
489 	inode->i_nlink = 2;
490 	root = d_alloc_root(inode);
491 	if (!root) {
492 		iput(inode);
493 		return -ENOMEM;
494 	}
495 	for (i = 0; !files->name || files->name[0]; i++, files++) {
496 		if (!files->name)
497 			continue;
498 
499 		/* warn if it tries to conflict with the root inode */
500 		if (unlikely(i == 1))
501 			printk(KERN_WARNING "%s: %s passed in a files array"
502 				"with an index of 1!\n", __func__,
503 				s->s_type->name);
504 
505 		dentry = d_alloc_name(root, files->name);
506 		if (!dentry)
507 			goto out;
508 		inode = new_inode(s);
509 		if (!inode)
510 			goto out;
511 		inode->i_mode = S_IFREG | files->mode;
512 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
513 		inode->i_fop = files->ops;
514 		inode->i_ino = i;
515 		d_add(dentry, inode);
516 	}
517 	s->s_root = root;
518 	return 0;
519 out:
520 	d_genocide(root);
521 	dput(root);
522 	return -ENOMEM;
523 }
524 
525 static DEFINE_SPINLOCK(pin_fs_lock);
526 
527 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
528 {
529 	struct vfsmount *mnt = NULL;
530 	spin_lock(&pin_fs_lock);
531 	if (unlikely(!*mount)) {
532 		spin_unlock(&pin_fs_lock);
533 		mnt = vfs_kern_mount(type, 0, type->name, NULL);
534 		if (IS_ERR(mnt))
535 			return PTR_ERR(mnt);
536 		spin_lock(&pin_fs_lock);
537 		if (!*mount)
538 			*mount = mnt;
539 	}
540 	mntget(*mount);
541 	++*count;
542 	spin_unlock(&pin_fs_lock);
543 	mntput(mnt);
544 	return 0;
545 }
546 
547 void simple_release_fs(struct vfsmount **mount, int *count)
548 {
549 	struct vfsmount *mnt;
550 	spin_lock(&pin_fs_lock);
551 	mnt = *mount;
552 	if (!--*count)
553 		*mount = NULL;
554 	spin_unlock(&pin_fs_lock);
555 	mntput(mnt);
556 }
557 
558 /**
559  * simple_read_from_buffer - copy data from the buffer to user space
560  * @to: the user space buffer to read to
561  * @count: the maximum number of bytes to read
562  * @ppos: the current position in the buffer
563  * @from: the buffer to read from
564  * @available: the size of the buffer
565  *
566  * The simple_read_from_buffer() function reads up to @count bytes from the
567  * buffer @from at offset @ppos into the user space address starting at @to.
568  *
569  * On success, the number of bytes read is returned and the offset @ppos is
570  * advanced by this number, or negative value is returned on error.
571  **/
572 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
573 				const void *from, size_t available)
574 {
575 	loff_t pos = *ppos;
576 	size_t ret;
577 
578 	if (pos < 0)
579 		return -EINVAL;
580 	if (pos >= available || !count)
581 		return 0;
582 	if (count > available - pos)
583 		count = available - pos;
584 	ret = copy_to_user(to, from + pos, count);
585 	if (ret == count)
586 		return -EFAULT;
587 	count -= ret;
588 	*ppos = pos + count;
589 	return count;
590 }
591 
592 /**
593  * simple_write_to_buffer - copy data from user space to the buffer
594  * @to: the buffer to write to
595  * @available: the size of the buffer
596  * @ppos: the current position in the buffer
597  * @from: the user space buffer to read from
598  * @count: the maximum number of bytes to read
599  *
600  * The simple_write_to_buffer() function reads up to @count bytes from the user
601  * space address starting at @from into the buffer @to at offset @ppos.
602  *
603  * On success, the number of bytes written is returned and the offset @ppos is
604  * advanced by this number, or negative value is returned on error.
605  **/
606 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
607 		const void __user *from, size_t count)
608 {
609 	loff_t pos = *ppos;
610 	size_t res;
611 
612 	if (pos < 0)
613 		return -EINVAL;
614 	if (pos >= available || !count)
615 		return 0;
616 	if (count > available - pos)
617 		count = available - pos;
618 	res = copy_from_user(to + pos, from, count);
619 	if (res == count)
620 		return -EFAULT;
621 	count -= res;
622 	*ppos = pos + count;
623 	return count;
624 }
625 
626 /**
627  * memory_read_from_buffer - copy data from the buffer
628  * @to: the kernel space buffer to read to
629  * @count: the maximum number of bytes to read
630  * @ppos: the current position in the buffer
631  * @from: the buffer to read from
632  * @available: the size of the buffer
633  *
634  * The memory_read_from_buffer() function reads up to @count bytes from the
635  * buffer @from at offset @ppos into the kernel space address starting at @to.
636  *
637  * On success, the number of bytes read is returned and the offset @ppos is
638  * advanced by this number, or negative value is returned on error.
639  **/
640 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
641 				const void *from, size_t available)
642 {
643 	loff_t pos = *ppos;
644 
645 	if (pos < 0)
646 		return -EINVAL;
647 	if (pos >= available)
648 		return 0;
649 	if (count > available - pos)
650 		count = available - pos;
651 	memcpy(to, from + pos, count);
652 	*ppos = pos + count;
653 
654 	return count;
655 }
656 
657 /*
658  * Transaction based IO.
659  * The file expects a single write which triggers the transaction, and then
660  * possibly a read which collects the result - which is stored in a
661  * file-local buffer.
662  */
663 
664 void simple_transaction_set(struct file *file, size_t n)
665 {
666 	struct simple_transaction_argresp *ar = file->private_data;
667 
668 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
669 
670 	/*
671 	 * The barrier ensures that ar->size will really remain zero until
672 	 * ar->data is ready for reading.
673 	 */
674 	smp_mb();
675 	ar->size = n;
676 }
677 
678 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
679 {
680 	struct simple_transaction_argresp *ar;
681 	static DEFINE_SPINLOCK(simple_transaction_lock);
682 
683 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
684 		return ERR_PTR(-EFBIG);
685 
686 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
687 	if (!ar)
688 		return ERR_PTR(-ENOMEM);
689 
690 	spin_lock(&simple_transaction_lock);
691 
692 	/* only one write allowed per open */
693 	if (file->private_data) {
694 		spin_unlock(&simple_transaction_lock);
695 		free_page((unsigned long)ar);
696 		return ERR_PTR(-EBUSY);
697 	}
698 
699 	file->private_data = ar;
700 
701 	spin_unlock(&simple_transaction_lock);
702 
703 	if (copy_from_user(ar->data, buf, size))
704 		return ERR_PTR(-EFAULT);
705 
706 	return ar->data;
707 }
708 
709 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
710 {
711 	struct simple_transaction_argresp *ar = file->private_data;
712 
713 	if (!ar)
714 		return 0;
715 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
716 }
717 
718 int simple_transaction_release(struct inode *inode, struct file *file)
719 {
720 	free_page((unsigned long)file->private_data);
721 	return 0;
722 }
723 
724 /* Simple attribute files */
725 
726 struct simple_attr {
727 	int (*get)(void *, u64 *);
728 	int (*set)(void *, u64);
729 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
730 	char set_buf[24];
731 	void *data;
732 	const char *fmt;	/* format for read operation */
733 	struct mutex mutex;	/* protects access to these buffers */
734 };
735 
736 /* simple_attr_open is called by an actual attribute open file operation
737  * to set the attribute specific access operations. */
738 int simple_attr_open(struct inode *inode, struct file *file,
739 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
740 		     const char *fmt)
741 {
742 	struct simple_attr *attr;
743 
744 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
745 	if (!attr)
746 		return -ENOMEM;
747 
748 	attr->get = get;
749 	attr->set = set;
750 	attr->data = inode->i_private;
751 	attr->fmt = fmt;
752 	mutex_init(&attr->mutex);
753 
754 	file->private_data = attr;
755 
756 	return nonseekable_open(inode, file);
757 }
758 
759 int simple_attr_release(struct inode *inode, struct file *file)
760 {
761 	kfree(file->private_data);
762 	return 0;
763 }
764 
765 /* read from the buffer that is filled with the get function */
766 ssize_t simple_attr_read(struct file *file, char __user *buf,
767 			 size_t len, loff_t *ppos)
768 {
769 	struct simple_attr *attr;
770 	size_t size;
771 	ssize_t ret;
772 
773 	attr = file->private_data;
774 
775 	if (!attr->get)
776 		return -EACCES;
777 
778 	ret = mutex_lock_interruptible(&attr->mutex);
779 	if (ret)
780 		return ret;
781 
782 	if (*ppos) {		/* continued read */
783 		size = strlen(attr->get_buf);
784 	} else {		/* first read */
785 		u64 val;
786 		ret = attr->get(attr->data, &val);
787 		if (ret)
788 			goto out;
789 
790 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
791 				 attr->fmt, (unsigned long long)val);
792 	}
793 
794 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
795 out:
796 	mutex_unlock(&attr->mutex);
797 	return ret;
798 }
799 
800 /* interpret the buffer as a number to call the set function with */
801 ssize_t simple_attr_write(struct file *file, const char __user *buf,
802 			  size_t len, loff_t *ppos)
803 {
804 	struct simple_attr *attr;
805 	u64 val;
806 	size_t size;
807 	ssize_t ret;
808 
809 	attr = file->private_data;
810 	if (!attr->set)
811 		return -EACCES;
812 
813 	ret = mutex_lock_interruptible(&attr->mutex);
814 	if (ret)
815 		return ret;
816 
817 	ret = -EFAULT;
818 	size = min(sizeof(attr->set_buf) - 1, len);
819 	if (copy_from_user(attr->set_buf, buf, size))
820 		goto out;
821 
822 	attr->set_buf[size] = '\0';
823 	val = simple_strtol(attr->set_buf, NULL, 0);
824 	ret = attr->set(attr->data, val);
825 	if (ret == 0)
826 		ret = len; /* on success, claim we got the whole input */
827 out:
828 	mutex_unlock(&attr->mutex);
829 	return ret;
830 }
831 
832 /**
833  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
834  * @sb:		filesystem to do the file handle conversion on
835  * @fid:	file handle to convert
836  * @fh_len:	length of the file handle in bytes
837  * @fh_type:	type of file handle
838  * @get_inode:	filesystem callback to retrieve inode
839  *
840  * This function decodes @fid as long as it has one of the well-known
841  * Linux filehandle types and calls @get_inode on it to retrieve the
842  * inode for the object specified in the file handle.
843  */
844 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
845 		int fh_len, int fh_type, struct inode *(*get_inode)
846 			(struct super_block *sb, u64 ino, u32 gen))
847 {
848 	struct inode *inode = NULL;
849 
850 	if (fh_len < 2)
851 		return NULL;
852 
853 	switch (fh_type) {
854 	case FILEID_INO32_GEN:
855 	case FILEID_INO32_GEN_PARENT:
856 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
857 		break;
858 	}
859 
860 	return d_obtain_alias(inode);
861 }
862 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
863 
864 /**
865  * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
866  * @sb:		filesystem to do the file handle conversion on
867  * @fid:	file handle to convert
868  * @fh_len:	length of the file handle in bytes
869  * @fh_type:	type of file handle
870  * @get_inode:	filesystem callback to retrieve inode
871  *
872  * This function decodes @fid as long as it has one of the well-known
873  * Linux filehandle types and calls @get_inode on it to retrieve the
874  * inode for the _parent_ object specified in the file handle if it
875  * is specified in the file handle, or NULL otherwise.
876  */
877 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
878 		int fh_len, int fh_type, struct inode *(*get_inode)
879 			(struct super_block *sb, u64 ino, u32 gen))
880 {
881 	struct inode *inode = NULL;
882 
883 	if (fh_len <= 2)
884 		return NULL;
885 
886 	switch (fh_type) {
887 	case FILEID_INO32_GEN_PARENT:
888 		inode = get_inode(sb, fid->i32.parent_ino,
889 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
890 		break;
891 	}
892 
893 	return d_obtain_alias(inode);
894 }
895 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
896 
897 /**
898  * generic_file_fsync - generic fsync implementation for simple filesystems
899  * @file:	file to synchronize
900  * @datasync:	only synchronize essential metadata if true
901  *
902  * This is a generic implementation of the fsync method for simple
903  * filesystems which track all non-inode metadata in the buffers list
904  * hanging off the address_space structure.
905  */
906 int generic_file_fsync(struct file *file, int datasync)
907 {
908 	struct inode *inode = file->f_mapping->host;
909 	int err;
910 	int ret;
911 
912 	ret = sync_mapping_buffers(inode->i_mapping);
913 	if (!(inode->i_state & I_DIRTY))
914 		return ret;
915 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
916 		return ret;
917 
918 	err = sync_inode_metadata(inode, 1);
919 	if (ret == 0)
920 		ret = err;
921 	return ret;
922 }
923 EXPORT_SYMBOL(generic_file_fsync);
924 
925 /**
926  * generic_check_addressable - Check addressability of file system
927  * @blocksize_bits:	log of file system block size
928  * @num_blocks:		number of blocks in file system
929  *
930  * Determine whether a file system with @num_blocks blocks (and a
931  * block size of 2**@blocksize_bits) is addressable by the sector_t
932  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
933  */
934 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
935 {
936 	u64 last_fs_block = num_blocks - 1;
937 	u64 last_fs_page =
938 		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
939 
940 	if (unlikely(num_blocks == 0))
941 		return 0;
942 
943 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
944 		return -EINVAL;
945 
946 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
947 	    (last_fs_page > (pgoff_t)(~0ULL))) {
948 		return -EFBIG;
949 	}
950 	return 0;
951 }
952 EXPORT_SYMBOL(generic_check_addressable);
953 
954 /*
955  * No-op implementation of ->fsync for in-memory filesystems.
956  */
957 int noop_fsync(struct file *file, int datasync)
958 {
959 	return 0;
960 }
961 
962 EXPORT_SYMBOL(dcache_dir_close);
963 EXPORT_SYMBOL(dcache_dir_lseek);
964 EXPORT_SYMBOL(dcache_dir_open);
965 EXPORT_SYMBOL(dcache_readdir);
966 EXPORT_SYMBOL(generic_read_dir);
967 EXPORT_SYMBOL(mount_pseudo);
968 EXPORT_SYMBOL(simple_write_begin);
969 EXPORT_SYMBOL(simple_write_end);
970 EXPORT_SYMBOL(simple_dir_inode_operations);
971 EXPORT_SYMBOL(simple_dir_operations);
972 EXPORT_SYMBOL(simple_empty);
973 EXPORT_SYMBOL(simple_fill_super);
974 EXPORT_SYMBOL(simple_getattr);
975 EXPORT_SYMBOL(simple_link);
976 EXPORT_SYMBOL(simple_lookup);
977 EXPORT_SYMBOL(simple_pin_fs);
978 EXPORT_SYMBOL(simple_readpage);
979 EXPORT_SYMBOL(simple_release_fs);
980 EXPORT_SYMBOL(simple_rename);
981 EXPORT_SYMBOL(simple_rmdir);
982 EXPORT_SYMBOL(simple_statfs);
983 EXPORT_SYMBOL(noop_fsync);
984 EXPORT_SYMBOL(simple_unlink);
985 EXPORT_SYMBOL(simple_read_from_buffer);
986 EXPORT_SYMBOL(simple_write_to_buffer);
987 EXPORT_SYMBOL(memory_read_from_buffer);
988 EXPORT_SYMBOL(simple_transaction_set);
989 EXPORT_SYMBOL(simple_transaction_get);
990 EXPORT_SYMBOL(simple_transaction_read);
991 EXPORT_SYMBOL(simple_transaction_release);
992 EXPORT_SYMBOL_GPL(simple_attr_open);
993 EXPORT_SYMBOL_GPL(simple_attr_release);
994 EXPORT_SYMBOL_GPL(simple_attr_read);
995 EXPORT_SYMBOL_GPL(simple_attr_write);
996