1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/pagemap.h> 8 #include <linux/slab.h> 9 #include <linux/mount.h> 10 #include <linux/vfs.h> 11 #include <linux/quotaops.h> 12 #include <linux/mutex.h> 13 #include <linux/exportfs.h> 14 #include <linux/writeback.h> 15 #include <linux/buffer_head.h> 16 17 #include <asm/uaccess.h> 18 19 static inline int simple_positive(struct dentry *dentry) 20 { 21 return dentry->d_inode && !d_unhashed(dentry); 22 } 23 24 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 25 struct kstat *stat) 26 { 27 struct inode *inode = dentry->d_inode; 28 generic_fillattr(inode, stat); 29 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 30 return 0; 31 } 32 33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 34 { 35 buf->f_type = dentry->d_sb->s_magic; 36 buf->f_bsize = PAGE_CACHE_SIZE; 37 buf->f_namelen = NAME_MAX; 38 return 0; 39 } 40 41 /* 42 * Retaining negative dentries for an in-memory filesystem just wastes 43 * memory and lookup time: arrange for them to be deleted immediately. 44 */ 45 static int simple_delete_dentry(const struct dentry *dentry) 46 { 47 return 1; 48 } 49 50 /* 51 * Lookup the data. This is trivial - if the dentry didn't already 52 * exist, we know it is negative. Set d_op to delete negative dentries. 53 */ 54 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 55 { 56 static const struct dentry_operations simple_dentry_operations = { 57 .d_delete = simple_delete_dentry, 58 }; 59 60 if (dentry->d_name.len > NAME_MAX) 61 return ERR_PTR(-ENAMETOOLONG); 62 d_set_d_op(dentry, &simple_dentry_operations); 63 d_add(dentry, NULL); 64 return NULL; 65 } 66 67 int dcache_dir_open(struct inode *inode, struct file *file) 68 { 69 static struct qstr cursor_name = {.len = 1, .name = "."}; 70 71 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 72 73 return file->private_data ? 0 : -ENOMEM; 74 } 75 76 int dcache_dir_close(struct inode *inode, struct file *file) 77 { 78 dput(file->private_data); 79 return 0; 80 } 81 82 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin) 83 { 84 struct dentry *dentry = file->f_path.dentry; 85 mutex_lock(&dentry->d_inode->i_mutex); 86 switch (origin) { 87 case 1: 88 offset += file->f_pos; 89 case 0: 90 if (offset >= 0) 91 break; 92 default: 93 mutex_unlock(&dentry->d_inode->i_mutex); 94 return -EINVAL; 95 } 96 if (offset != file->f_pos) { 97 file->f_pos = offset; 98 if (file->f_pos >= 2) { 99 struct list_head *p; 100 struct dentry *cursor = file->private_data; 101 loff_t n = file->f_pos - 2; 102 103 spin_lock(&dentry->d_lock); 104 /* d_lock not required for cursor */ 105 list_del(&cursor->d_u.d_child); 106 p = dentry->d_subdirs.next; 107 while (n && p != &dentry->d_subdirs) { 108 struct dentry *next; 109 next = list_entry(p, struct dentry, d_u.d_child); 110 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 111 if (simple_positive(next)) 112 n--; 113 spin_unlock(&next->d_lock); 114 p = p->next; 115 } 116 list_add_tail(&cursor->d_u.d_child, p); 117 spin_unlock(&dentry->d_lock); 118 } 119 } 120 mutex_unlock(&dentry->d_inode->i_mutex); 121 return offset; 122 } 123 124 /* Relationship between i_mode and the DT_xxx types */ 125 static inline unsigned char dt_type(struct inode *inode) 126 { 127 return (inode->i_mode >> 12) & 15; 128 } 129 130 /* 131 * Directory is locked and all positive dentries in it are safe, since 132 * for ramfs-type trees they can't go away without unlink() or rmdir(), 133 * both impossible due to the lock on directory. 134 */ 135 136 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir) 137 { 138 struct dentry *dentry = filp->f_path.dentry; 139 struct dentry *cursor = filp->private_data; 140 struct list_head *p, *q = &cursor->d_u.d_child; 141 ino_t ino; 142 int i = filp->f_pos; 143 144 switch (i) { 145 case 0: 146 ino = dentry->d_inode->i_ino; 147 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 148 break; 149 filp->f_pos++; 150 i++; 151 /* fallthrough */ 152 case 1: 153 ino = parent_ino(dentry); 154 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 155 break; 156 filp->f_pos++; 157 i++; 158 /* fallthrough */ 159 default: 160 spin_lock(&dentry->d_lock); 161 if (filp->f_pos == 2) 162 list_move(q, &dentry->d_subdirs); 163 164 for (p=q->next; p != &dentry->d_subdirs; p=p->next) { 165 struct dentry *next; 166 next = list_entry(p, struct dentry, d_u.d_child); 167 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 168 if (!simple_positive(next)) { 169 spin_unlock(&next->d_lock); 170 continue; 171 } 172 173 spin_unlock(&next->d_lock); 174 spin_unlock(&dentry->d_lock); 175 if (filldir(dirent, next->d_name.name, 176 next->d_name.len, filp->f_pos, 177 next->d_inode->i_ino, 178 dt_type(next->d_inode)) < 0) 179 return 0; 180 spin_lock(&dentry->d_lock); 181 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 182 /* next is still alive */ 183 list_move(q, p); 184 spin_unlock(&next->d_lock); 185 p = q; 186 filp->f_pos++; 187 } 188 spin_unlock(&dentry->d_lock); 189 } 190 return 0; 191 } 192 193 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 194 { 195 return -EISDIR; 196 } 197 198 const struct file_operations simple_dir_operations = { 199 .open = dcache_dir_open, 200 .release = dcache_dir_close, 201 .llseek = dcache_dir_lseek, 202 .read = generic_read_dir, 203 .readdir = dcache_readdir, 204 .fsync = noop_fsync, 205 }; 206 207 const struct inode_operations simple_dir_inode_operations = { 208 .lookup = simple_lookup, 209 }; 210 211 static const struct super_operations simple_super_operations = { 212 .statfs = simple_statfs, 213 }; 214 215 /* 216 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 217 * will never be mountable) 218 */ 219 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name, 220 const struct super_operations *ops, unsigned long magic) 221 { 222 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 223 struct dentry *dentry; 224 struct inode *root; 225 struct qstr d_name = {.name = name, .len = strlen(name)}; 226 227 if (IS_ERR(s)) 228 return ERR_CAST(s); 229 230 s->s_flags = MS_NOUSER; 231 s->s_maxbytes = MAX_LFS_FILESIZE; 232 s->s_blocksize = PAGE_SIZE; 233 s->s_blocksize_bits = PAGE_SHIFT; 234 s->s_magic = magic; 235 s->s_op = ops ? ops : &simple_super_operations; 236 s->s_time_gran = 1; 237 root = new_inode(s); 238 if (!root) 239 goto Enomem; 240 /* 241 * since this is the first inode, make it number 1. New inodes created 242 * after this must take care not to collide with it (by passing 243 * max_reserved of 1 to iunique). 244 */ 245 root->i_ino = 1; 246 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 247 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 248 dentry = d_alloc(NULL, &d_name); 249 if (!dentry) { 250 iput(root); 251 goto Enomem; 252 } 253 dentry->d_sb = s; 254 dentry->d_parent = dentry; 255 d_instantiate(dentry, root); 256 s->s_root = dentry; 257 s->s_flags |= MS_ACTIVE; 258 return dget(s->s_root); 259 260 Enomem: 261 deactivate_locked_super(s); 262 return ERR_PTR(-ENOMEM); 263 } 264 265 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 266 { 267 struct inode *inode = old_dentry->d_inode; 268 269 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 270 inc_nlink(inode); 271 ihold(inode); 272 dget(dentry); 273 d_instantiate(dentry, inode); 274 return 0; 275 } 276 277 int simple_empty(struct dentry *dentry) 278 { 279 struct dentry *child; 280 int ret = 0; 281 282 spin_lock(&dentry->d_lock); 283 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) { 284 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 285 if (simple_positive(child)) { 286 spin_unlock(&child->d_lock); 287 goto out; 288 } 289 spin_unlock(&child->d_lock); 290 } 291 ret = 1; 292 out: 293 spin_unlock(&dentry->d_lock); 294 return ret; 295 } 296 297 int simple_unlink(struct inode *dir, struct dentry *dentry) 298 { 299 struct inode *inode = dentry->d_inode; 300 301 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 302 drop_nlink(inode); 303 dput(dentry); 304 return 0; 305 } 306 307 int simple_rmdir(struct inode *dir, struct dentry *dentry) 308 { 309 if (!simple_empty(dentry)) 310 return -ENOTEMPTY; 311 312 drop_nlink(dentry->d_inode); 313 simple_unlink(dir, dentry); 314 drop_nlink(dir); 315 return 0; 316 } 317 318 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 319 struct inode *new_dir, struct dentry *new_dentry) 320 { 321 struct inode *inode = old_dentry->d_inode; 322 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode); 323 324 if (!simple_empty(new_dentry)) 325 return -ENOTEMPTY; 326 327 if (new_dentry->d_inode) { 328 simple_unlink(new_dir, new_dentry); 329 if (they_are_dirs) 330 drop_nlink(old_dir); 331 } else if (they_are_dirs) { 332 drop_nlink(old_dir); 333 inc_nlink(new_dir); 334 } 335 336 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 337 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 338 339 return 0; 340 } 341 342 /** 343 * simple_setattr - setattr for simple filesystem 344 * @dentry: dentry 345 * @iattr: iattr structure 346 * 347 * Returns 0 on success, -error on failure. 348 * 349 * simple_setattr is a simple ->setattr implementation without a proper 350 * implementation of size changes. 351 * 352 * It can either be used for in-memory filesystems or special files 353 * on simple regular filesystems. Anything that needs to change on-disk 354 * or wire state on size changes needs its own setattr method. 355 */ 356 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 357 { 358 struct inode *inode = dentry->d_inode; 359 int error; 360 361 WARN_ON_ONCE(inode->i_op->truncate); 362 363 error = inode_change_ok(inode, iattr); 364 if (error) 365 return error; 366 367 if (iattr->ia_valid & ATTR_SIZE) 368 truncate_setsize(inode, iattr->ia_size); 369 setattr_copy(inode, iattr); 370 mark_inode_dirty(inode); 371 return 0; 372 } 373 EXPORT_SYMBOL(simple_setattr); 374 375 int simple_readpage(struct file *file, struct page *page) 376 { 377 clear_highpage(page); 378 flush_dcache_page(page); 379 SetPageUptodate(page); 380 unlock_page(page); 381 return 0; 382 } 383 384 int simple_write_begin(struct file *file, struct address_space *mapping, 385 loff_t pos, unsigned len, unsigned flags, 386 struct page **pagep, void **fsdata) 387 { 388 struct page *page; 389 pgoff_t index; 390 391 index = pos >> PAGE_CACHE_SHIFT; 392 393 page = grab_cache_page_write_begin(mapping, index, flags); 394 if (!page) 395 return -ENOMEM; 396 397 *pagep = page; 398 399 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) { 400 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 401 402 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE); 403 } 404 return 0; 405 } 406 407 /** 408 * simple_write_end - .write_end helper for non-block-device FSes 409 * @available: See .write_end of address_space_operations 410 * @file: " 411 * @mapping: " 412 * @pos: " 413 * @len: " 414 * @copied: " 415 * @page: " 416 * @fsdata: " 417 * 418 * simple_write_end does the minimum needed for updating a page after writing is 419 * done. It has the same API signature as the .write_end of 420 * address_space_operations vector. So it can just be set onto .write_end for 421 * FSes that don't need any other processing. i_mutex is assumed to be held. 422 * Block based filesystems should use generic_write_end(). 423 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 424 * is not called, so a filesystem that actually does store data in .write_inode 425 * should extend on what's done here with a call to mark_inode_dirty() in the 426 * case that i_size has changed. 427 */ 428 int simple_write_end(struct file *file, struct address_space *mapping, 429 loff_t pos, unsigned len, unsigned copied, 430 struct page *page, void *fsdata) 431 { 432 struct inode *inode = page->mapping->host; 433 loff_t last_pos = pos + copied; 434 435 /* zero the stale part of the page if we did a short copy */ 436 if (copied < len) { 437 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 438 439 zero_user(page, from + copied, len - copied); 440 } 441 442 if (!PageUptodate(page)) 443 SetPageUptodate(page); 444 /* 445 * No need to use i_size_read() here, the i_size 446 * cannot change under us because we hold the i_mutex. 447 */ 448 if (last_pos > inode->i_size) 449 i_size_write(inode, last_pos); 450 451 set_page_dirty(page); 452 unlock_page(page); 453 page_cache_release(page); 454 455 return copied; 456 } 457 458 /* 459 * the inodes created here are not hashed. If you use iunique to generate 460 * unique inode values later for this filesystem, then you must take care 461 * to pass it an appropriate max_reserved value to avoid collisions. 462 */ 463 int simple_fill_super(struct super_block *s, unsigned long magic, 464 struct tree_descr *files) 465 { 466 struct inode *inode; 467 struct dentry *root; 468 struct dentry *dentry; 469 int i; 470 471 s->s_blocksize = PAGE_CACHE_SIZE; 472 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 473 s->s_magic = magic; 474 s->s_op = &simple_super_operations; 475 s->s_time_gran = 1; 476 477 inode = new_inode(s); 478 if (!inode) 479 return -ENOMEM; 480 /* 481 * because the root inode is 1, the files array must not contain an 482 * entry at index 1 483 */ 484 inode->i_ino = 1; 485 inode->i_mode = S_IFDIR | 0755; 486 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 487 inode->i_op = &simple_dir_inode_operations; 488 inode->i_fop = &simple_dir_operations; 489 inode->i_nlink = 2; 490 root = d_alloc_root(inode); 491 if (!root) { 492 iput(inode); 493 return -ENOMEM; 494 } 495 for (i = 0; !files->name || files->name[0]; i++, files++) { 496 if (!files->name) 497 continue; 498 499 /* warn if it tries to conflict with the root inode */ 500 if (unlikely(i == 1)) 501 printk(KERN_WARNING "%s: %s passed in a files array" 502 "with an index of 1!\n", __func__, 503 s->s_type->name); 504 505 dentry = d_alloc_name(root, files->name); 506 if (!dentry) 507 goto out; 508 inode = new_inode(s); 509 if (!inode) 510 goto out; 511 inode->i_mode = S_IFREG | files->mode; 512 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 513 inode->i_fop = files->ops; 514 inode->i_ino = i; 515 d_add(dentry, inode); 516 } 517 s->s_root = root; 518 return 0; 519 out: 520 d_genocide(root); 521 dput(root); 522 return -ENOMEM; 523 } 524 525 static DEFINE_SPINLOCK(pin_fs_lock); 526 527 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 528 { 529 struct vfsmount *mnt = NULL; 530 spin_lock(&pin_fs_lock); 531 if (unlikely(!*mount)) { 532 spin_unlock(&pin_fs_lock); 533 mnt = vfs_kern_mount(type, 0, type->name, NULL); 534 if (IS_ERR(mnt)) 535 return PTR_ERR(mnt); 536 spin_lock(&pin_fs_lock); 537 if (!*mount) 538 *mount = mnt; 539 } 540 mntget(*mount); 541 ++*count; 542 spin_unlock(&pin_fs_lock); 543 mntput(mnt); 544 return 0; 545 } 546 547 void simple_release_fs(struct vfsmount **mount, int *count) 548 { 549 struct vfsmount *mnt; 550 spin_lock(&pin_fs_lock); 551 mnt = *mount; 552 if (!--*count) 553 *mount = NULL; 554 spin_unlock(&pin_fs_lock); 555 mntput(mnt); 556 } 557 558 /** 559 * simple_read_from_buffer - copy data from the buffer to user space 560 * @to: the user space buffer to read to 561 * @count: the maximum number of bytes to read 562 * @ppos: the current position in the buffer 563 * @from: the buffer to read from 564 * @available: the size of the buffer 565 * 566 * The simple_read_from_buffer() function reads up to @count bytes from the 567 * buffer @from at offset @ppos into the user space address starting at @to. 568 * 569 * On success, the number of bytes read is returned and the offset @ppos is 570 * advanced by this number, or negative value is returned on error. 571 **/ 572 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 573 const void *from, size_t available) 574 { 575 loff_t pos = *ppos; 576 size_t ret; 577 578 if (pos < 0) 579 return -EINVAL; 580 if (pos >= available || !count) 581 return 0; 582 if (count > available - pos) 583 count = available - pos; 584 ret = copy_to_user(to, from + pos, count); 585 if (ret == count) 586 return -EFAULT; 587 count -= ret; 588 *ppos = pos + count; 589 return count; 590 } 591 592 /** 593 * simple_write_to_buffer - copy data from user space to the buffer 594 * @to: the buffer to write to 595 * @available: the size of the buffer 596 * @ppos: the current position in the buffer 597 * @from: the user space buffer to read from 598 * @count: the maximum number of bytes to read 599 * 600 * The simple_write_to_buffer() function reads up to @count bytes from the user 601 * space address starting at @from into the buffer @to at offset @ppos. 602 * 603 * On success, the number of bytes written is returned and the offset @ppos is 604 * advanced by this number, or negative value is returned on error. 605 **/ 606 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 607 const void __user *from, size_t count) 608 { 609 loff_t pos = *ppos; 610 size_t res; 611 612 if (pos < 0) 613 return -EINVAL; 614 if (pos >= available || !count) 615 return 0; 616 if (count > available - pos) 617 count = available - pos; 618 res = copy_from_user(to + pos, from, count); 619 if (res == count) 620 return -EFAULT; 621 count -= res; 622 *ppos = pos + count; 623 return count; 624 } 625 626 /** 627 * memory_read_from_buffer - copy data from the buffer 628 * @to: the kernel space buffer to read to 629 * @count: the maximum number of bytes to read 630 * @ppos: the current position in the buffer 631 * @from: the buffer to read from 632 * @available: the size of the buffer 633 * 634 * The memory_read_from_buffer() function reads up to @count bytes from the 635 * buffer @from at offset @ppos into the kernel space address starting at @to. 636 * 637 * On success, the number of bytes read is returned and the offset @ppos is 638 * advanced by this number, or negative value is returned on error. 639 **/ 640 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 641 const void *from, size_t available) 642 { 643 loff_t pos = *ppos; 644 645 if (pos < 0) 646 return -EINVAL; 647 if (pos >= available) 648 return 0; 649 if (count > available - pos) 650 count = available - pos; 651 memcpy(to, from + pos, count); 652 *ppos = pos + count; 653 654 return count; 655 } 656 657 /* 658 * Transaction based IO. 659 * The file expects a single write which triggers the transaction, and then 660 * possibly a read which collects the result - which is stored in a 661 * file-local buffer. 662 */ 663 664 void simple_transaction_set(struct file *file, size_t n) 665 { 666 struct simple_transaction_argresp *ar = file->private_data; 667 668 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 669 670 /* 671 * The barrier ensures that ar->size will really remain zero until 672 * ar->data is ready for reading. 673 */ 674 smp_mb(); 675 ar->size = n; 676 } 677 678 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 679 { 680 struct simple_transaction_argresp *ar; 681 static DEFINE_SPINLOCK(simple_transaction_lock); 682 683 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 684 return ERR_PTR(-EFBIG); 685 686 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 687 if (!ar) 688 return ERR_PTR(-ENOMEM); 689 690 spin_lock(&simple_transaction_lock); 691 692 /* only one write allowed per open */ 693 if (file->private_data) { 694 spin_unlock(&simple_transaction_lock); 695 free_page((unsigned long)ar); 696 return ERR_PTR(-EBUSY); 697 } 698 699 file->private_data = ar; 700 701 spin_unlock(&simple_transaction_lock); 702 703 if (copy_from_user(ar->data, buf, size)) 704 return ERR_PTR(-EFAULT); 705 706 return ar->data; 707 } 708 709 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 710 { 711 struct simple_transaction_argresp *ar = file->private_data; 712 713 if (!ar) 714 return 0; 715 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 716 } 717 718 int simple_transaction_release(struct inode *inode, struct file *file) 719 { 720 free_page((unsigned long)file->private_data); 721 return 0; 722 } 723 724 /* Simple attribute files */ 725 726 struct simple_attr { 727 int (*get)(void *, u64 *); 728 int (*set)(void *, u64); 729 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 730 char set_buf[24]; 731 void *data; 732 const char *fmt; /* format for read operation */ 733 struct mutex mutex; /* protects access to these buffers */ 734 }; 735 736 /* simple_attr_open is called by an actual attribute open file operation 737 * to set the attribute specific access operations. */ 738 int simple_attr_open(struct inode *inode, struct file *file, 739 int (*get)(void *, u64 *), int (*set)(void *, u64), 740 const char *fmt) 741 { 742 struct simple_attr *attr; 743 744 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 745 if (!attr) 746 return -ENOMEM; 747 748 attr->get = get; 749 attr->set = set; 750 attr->data = inode->i_private; 751 attr->fmt = fmt; 752 mutex_init(&attr->mutex); 753 754 file->private_data = attr; 755 756 return nonseekable_open(inode, file); 757 } 758 759 int simple_attr_release(struct inode *inode, struct file *file) 760 { 761 kfree(file->private_data); 762 return 0; 763 } 764 765 /* read from the buffer that is filled with the get function */ 766 ssize_t simple_attr_read(struct file *file, char __user *buf, 767 size_t len, loff_t *ppos) 768 { 769 struct simple_attr *attr; 770 size_t size; 771 ssize_t ret; 772 773 attr = file->private_data; 774 775 if (!attr->get) 776 return -EACCES; 777 778 ret = mutex_lock_interruptible(&attr->mutex); 779 if (ret) 780 return ret; 781 782 if (*ppos) { /* continued read */ 783 size = strlen(attr->get_buf); 784 } else { /* first read */ 785 u64 val; 786 ret = attr->get(attr->data, &val); 787 if (ret) 788 goto out; 789 790 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 791 attr->fmt, (unsigned long long)val); 792 } 793 794 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 795 out: 796 mutex_unlock(&attr->mutex); 797 return ret; 798 } 799 800 /* interpret the buffer as a number to call the set function with */ 801 ssize_t simple_attr_write(struct file *file, const char __user *buf, 802 size_t len, loff_t *ppos) 803 { 804 struct simple_attr *attr; 805 u64 val; 806 size_t size; 807 ssize_t ret; 808 809 attr = file->private_data; 810 if (!attr->set) 811 return -EACCES; 812 813 ret = mutex_lock_interruptible(&attr->mutex); 814 if (ret) 815 return ret; 816 817 ret = -EFAULT; 818 size = min(sizeof(attr->set_buf) - 1, len); 819 if (copy_from_user(attr->set_buf, buf, size)) 820 goto out; 821 822 attr->set_buf[size] = '\0'; 823 val = simple_strtol(attr->set_buf, NULL, 0); 824 ret = attr->set(attr->data, val); 825 if (ret == 0) 826 ret = len; /* on success, claim we got the whole input */ 827 out: 828 mutex_unlock(&attr->mutex); 829 return ret; 830 } 831 832 /** 833 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 834 * @sb: filesystem to do the file handle conversion on 835 * @fid: file handle to convert 836 * @fh_len: length of the file handle in bytes 837 * @fh_type: type of file handle 838 * @get_inode: filesystem callback to retrieve inode 839 * 840 * This function decodes @fid as long as it has one of the well-known 841 * Linux filehandle types and calls @get_inode on it to retrieve the 842 * inode for the object specified in the file handle. 843 */ 844 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 845 int fh_len, int fh_type, struct inode *(*get_inode) 846 (struct super_block *sb, u64 ino, u32 gen)) 847 { 848 struct inode *inode = NULL; 849 850 if (fh_len < 2) 851 return NULL; 852 853 switch (fh_type) { 854 case FILEID_INO32_GEN: 855 case FILEID_INO32_GEN_PARENT: 856 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 857 break; 858 } 859 860 return d_obtain_alias(inode); 861 } 862 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 863 864 /** 865 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation 866 * @sb: filesystem to do the file handle conversion on 867 * @fid: file handle to convert 868 * @fh_len: length of the file handle in bytes 869 * @fh_type: type of file handle 870 * @get_inode: filesystem callback to retrieve inode 871 * 872 * This function decodes @fid as long as it has one of the well-known 873 * Linux filehandle types and calls @get_inode on it to retrieve the 874 * inode for the _parent_ object specified in the file handle if it 875 * is specified in the file handle, or NULL otherwise. 876 */ 877 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 878 int fh_len, int fh_type, struct inode *(*get_inode) 879 (struct super_block *sb, u64 ino, u32 gen)) 880 { 881 struct inode *inode = NULL; 882 883 if (fh_len <= 2) 884 return NULL; 885 886 switch (fh_type) { 887 case FILEID_INO32_GEN_PARENT: 888 inode = get_inode(sb, fid->i32.parent_ino, 889 (fh_len > 3 ? fid->i32.parent_gen : 0)); 890 break; 891 } 892 893 return d_obtain_alias(inode); 894 } 895 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 896 897 /** 898 * generic_file_fsync - generic fsync implementation for simple filesystems 899 * @file: file to synchronize 900 * @datasync: only synchronize essential metadata if true 901 * 902 * This is a generic implementation of the fsync method for simple 903 * filesystems which track all non-inode metadata in the buffers list 904 * hanging off the address_space structure. 905 */ 906 int generic_file_fsync(struct file *file, int datasync) 907 { 908 struct inode *inode = file->f_mapping->host; 909 int err; 910 int ret; 911 912 ret = sync_mapping_buffers(inode->i_mapping); 913 if (!(inode->i_state & I_DIRTY)) 914 return ret; 915 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 916 return ret; 917 918 err = sync_inode_metadata(inode, 1); 919 if (ret == 0) 920 ret = err; 921 return ret; 922 } 923 EXPORT_SYMBOL(generic_file_fsync); 924 925 /** 926 * generic_check_addressable - Check addressability of file system 927 * @blocksize_bits: log of file system block size 928 * @num_blocks: number of blocks in file system 929 * 930 * Determine whether a file system with @num_blocks blocks (and a 931 * block size of 2**@blocksize_bits) is addressable by the sector_t 932 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 933 */ 934 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 935 { 936 u64 last_fs_block = num_blocks - 1; 937 u64 last_fs_page = 938 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits); 939 940 if (unlikely(num_blocks == 0)) 941 return 0; 942 943 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT)) 944 return -EINVAL; 945 946 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 947 (last_fs_page > (pgoff_t)(~0ULL))) { 948 return -EFBIG; 949 } 950 return 0; 951 } 952 EXPORT_SYMBOL(generic_check_addressable); 953 954 /* 955 * No-op implementation of ->fsync for in-memory filesystems. 956 */ 957 int noop_fsync(struct file *file, int datasync) 958 { 959 return 0; 960 } 961 962 EXPORT_SYMBOL(dcache_dir_close); 963 EXPORT_SYMBOL(dcache_dir_lseek); 964 EXPORT_SYMBOL(dcache_dir_open); 965 EXPORT_SYMBOL(dcache_readdir); 966 EXPORT_SYMBOL(generic_read_dir); 967 EXPORT_SYMBOL(mount_pseudo); 968 EXPORT_SYMBOL(simple_write_begin); 969 EXPORT_SYMBOL(simple_write_end); 970 EXPORT_SYMBOL(simple_dir_inode_operations); 971 EXPORT_SYMBOL(simple_dir_operations); 972 EXPORT_SYMBOL(simple_empty); 973 EXPORT_SYMBOL(simple_fill_super); 974 EXPORT_SYMBOL(simple_getattr); 975 EXPORT_SYMBOL(simple_link); 976 EXPORT_SYMBOL(simple_lookup); 977 EXPORT_SYMBOL(simple_pin_fs); 978 EXPORT_SYMBOL(simple_readpage); 979 EXPORT_SYMBOL(simple_release_fs); 980 EXPORT_SYMBOL(simple_rename); 981 EXPORT_SYMBOL(simple_rmdir); 982 EXPORT_SYMBOL(simple_statfs); 983 EXPORT_SYMBOL(noop_fsync); 984 EXPORT_SYMBOL(simple_unlink); 985 EXPORT_SYMBOL(simple_read_from_buffer); 986 EXPORT_SYMBOL(simple_write_to_buffer); 987 EXPORT_SYMBOL(memory_read_from_buffer); 988 EXPORT_SYMBOL(simple_transaction_set); 989 EXPORT_SYMBOL(simple_transaction_get); 990 EXPORT_SYMBOL(simple_transaction_read); 991 EXPORT_SYMBOL(simple_transaction_release); 992 EXPORT_SYMBOL_GPL(simple_attr_open); 993 EXPORT_SYMBOL_GPL(simple_attr_release); 994 EXPORT_SYMBOL_GPL(simple_attr_read); 995 EXPORT_SYMBOL_GPL(simple_attr_write); 996