1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 #include <linux/pidfs.h> 27 28 #include <linux/uaccess.h> 29 30 #include "internal.h" 31 32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 33 struct kstat *stat, u32 request_mask, 34 unsigned int query_flags) 35 { 36 struct inode *inode = d_inode(path->dentry); 37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 39 return 0; 40 } 41 EXPORT_SYMBOL(simple_getattr); 42 43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 44 { 45 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 46 47 buf->f_fsid = u64_to_fsid(id); 48 buf->f_type = dentry->d_sb->s_magic; 49 buf->f_bsize = PAGE_SIZE; 50 buf->f_namelen = NAME_MAX; 51 return 0; 52 } 53 EXPORT_SYMBOL(simple_statfs); 54 55 /* 56 * Retaining negative dentries for an in-memory filesystem just wastes 57 * memory and lookup time: arrange for them to be deleted immediately. 58 */ 59 int always_delete_dentry(const struct dentry *dentry) 60 { 61 return 1; 62 } 63 EXPORT_SYMBOL(always_delete_dentry); 64 65 const struct dentry_operations simple_dentry_operations = { 66 .d_delete = always_delete_dentry, 67 }; 68 EXPORT_SYMBOL(simple_dentry_operations); 69 70 /* 71 * Lookup the data. This is trivial - if the dentry didn't already 72 * exist, we know it is negative. Set d_op to delete negative dentries. 73 */ 74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 75 { 76 if (dentry->d_name.len > NAME_MAX) 77 return ERR_PTR(-ENAMETOOLONG); 78 if (!dentry->d_sb->s_d_op) 79 d_set_d_op(dentry, &simple_dentry_operations); 80 d_add(dentry, NULL); 81 return NULL; 82 } 83 EXPORT_SYMBOL(simple_lookup); 84 85 int dcache_dir_open(struct inode *inode, struct file *file) 86 { 87 file->private_data = d_alloc_cursor(file->f_path.dentry); 88 89 return file->private_data ? 0 : -ENOMEM; 90 } 91 EXPORT_SYMBOL(dcache_dir_open); 92 93 int dcache_dir_close(struct inode *inode, struct file *file) 94 { 95 dput(file->private_data); 96 return 0; 97 } 98 EXPORT_SYMBOL(dcache_dir_close); 99 100 /* parent is locked at least shared */ 101 /* 102 * Returns an element of siblings' list. 103 * We are looking for <count>th positive after <p>; if 104 * found, dentry is grabbed and returned to caller. 105 * If no such element exists, NULL is returned. 106 */ 107 static struct dentry *scan_positives(struct dentry *cursor, 108 struct hlist_node **p, 109 loff_t count, 110 struct dentry *last) 111 { 112 struct dentry *dentry = cursor->d_parent, *found = NULL; 113 114 spin_lock(&dentry->d_lock); 115 while (*p) { 116 struct dentry *d = hlist_entry(*p, struct dentry, d_sib); 117 p = &d->d_sib.next; 118 // we must at least skip cursors, to avoid livelocks 119 if (d->d_flags & DCACHE_DENTRY_CURSOR) 120 continue; 121 if (simple_positive(d) && !--count) { 122 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 123 if (simple_positive(d)) 124 found = dget_dlock(d); 125 spin_unlock(&d->d_lock); 126 if (likely(found)) 127 break; 128 count = 1; 129 } 130 if (need_resched()) { 131 if (!hlist_unhashed(&cursor->d_sib)) 132 __hlist_del(&cursor->d_sib); 133 hlist_add_behind(&cursor->d_sib, &d->d_sib); 134 p = &cursor->d_sib.next; 135 spin_unlock(&dentry->d_lock); 136 cond_resched(); 137 spin_lock(&dentry->d_lock); 138 } 139 } 140 spin_unlock(&dentry->d_lock); 141 dput(last); 142 return found; 143 } 144 145 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 146 { 147 struct dentry *dentry = file->f_path.dentry; 148 switch (whence) { 149 case 1: 150 offset += file->f_pos; 151 fallthrough; 152 case 0: 153 if (offset >= 0) 154 break; 155 fallthrough; 156 default: 157 return -EINVAL; 158 } 159 if (offset != file->f_pos) { 160 struct dentry *cursor = file->private_data; 161 struct dentry *to = NULL; 162 163 inode_lock_shared(dentry->d_inode); 164 165 if (offset > 2) 166 to = scan_positives(cursor, &dentry->d_children.first, 167 offset - 2, NULL); 168 spin_lock(&dentry->d_lock); 169 hlist_del_init(&cursor->d_sib); 170 if (to) 171 hlist_add_behind(&cursor->d_sib, &to->d_sib); 172 spin_unlock(&dentry->d_lock); 173 dput(to); 174 175 file->f_pos = offset; 176 177 inode_unlock_shared(dentry->d_inode); 178 } 179 return offset; 180 } 181 EXPORT_SYMBOL(dcache_dir_lseek); 182 183 /* 184 * Directory is locked and all positive dentries in it are safe, since 185 * for ramfs-type trees they can't go away without unlink() or rmdir(), 186 * both impossible due to the lock on directory. 187 */ 188 189 int dcache_readdir(struct file *file, struct dir_context *ctx) 190 { 191 struct dentry *dentry = file->f_path.dentry; 192 struct dentry *cursor = file->private_data; 193 struct dentry *next = NULL; 194 struct hlist_node **p; 195 196 if (!dir_emit_dots(file, ctx)) 197 return 0; 198 199 if (ctx->pos == 2) 200 p = &dentry->d_children.first; 201 else 202 p = &cursor->d_sib.next; 203 204 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 205 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 206 d_inode(next)->i_ino, 207 fs_umode_to_dtype(d_inode(next)->i_mode))) 208 break; 209 ctx->pos++; 210 p = &next->d_sib.next; 211 } 212 spin_lock(&dentry->d_lock); 213 hlist_del_init(&cursor->d_sib); 214 if (next) 215 hlist_add_before(&cursor->d_sib, &next->d_sib); 216 spin_unlock(&dentry->d_lock); 217 dput(next); 218 219 return 0; 220 } 221 EXPORT_SYMBOL(dcache_readdir); 222 223 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 224 { 225 return -EISDIR; 226 } 227 EXPORT_SYMBOL(generic_read_dir); 228 229 const struct file_operations simple_dir_operations = { 230 .open = dcache_dir_open, 231 .release = dcache_dir_close, 232 .llseek = dcache_dir_lseek, 233 .read = generic_read_dir, 234 .iterate_shared = dcache_readdir, 235 .fsync = noop_fsync, 236 }; 237 EXPORT_SYMBOL(simple_dir_operations); 238 239 const struct inode_operations simple_dir_inode_operations = { 240 .lookup = simple_lookup, 241 }; 242 EXPORT_SYMBOL(simple_dir_inode_operations); 243 244 /* 0 is '.', 1 is '..', so always start with offset 2 or more */ 245 enum { 246 DIR_OFFSET_MIN = 2, 247 }; 248 249 static void offset_set(struct dentry *dentry, long offset) 250 { 251 dentry->d_fsdata = (void *)offset; 252 } 253 254 static long dentry2offset(struct dentry *dentry) 255 { 256 return (long)dentry->d_fsdata; 257 } 258 259 static struct lock_class_key simple_offset_lock_class; 260 261 /** 262 * simple_offset_init - initialize an offset_ctx 263 * @octx: directory offset map to be initialized 264 * 265 */ 266 void simple_offset_init(struct offset_ctx *octx) 267 { 268 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE); 269 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class); 270 octx->next_offset = DIR_OFFSET_MIN; 271 } 272 273 /** 274 * simple_offset_add - Add an entry to a directory's offset map 275 * @octx: directory offset ctx to be updated 276 * @dentry: new dentry being added 277 * 278 * Returns zero on success. @octx and the dentry's offset are updated. 279 * Otherwise, a negative errno value is returned. 280 */ 281 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 282 { 283 unsigned long offset; 284 int ret; 285 286 if (dentry2offset(dentry) != 0) 287 return -EBUSY; 288 289 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN, 290 LONG_MAX, &octx->next_offset, GFP_KERNEL); 291 if (ret < 0) 292 return ret; 293 294 offset_set(dentry, offset); 295 return 0; 296 } 297 298 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry, 299 long offset) 300 { 301 int ret; 302 303 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL); 304 if (ret) 305 return ret; 306 offset_set(dentry, offset); 307 return 0; 308 } 309 310 /** 311 * simple_offset_remove - Remove an entry to a directory's offset map 312 * @octx: directory offset ctx to be updated 313 * @dentry: dentry being removed 314 * 315 */ 316 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 317 { 318 long offset; 319 320 offset = dentry2offset(dentry); 321 if (offset == 0) 322 return; 323 324 mtree_erase(&octx->mt, offset); 325 offset_set(dentry, 0); 326 } 327 328 /** 329 * simple_offset_empty - Check if a dentry can be unlinked 330 * @dentry: dentry to be tested 331 * 332 * Returns 0 if @dentry is a non-empty directory; otherwise returns 1. 333 */ 334 int simple_offset_empty(struct dentry *dentry) 335 { 336 struct inode *inode = d_inode(dentry); 337 struct offset_ctx *octx; 338 struct dentry *child; 339 unsigned long index; 340 int ret = 1; 341 342 if (!inode || !S_ISDIR(inode->i_mode)) 343 return ret; 344 345 index = DIR_OFFSET_MIN; 346 octx = inode->i_op->get_offset_ctx(inode); 347 mt_for_each(&octx->mt, child, index, LONG_MAX) { 348 spin_lock(&child->d_lock); 349 if (simple_positive(child)) { 350 spin_unlock(&child->d_lock); 351 ret = 0; 352 break; 353 } 354 spin_unlock(&child->d_lock); 355 } 356 357 return ret; 358 } 359 360 /** 361 * simple_offset_rename - handle directory offsets for rename 362 * @old_dir: parent directory of source entry 363 * @old_dentry: dentry of source entry 364 * @new_dir: parent_directory of destination entry 365 * @new_dentry: dentry of destination 366 * 367 * Caller provides appropriate serialization. 368 * 369 * User space expects the directory offset value of the replaced 370 * (new) directory entry to be unchanged after a rename. 371 * 372 * Returns zero on success, a negative errno value on failure. 373 */ 374 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 375 struct inode *new_dir, struct dentry *new_dentry) 376 { 377 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 378 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 379 long new_offset = dentry2offset(new_dentry); 380 381 simple_offset_remove(old_ctx, old_dentry); 382 383 if (new_offset) { 384 offset_set(new_dentry, 0); 385 return simple_offset_replace(new_ctx, old_dentry, new_offset); 386 } 387 return simple_offset_add(new_ctx, old_dentry); 388 } 389 390 /** 391 * simple_offset_rename_exchange - exchange rename with directory offsets 392 * @old_dir: parent of dentry being moved 393 * @old_dentry: dentry being moved 394 * @new_dir: destination parent 395 * @new_dentry: destination dentry 396 * 397 * This API preserves the directory offset values. Caller provides 398 * appropriate serialization. 399 * 400 * Returns zero on success. Otherwise a negative errno is returned and the 401 * rename is rolled back. 402 */ 403 int simple_offset_rename_exchange(struct inode *old_dir, 404 struct dentry *old_dentry, 405 struct inode *new_dir, 406 struct dentry *new_dentry) 407 { 408 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 409 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 410 long old_index = dentry2offset(old_dentry); 411 long new_index = dentry2offset(new_dentry); 412 int ret; 413 414 simple_offset_remove(old_ctx, old_dentry); 415 simple_offset_remove(new_ctx, new_dentry); 416 417 ret = simple_offset_replace(new_ctx, old_dentry, new_index); 418 if (ret) 419 goto out_restore; 420 421 ret = simple_offset_replace(old_ctx, new_dentry, old_index); 422 if (ret) { 423 simple_offset_remove(new_ctx, old_dentry); 424 goto out_restore; 425 } 426 427 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 428 if (ret) { 429 simple_offset_remove(new_ctx, old_dentry); 430 simple_offset_remove(old_ctx, new_dentry); 431 goto out_restore; 432 } 433 return 0; 434 435 out_restore: 436 (void)simple_offset_replace(old_ctx, old_dentry, old_index); 437 (void)simple_offset_replace(new_ctx, new_dentry, new_index); 438 return ret; 439 } 440 441 /** 442 * simple_offset_destroy - Release offset map 443 * @octx: directory offset ctx that is about to be destroyed 444 * 445 * During fs teardown (eg. umount), a directory's offset map might still 446 * contain entries. xa_destroy() cleans out anything that remains. 447 */ 448 void simple_offset_destroy(struct offset_ctx *octx) 449 { 450 mtree_destroy(&octx->mt); 451 } 452 453 static int offset_dir_open(struct inode *inode, struct file *file) 454 { 455 struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode); 456 457 file->private_data = (void *)ctx->next_offset; 458 return 0; 459 } 460 461 /** 462 * offset_dir_llseek - Advance the read position of a directory descriptor 463 * @file: an open directory whose position is to be updated 464 * @offset: a byte offset 465 * @whence: enumerator describing the starting position for this update 466 * 467 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 468 * 469 * Returns the updated read position if successful; otherwise a 470 * negative errno is returned and the read position remains unchanged. 471 */ 472 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 473 { 474 struct inode *inode = file->f_inode; 475 struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode); 476 477 switch (whence) { 478 case SEEK_CUR: 479 offset += file->f_pos; 480 fallthrough; 481 case SEEK_SET: 482 if (offset >= 0) 483 break; 484 fallthrough; 485 default: 486 return -EINVAL; 487 } 488 489 /* In this case, ->private_data is protected by f_pos_lock */ 490 if (!offset) 491 file->private_data = (void *)ctx->next_offset; 492 return vfs_setpos(file, offset, LONG_MAX); 493 } 494 495 static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset) 496 { 497 MA_STATE(mas, &octx->mt, offset, offset); 498 struct dentry *child, *found = NULL; 499 500 rcu_read_lock(); 501 child = mas_find(&mas, LONG_MAX); 502 if (!child) 503 goto out; 504 spin_lock(&child->d_lock); 505 if (simple_positive(child)) 506 found = dget_dlock(child); 507 spin_unlock(&child->d_lock); 508 out: 509 rcu_read_unlock(); 510 return found; 511 } 512 513 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 514 { 515 struct inode *inode = d_inode(dentry); 516 long offset = dentry2offset(dentry); 517 518 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 519 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 520 } 521 522 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx, long last_index) 523 { 524 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode); 525 struct dentry *dentry; 526 527 while (true) { 528 dentry = offset_find_next(octx, ctx->pos); 529 if (!dentry) 530 return; 531 532 if (dentry2offset(dentry) >= last_index) { 533 dput(dentry); 534 return; 535 } 536 537 if (!offset_dir_emit(ctx, dentry)) { 538 dput(dentry); 539 return; 540 } 541 542 ctx->pos = dentry2offset(dentry) + 1; 543 dput(dentry); 544 } 545 } 546 547 /** 548 * offset_readdir - Emit entries starting at offset @ctx->pos 549 * @file: an open directory to iterate over 550 * @ctx: directory iteration context 551 * 552 * Caller must hold @file's i_rwsem to prevent insertion or removal of 553 * entries during this call. 554 * 555 * On entry, @ctx->pos contains an offset that represents the first entry 556 * to be read from the directory. 557 * 558 * The operation continues until there are no more entries to read, or 559 * until the ctx->actor indicates there is no more space in the caller's 560 * output buffer. 561 * 562 * On return, @ctx->pos contains an offset that will read the next entry 563 * in this directory when offset_readdir() is called again with @ctx. 564 * 565 * Return values: 566 * %0 - Complete 567 */ 568 static int offset_readdir(struct file *file, struct dir_context *ctx) 569 { 570 struct dentry *dir = file->f_path.dentry; 571 long last_index = (long)file->private_data; 572 573 lockdep_assert_held(&d_inode(dir)->i_rwsem); 574 575 if (!dir_emit_dots(file, ctx)) 576 return 0; 577 578 offset_iterate_dir(d_inode(dir), ctx, last_index); 579 return 0; 580 } 581 582 const struct file_operations simple_offset_dir_operations = { 583 .open = offset_dir_open, 584 .llseek = offset_dir_llseek, 585 .iterate_shared = offset_readdir, 586 .read = generic_read_dir, 587 .fsync = noop_fsync, 588 }; 589 590 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 591 { 592 struct dentry *child = NULL, *d; 593 594 spin_lock(&parent->d_lock); 595 d = prev ? d_next_sibling(prev) : d_first_child(parent); 596 hlist_for_each_entry_from(d, d_sib) { 597 if (simple_positive(d)) { 598 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 599 if (simple_positive(d)) 600 child = dget_dlock(d); 601 spin_unlock(&d->d_lock); 602 if (likely(child)) 603 break; 604 } 605 } 606 spin_unlock(&parent->d_lock); 607 dput(prev); 608 return child; 609 } 610 611 void simple_recursive_removal(struct dentry *dentry, 612 void (*callback)(struct dentry *)) 613 { 614 struct dentry *this = dget(dentry); 615 while (true) { 616 struct dentry *victim = NULL, *child; 617 struct inode *inode = this->d_inode; 618 619 inode_lock(inode); 620 if (d_is_dir(this)) 621 inode->i_flags |= S_DEAD; 622 while ((child = find_next_child(this, victim)) == NULL) { 623 // kill and ascend 624 // update metadata while it's still locked 625 inode_set_ctime_current(inode); 626 clear_nlink(inode); 627 inode_unlock(inode); 628 victim = this; 629 this = this->d_parent; 630 inode = this->d_inode; 631 inode_lock(inode); 632 if (simple_positive(victim)) { 633 d_invalidate(victim); // avoid lost mounts 634 if (d_is_dir(victim)) 635 fsnotify_rmdir(inode, victim); 636 else 637 fsnotify_unlink(inode, victim); 638 if (callback) 639 callback(victim); 640 dput(victim); // unpin it 641 } 642 if (victim == dentry) { 643 inode_set_mtime_to_ts(inode, 644 inode_set_ctime_current(inode)); 645 if (d_is_dir(dentry)) 646 drop_nlink(inode); 647 inode_unlock(inode); 648 dput(dentry); 649 return; 650 } 651 } 652 inode_unlock(inode); 653 this = child; 654 } 655 } 656 EXPORT_SYMBOL(simple_recursive_removal); 657 658 static const struct super_operations simple_super_operations = { 659 .statfs = simple_statfs, 660 }; 661 662 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 663 { 664 struct pseudo_fs_context *ctx = fc->fs_private; 665 struct inode *root; 666 667 s->s_maxbytes = MAX_LFS_FILESIZE; 668 s->s_blocksize = PAGE_SIZE; 669 s->s_blocksize_bits = PAGE_SHIFT; 670 s->s_magic = ctx->magic; 671 s->s_op = ctx->ops ?: &simple_super_operations; 672 s->s_xattr = ctx->xattr; 673 s->s_time_gran = 1; 674 root = new_inode(s); 675 if (!root) 676 return -ENOMEM; 677 678 /* 679 * since this is the first inode, make it number 1. New inodes created 680 * after this must take care not to collide with it (by passing 681 * max_reserved of 1 to iunique). 682 */ 683 root->i_ino = 1; 684 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 685 simple_inode_init_ts(root); 686 s->s_root = d_make_root(root); 687 if (!s->s_root) 688 return -ENOMEM; 689 s->s_d_op = ctx->dops; 690 return 0; 691 } 692 693 static int pseudo_fs_get_tree(struct fs_context *fc) 694 { 695 return get_tree_nodev(fc, pseudo_fs_fill_super); 696 } 697 698 static void pseudo_fs_free(struct fs_context *fc) 699 { 700 kfree(fc->fs_private); 701 } 702 703 static const struct fs_context_operations pseudo_fs_context_ops = { 704 .free = pseudo_fs_free, 705 .get_tree = pseudo_fs_get_tree, 706 }; 707 708 /* 709 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 710 * will never be mountable) 711 */ 712 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 713 unsigned long magic) 714 { 715 struct pseudo_fs_context *ctx; 716 717 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 718 if (likely(ctx)) { 719 ctx->magic = magic; 720 fc->fs_private = ctx; 721 fc->ops = &pseudo_fs_context_ops; 722 fc->sb_flags |= SB_NOUSER; 723 fc->global = true; 724 } 725 return ctx; 726 } 727 EXPORT_SYMBOL(init_pseudo); 728 729 int simple_open(struct inode *inode, struct file *file) 730 { 731 if (inode->i_private) 732 file->private_data = inode->i_private; 733 return 0; 734 } 735 EXPORT_SYMBOL(simple_open); 736 737 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 738 { 739 struct inode *inode = d_inode(old_dentry); 740 741 inode_set_mtime_to_ts(dir, 742 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 743 inc_nlink(inode); 744 ihold(inode); 745 dget(dentry); 746 d_instantiate(dentry, inode); 747 return 0; 748 } 749 EXPORT_SYMBOL(simple_link); 750 751 int simple_empty(struct dentry *dentry) 752 { 753 struct dentry *child; 754 int ret = 0; 755 756 spin_lock(&dentry->d_lock); 757 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 758 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 759 if (simple_positive(child)) { 760 spin_unlock(&child->d_lock); 761 goto out; 762 } 763 spin_unlock(&child->d_lock); 764 } 765 ret = 1; 766 out: 767 spin_unlock(&dentry->d_lock); 768 return ret; 769 } 770 EXPORT_SYMBOL(simple_empty); 771 772 int simple_unlink(struct inode *dir, struct dentry *dentry) 773 { 774 struct inode *inode = d_inode(dentry); 775 776 inode_set_mtime_to_ts(dir, 777 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 778 drop_nlink(inode); 779 dput(dentry); 780 return 0; 781 } 782 EXPORT_SYMBOL(simple_unlink); 783 784 int simple_rmdir(struct inode *dir, struct dentry *dentry) 785 { 786 if (!simple_empty(dentry)) 787 return -ENOTEMPTY; 788 789 drop_nlink(d_inode(dentry)); 790 simple_unlink(dir, dentry); 791 drop_nlink(dir); 792 return 0; 793 } 794 EXPORT_SYMBOL(simple_rmdir); 795 796 /** 797 * simple_rename_timestamp - update the various inode timestamps for rename 798 * @old_dir: old parent directory 799 * @old_dentry: dentry that is being renamed 800 * @new_dir: new parent directory 801 * @new_dentry: target for rename 802 * 803 * POSIX mandates that the old and new parent directories have their ctime and 804 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 805 * their ctime updated. 806 */ 807 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 808 struct inode *new_dir, struct dentry *new_dentry) 809 { 810 struct inode *newino = d_inode(new_dentry); 811 812 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 813 if (new_dir != old_dir) 814 inode_set_mtime_to_ts(new_dir, 815 inode_set_ctime_current(new_dir)); 816 inode_set_ctime_current(d_inode(old_dentry)); 817 if (newino) 818 inode_set_ctime_current(newino); 819 } 820 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 821 822 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 823 struct inode *new_dir, struct dentry *new_dentry) 824 { 825 bool old_is_dir = d_is_dir(old_dentry); 826 bool new_is_dir = d_is_dir(new_dentry); 827 828 if (old_dir != new_dir && old_is_dir != new_is_dir) { 829 if (old_is_dir) { 830 drop_nlink(old_dir); 831 inc_nlink(new_dir); 832 } else { 833 drop_nlink(new_dir); 834 inc_nlink(old_dir); 835 } 836 } 837 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 838 return 0; 839 } 840 EXPORT_SYMBOL_GPL(simple_rename_exchange); 841 842 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 843 struct dentry *old_dentry, struct inode *new_dir, 844 struct dentry *new_dentry, unsigned int flags) 845 { 846 int they_are_dirs = d_is_dir(old_dentry); 847 848 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 849 return -EINVAL; 850 851 if (flags & RENAME_EXCHANGE) 852 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 853 854 if (!simple_empty(new_dentry)) 855 return -ENOTEMPTY; 856 857 if (d_really_is_positive(new_dentry)) { 858 simple_unlink(new_dir, new_dentry); 859 if (they_are_dirs) { 860 drop_nlink(d_inode(new_dentry)); 861 drop_nlink(old_dir); 862 } 863 } else if (they_are_dirs) { 864 drop_nlink(old_dir); 865 inc_nlink(new_dir); 866 } 867 868 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 869 return 0; 870 } 871 EXPORT_SYMBOL(simple_rename); 872 873 /** 874 * simple_setattr - setattr for simple filesystem 875 * @idmap: idmap of the target mount 876 * @dentry: dentry 877 * @iattr: iattr structure 878 * 879 * Returns 0 on success, -error on failure. 880 * 881 * simple_setattr is a simple ->setattr implementation without a proper 882 * implementation of size changes. 883 * 884 * It can either be used for in-memory filesystems or special files 885 * on simple regular filesystems. Anything that needs to change on-disk 886 * or wire state on size changes needs its own setattr method. 887 */ 888 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 889 struct iattr *iattr) 890 { 891 struct inode *inode = d_inode(dentry); 892 int error; 893 894 error = setattr_prepare(idmap, dentry, iattr); 895 if (error) 896 return error; 897 898 if (iattr->ia_valid & ATTR_SIZE) 899 truncate_setsize(inode, iattr->ia_size); 900 setattr_copy(idmap, inode, iattr); 901 mark_inode_dirty(inode); 902 return 0; 903 } 904 EXPORT_SYMBOL(simple_setattr); 905 906 static int simple_read_folio(struct file *file, struct folio *folio) 907 { 908 folio_zero_range(folio, 0, folio_size(folio)); 909 flush_dcache_folio(folio); 910 folio_mark_uptodate(folio); 911 folio_unlock(folio); 912 return 0; 913 } 914 915 int simple_write_begin(struct file *file, struct address_space *mapping, 916 loff_t pos, unsigned len, 917 struct folio **foliop, void **fsdata) 918 { 919 struct folio *folio; 920 921 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 922 mapping_gfp_mask(mapping)); 923 if (IS_ERR(folio)) 924 return PTR_ERR(folio); 925 926 *foliop = folio; 927 928 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 929 size_t from = offset_in_folio(folio, pos); 930 931 folio_zero_segments(folio, 0, from, 932 from + len, folio_size(folio)); 933 } 934 return 0; 935 } 936 EXPORT_SYMBOL(simple_write_begin); 937 938 /** 939 * simple_write_end - .write_end helper for non-block-device FSes 940 * @file: See .write_end of address_space_operations 941 * @mapping: " 942 * @pos: " 943 * @len: " 944 * @copied: " 945 * @folio: " 946 * @fsdata: " 947 * 948 * simple_write_end does the minimum needed for updating a folio after 949 * writing is done. It has the same API signature as the .write_end of 950 * address_space_operations vector. So it can just be set onto .write_end for 951 * FSes that don't need any other processing. i_mutex is assumed to be held. 952 * Block based filesystems should use generic_write_end(). 953 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 954 * is not called, so a filesystem that actually does store data in .write_inode 955 * should extend on what's done here with a call to mark_inode_dirty() in the 956 * case that i_size has changed. 957 * 958 * Use *ONLY* with simple_read_folio() 959 */ 960 static int simple_write_end(struct file *file, struct address_space *mapping, 961 loff_t pos, unsigned len, unsigned copied, 962 struct folio *folio, void *fsdata) 963 { 964 struct inode *inode = folio->mapping->host; 965 loff_t last_pos = pos + copied; 966 967 /* zero the stale part of the folio if we did a short copy */ 968 if (!folio_test_uptodate(folio)) { 969 if (copied < len) { 970 size_t from = offset_in_folio(folio, pos); 971 972 folio_zero_range(folio, from + copied, len - copied); 973 } 974 folio_mark_uptodate(folio); 975 } 976 /* 977 * No need to use i_size_read() here, the i_size 978 * cannot change under us because we hold the i_mutex. 979 */ 980 if (last_pos > inode->i_size) 981 i_size_write(inode, last_pos); 982 983 folio_mark_dirty(folio); 984 folio_unlock(folio); 985 folio_put(folio); 986 987 return copied; 988 } 989 990 /* 991 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 992 */ 993 const struct address_space_operations ram_aops = { 994 .read_folio = simple_read_folio, 995 .write_begin = simple_write_begin, 996 .write_end = simple_write_end, 997 .dirty_folio = noop_dirty_folio, 998 }; 999 EXPORT_SYMBOL(ram_aops); 1000 1001 /* 1002 * the inodes created here are not hashed. If you use iunique to generate 1003 * unique inode values later for this filesystem, then you must take care 1004 * to pass it an appropriate max_reserved value to avoid collisions. 1005 */ 1006 int simple_fill_super(struct super_block *s, unsigned long magic, 1007 const struct tree_descr *files) 1008 { 1009 struct inode *inode; 1010 struct dentry *dentry; 1011 int i; 1012 1013 s->s_blocksize = PAGE_SIZE; 1014 s->s_blocksize_bits = PAGE_SHIFT; 1015 s->s_magic = magic; 1016 s->s_op = &simple_super_operations; 1017 s->s_time_gran = 1; 1018 1019 inode = new_inode(s); 1020 if (!inode) 1021 return -ENOMEM; 1022 /* 1023 * because the root inode is 1, the files array must not contain an 1024 * entry at index 1 1025 */ 1026 inode->i_ino = 1; 1027 inode->i_mode = S_IFDIR | 0755; 1028 simple_inode_init_ts(inode); 1029 inode->i_op = &simple_dir_inode_operations; 1030 inode->i_fop = &simple_dir_operations; 1031 set_nlink(inode, 2); 1032 s->s_root = d_make_root(inode); 1033 if (!s->s_root) 1034 return -ENOMEM; 1035 for (i = 0; !files->name || files->name[0]; i++, files++) { 1036 if (!files->name) 1037 continue; 1038 1039 /* warn if it tries to conflict with the root inode */ 1040 if (unlikely(i == 1)) 1041 printk(KERN_WARNING "%s: %s passed in a files array" 1042 "with an index of 1!\n", __func__, 1043 s->s_type->name); 1044 1045 dentry = d_alloc_name(s->s_root, files->name); 1046 if (!dentry) 1047 return -ENOMEM; 1048 inode = new_inode(s); 1049 if (!inode) { 1050 dput(dentry); 1051 return -ENOMEM; 1052 } 1053 inode->i_mode = S_IFREG | files->mode; 1054 simple_inode_init_ts(inode); 1055 inode->i_fop = files->ops; 1056 inode->i_ino = i; 1057 d_add(dentry, inode); 1058 } 1059 return 0; 1060 } 1061 EXPORT_SYMBOL(simple_fill_super); 1062 1063 static DEFINE_SPINLOCK(pin_fs_lock); 1064 1065 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 1066 { 1067 struct vfsmount *mnt = NULL; 1068 spin_lock(&pin_fs_lock); 1069 if (unlikely(!*mount)) { 1070 spin_unlock(&pin_fs_lock); 1071 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 1072 if (IS_ERR(mnt)) 1073 return PTR_ERR(mnt); 1074 spin_lock(&pin_fs_lock); 1075 if (!*mount) 1076 *mount = mnt; 1077 } 1078 mntget(*mount); 1079 ++*count; 1080 spin_unlock(&pin_fs_lock); 1081 mntput(mnt); 1082 return 0; 1083 } 1084 EXPORT_SYMBOL(simple_pin_fs); 1085 1086 void simple_release_fs(struct vfsmount **mount, int *count) 1087 { 1088 struct vfsmount *mnt; 1089 spin_lock(&pin_fs_lock); 1090 mnt = *mount; 1091 if (!--*count) 1092 *mount = NULL; 1093 spin_unlock(&pin_fs_lock); 1094 mntput(mnt); 1095 } 1096 EXPORT_SYMBOL(simple_release_fs); 1097 1098 /** 1099 * simple_read_from_buffer - copy data from the buffer to user space 1100 * @to: the user space buffer to read to 1101 * @count: the maximum number of bytes to read 1102 * @ppos: the current position in the buffer 1103 * @from: the buffer to read from 1104 * @available: the size of the buffer 1105 * 1106 * The simple_read_from_buffer() function reads up to @count bytes from the 1107 * buffer @from at offset @ppos into the user space address starting at @to. 1108 * 1109 * On success, the number of bytes read is returned and the offset @ppos is 1110 * advanced by this number, or negative value is returned on error. 1111 **/ 1112 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1113 const void *from, size_t available) 1114 { 1115 loff_t pos = *ppos; 1116 size_t ret; 1117 1118 if (pos < 0) 1119 return -EINVAL; 1120 if (pos >= available || !count) 1121 return 0; 1122 if (count > available - pos) 1123 count = available - pos; 1124 ret = copy_to_user(to, from + pos, count); 1125 if (ret == count) 1126 return -EFAULT; 1127 count -= ret; 1128 *ppos = pos + count; 1129 return count; 1130 } 1131 EXPORT_SYMBOL(simple_read_from_buffer); 1132 1133 /** 1134 * simple_write_to_buffer - copy data from user space to the buffer 1135 * @to: the buffer to write to 1136 * @available: the size of the buffer 1137 * @ppos: the current position in the buffer 1138 * @from: the user space buffer to read from 1139 * @count: the maximum number of bytes to read 1140 * 1141 * The simple_write_to_buffer() function reads up to @count bytes from the user 1142 * space address starting at @from into the buffer @to at offset @ppos. 1143 * 1144 * On success, the number of bytes written is returned and the offset @ppos is 1145 * advanced by this number, or negative value is returned on error. 1146 **/ 1147 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1148 const void __user *from, size_t count) 1149 { 1150 loff_t pos = *ppos; 1151 size_t res; 1152 1153 if (pos < 0) 1154 return -EINVAL; 1155 if (pos >= available || !count) 1156 return 0; 1157 if (count > available - pos) 1158 count = available - pos; 1159 res = copy_from_user(to + pos, from, count); 1160 if (res == count) 1161 return -EFAULT; 1162 count -= res; 1163 *ppos = pos + count; 1164 return count; 1165 } 1166 EXPORT_SYMBOL(simple_write_to_buffer); 1167 1168 /** 1169 * memory_read_from_buffer - copy data from the buffer 1170 * @to: the kernel space buffer to read to 1171 * @count: the maximum number of bytes to read 1172 * @ppos: the current position in the buffer 1173 * @from: the buffer to read from 1174 * @available: the size of the buffer 1175 * 1176 * The memory_read_from_buffer() function reads up to @count bytes from the 1177 * buffer @from at offset @ppos into the kernel space address starting at @to. 1178 * 1179 * On success, the number of bytes read is returned and the offset @ppos is 1180 * advanced by this number, or negative value is returned on error. 1181 **/ 1182 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1183 const void *from, size_t available) 1184 { 1185 loff_t pos = *ppos; 1186 1187 if (pos < 0) 1188 return -EINVAL; 1189 if (pos >= available) 1190 return 0; 1191 if (count > available - pos) 1192 count = available - pos; 1193 memcpy(to, from + pos, count); 1194 *ppos = pos + count; 1195 1196 return count; 1197 } 1198 EXPORT_SYMBOL(memory_read_from_buffer); 1199 1200 /* 1201 * Transaction based IO. 1202 * The file expects a single write which triggers the transaction, and then 1203 * possibly a read which collects the result - which is stored in a 1204 * file-local buffer. 1205 */ 1206 1207 void simple_transaction_set(struct file *file, size_t n) 1208 { 1209 struct simple_transaction_argresp *ar = file->private_data; 1210 1211 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1212 1213 /* 1214 * The barrier ensures that ar->size will really remain zero until 1215 * ar->data is ready for reading. 1216 */ 1217 smp_mb(); 1218 ar->size = n; 1219 } 1220 EXPORT_SYMBOL(simple_transaction_set); 1221 1222 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1223 { 1224 struct simple_transaction_argresp *ar; 1225 static DEFINE_SPINLOCK(simple_transaction_lock); 1226 1227 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1228 return ERR_PTR(-EFBIG); 1229 1230 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1231 if (!ar) 1232 return ERR_PTR(-ENOMEM); 1233 1234 spin_lock(&simple_transaction_lock); 1235 1236 /* only one write allowed per open */ 1237 if (file->private_data) { 1238 spin_unlock(&simple_transaction_lock); 1239 free_page((unsigned long)ar); 1240 return ERR_PTR(-EBUSY); 1241 } 1242 1243 file->private_data = ar; 1244 1245 spin_unlock(&simple_transaction_lock); 1246 1247 if (copy_from_user(ar->data, buf, size)) 1248 return ERR_PTR(-EFAULT); 1249 1250 return ar->data; 1251 } 1252 EXPORT_SYMBOL(simple_transaction_get); 1253 1254 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1255 { 1256 struct simple_transaction_argresp *ar = file->private_data; 1257 1258 if (!ar) 1259 return 0; 1260 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1261 } 1262 EXPORT_SYMBOL(simple_transaction_read); 1263 1264 int simple_transaction_release(struct inode *inode, struct file *file) 1265 { 1266 free_page((unsigned long)file->private_data); 1267 return 0; 1268 } 1269 EXPORT_SYMBOL(simple_transaction_release); 1270 1271 /* Simple attribute files */ 1272 1273 struct simple_attr { 1274 int (*get)(void *, u64 *); 1275 int (*set)(void *, u64); 1276 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1277 char set_buf[24]; 1278 void *data; 1279 const char *fmt; /* format for read operation */ 1280 struct mutex mutex; /* protects access to these buffers */ 1281 }; 1282 1283 /* simple_attr_open is called by an actual attribute open file operation 1284 * to set the attribute specific access operations. */ 1285 int simple_attr_open(struct inode *inode, struct file *file, 1286 int (*get)(void *, u64 *), int (*set)(void *, u64), 1287 const char *fmt) 1288 { 1289 struct simple_attr *attr; 1290 1291 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1292 if (!attr) 1293 return -ENOMEM; 1294 1295 attr->get = get; 1296 attr->set = set; 1297 attr->data = inode->i_private; 1298 attr->fmt = fmt; 1299 mutex_init(&attr->mutex); 1300 1301 file->private_data = attr; 1302 1303 return nonseekable_open(inode, file); 1304 } 1305 EXPORT_SYMBOL_GPL(simple_attr_open); 1306 1307 int simple_attr_release(struct inode *inode, struct file *file) 1308 { 1309 kfree(file->private_data); 1310 return 0; 1311 } 1312 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1313 1314 /* read from the buffer that is filled with the get function */ 1315 ssize_t simple_attr_read(struct file *file, char __user *buf, 1316 size_t len, loff_t *ppos) 1317 { 1318 struct simple_attr *attr; 1319 size_t size; 1320 ssize_t ret; 1321 1322 attr = file->private_data; 1323 1324 if (!attr->get) 1325 return -EACCES; 1326 1327 ret = mutex_lock_interruptible(&attr->mutex); 1328 if (ret) 1329 return ret; 1330 1331 if (*ppos && attr->get_buf[0]) { 1332 /* continued read */ 1333 size = strlen(attr->get_buf); 1334 } else { 1335 /* first read */ 1336 u64 val; 1337 ret = attr->get(attr->data, &val); 1338 if (ret) 1339 goto out; 1340 1341 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1342 attr->fmt, (unsigned long long)val); 1343 } 1344 1345 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1346 out: 1347 mutex_unlock(&attr->mutex); 1348 return ret; 1349 } 1350 EXPORT_SYMBOL_GPL(simple_attr_read); 1351 1352 /* interpret the buffer as a number to call the set function with */ 1353 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1354 size_t len, loff_t *ppos, bool is_signed) 1355 { 1356 struct simple_attr *attr; 1357 unsigned long long val; 1358 size_t size; 1359 ssize_t ret; 1360 1361 attr = file->private_data; 1362 if (!attr->set) 1363 return -EACCES; 1364 1365 ret = mutex_lock_interruptible(&attr->mutex); 1366 if (ret) 1367 return ret; 1368 1369 ret = -EFAULT; 1370 size = min(sizeof(attr->set_buf) - 1, len); 1371 if (copy_from_user(attr->set_buf, buf, size)) 1372 goto out; 1373 1374 attr->set_buf[size] = '\0'; 1375 if (is_signed) 1376 ret = kstrtoll(attr->set_buf, 0, &val); 1377 else 1378 ret = kstrtoull(attr->set_buf, 0, &val); 1379 if (ret) 1380 goto out; 1381 ret = attr->set(attr->data, val); 1382 if (ret == 0) 1383 ret = len; /* on success, claim we got the whole input */ 1384 out: 1385 mutex_unlock(&attr->mutex); 1386 return ret; 1387 } 1388 1389 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1390 size_t len, loff_t *ppos) 1391 { 1392 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1393 } 1394 EXPORT_SYMBOL_GPL(simple_attr_write); 1395 1396 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1397 size_t len, loff_t *ppos) 1398 { 1399 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1400 } 1401 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1402 1403 /** 1404 * generic_encode_ino32_fh - generic export_operations->encode_fh function 1405 * @inode: the object to encode 1406 * @fh: where to store the file handle fragment 1407 * @max_len: maximum length to store there (in 4 byte units) 1408 * @parent: parent directory inode, if wanted 1409 * 1410 * This generic encode_fh function assumes that the 32 inode number 1411 * is suitable for locating an inode, and that the generation number 1412 * can be used to check that it is still valid. It places them in the 1413 * filehandle fragment where export_decode_fh expects to find them. 1414 */ 1415 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, 1416 struct inode *parent) 1417 { 1418 struct fid *fid = (void *)fh; 1419 int len = *max_len; 1420 int type = FILEID_INO32_GEN; 1421 1422 if (parent && (len < 4)) { 1423 *max_len = 4; 1424 return FILEID_INVALID; 1425 } else if (len < 2) { 1426 *max_len = 2; 1427 return FILEID_INVALID; 1428 } 1429 1430 len = 2; 1431 fid->i32.ino = inode->i_ino; 1432 fid->i32.gen = inode->i_generation; 1433 if (parent) { 1434 fid->i32.parent_ino = parent->i_ino; 1435 fid->i32.parent_gen = parent->i_generation; 1436 len = 4; 1437 type = FILEID_INO32_GEN_PARENT; 1438 } 1439 *max_len = len; 1440 return type; 1441 } 1442 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); 1443 1444 /** 1445 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1446 * @sb: filesystem to do the file handle conversion on 1447 * @fid: file handle to convert 1448 * @fh_len: length of the file handle in bytes 1449 * @fh_type: type of file handle 1450 * @get_inode: filesystem callback to retrieve inode 1451 * 1452 * This function decodes @fid as long as it has one of the well-known 1453 * Linux filehandle types and calls @get_inode on it to retrieve the 1454 * inode for the object specified in the file handle. 1455 */ 1456 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1457 int fh_len, int fh_type, struct inode *(*get_inode) 1458 (struct super_block *sb, u64 ino, u32 gen)) 1459 { 1460 struct inode *inode = NULL; 1461 1462 if (fh_len < 2) 1463 return NULL; 1464 1465 switch (fh_type) { 1466 case FILEID_INO32_GEN: 1467 case FILEID_INO32_GEN_PARENT: 1468 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1469 break; 1470 } 1471 1472 return d_obtain_alias(inode); 1473 } 1474 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1475 1476 /** 1477 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1478 * @sb: filesystem to do the file handle conversion on 1479 * @fid: file handle to convert 1480 * @fh_len: length of the file handle in bytes 1481 * @fh_type: type of file handle 1482 * @get_inode: filesystem callback to retrieve inode 1483 * 1484 * This function decodes @fid as long as it has one of the well-known 1485 * Linux filehandle types and calls @get_inode on it to retrieve the 1486 * inode for the _parent_ object specified in the file handle if it 1487 * is specified in the file handle, or NULL otherwise. 1488 */ 1489 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1490 int fh_len, int fh_type, struct inode *(*get_inode) 1491 (struct super_block *sb, u64 ino, u32 gen)) 1492 { 1493 struct inode *inode = NULL; 1494 1495 if (fh_len <= 2) 1496 return NULL; 1497 1498 switch (fh_type) { 1499 case FILEID_INO32_GEN_PARENT: 1500 inode = get_inode(sb, fid->i32.parent_ino, 1501 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1502 break; 1503 } 1504 1505 return d_obtain_alias(inode); 1506 } 1507 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1508 1509 /** 1510 * __generic_file_fsync - generic fsync implementation for simple filesystems 1511 * 1512 * @file: file to synchronize 1513 * @start: start offset in bytes 1514 * @end: end offset in bytes (inclusive) 1515 * @datasync: only synchronize essential metadata if true 1516 * 1517 * This is a generic implementation of the fsync method for simple 1518 * filesystems which track all non-inode metadata in the buffers list 1519 * hanging off the address_space structure. 1520 */ 1521 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1522 int datasync) 1523 { 1524 struct inode *inode = file->f_mapping->host; 1525 int err; 1526 int ret; 1527 1528 err = file_write_and_wait_range(file, start, end); 1529 if (err) 1530 return err; 1531 1532 inode_lock(inode); 1533 ret = sync_mapping_buffers(inode->i_mapping); 1534 if (!(inode->i_state & I_DIRTY_ALL)) 1535 goto out; 1536 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1537 goto out; 1538 1539 err = sync_inode_metadata(inode, 1); 1540 if (ret == 0) 1541 ret = err; 1542 1543 out: 1544 inode_unlock(inode); 1545 /* check and advance again to catch errors after syncing out buffers */ 1546 err = file_check_and_advance_wb_err(file); 1547 if (ret == 0) 1548 ret = err; 1549 return ret; 1550 } 1551 EXPORT_SYMBOL(__generic_file_fsync); 1552 1553 /** 1554 * generic_file_fsync - generic fsync implementation for simple filesystems 1555 * with flush 1556 * @file: file to synchronize 1557 * @start: start offset in bytes 1558 * @end: end offset in bytes (inclusive) 1559 * @datasync: only synchronize essential metadata if true 1560 * 1561 */ 1562 1563 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1564 int datasync) 1565 { 1566 struct inode *inode = file->f_mapping->host; 1567 int err; 1568 1569 err = __generic_file_fsync(file, start, end, datasync); 1570 if (err) 1571 return err; 1572 return blkdev_issue_flush(inode->i_sb->s_bdev); 1573 } 1574 EXPORT_SYMBOL(generic_file_fsync); 1575 1576 /** 1577 * generic_check_addressable - Check addressability of file system 1578 * @blocksize_bits: log of file system block size 1579 * @num_blocks: number of blocks in file system 1580 * 1581 * Determine whether a file system with @num_blocks blocks (and a 1582 * block size of 2**@blocksize_bits) is addressable by the sector_t 1583 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1584 */ 1585 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1586 { 1587 u64 last_fs_block = num_blocks - 1; 1588 u64 last_fs_page = 1589 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1590 1591 if (unlikely(num_blocks == 0)) 1592 return 0; 1593 1594 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1595 return -EINVAL; 1596 1597 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1598 (last_fs_page > (pgoff_t)(~0ULL))) { 1599 return -EFBIG; 1600 } 1601 return 0; 1602 } 1603 EXPORT_SYMBOL(generic_check_addressable); 1604 1605 /* 1606 * No-op implementation of ->fsync for in-memory filesystems. 1607 */ 1608 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1609 { 1610 return 0; 1611 } 1612 EXPORT_SYMBOL(noop_fsync); 1613 1614 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1615 { 1616 /* 1617 * iomap based filesystems support direct I/O without need for 1618 * this callback. However, it still needs to be set in 1619 * inode->a_ops so that open/fcntl know that direct I/O is 1620 * generally supported. 1621 */ 1622 return -EINVAL; 1623 } 1624 EXPORT_SYMBOL_GPL(noop_direct_IO); 1625 1626 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1627 void kfree_link(void *p) 1628 { 1629 kfree(p); 1630 } 1631 EXPORT_SYMBOL(kfree_link); 1632 1633 struct inode *alloc_anon_inode(struct super_block *s) 1634 { 1635 static const struct address_space_operations anon_aops = { 1636 .dirty_folio = noop_dirty_folio, 1637 }; 1638 struct inode *inode = new_inode_pseudo(s); 1639 1640 if (!inode) 1641 return ERR_PTR(-ENOMEM); 1642 1643 inode->i_ino = get_next_ino(); 1644 inode->i_mapping->a_ops = &anon_aops; 1645 1646 /* 1647 * Mark the inode dirty from the very beginning, 1648 * that way it will never be moved to the dirty 1649 * list because mark_inode_dirty() will think 1650 * that it already _is_ on the dirty list. 1651 */ 1652 inode->i_state = I_DIRTY; 1653 inode->i_mode = S_IRUSR | S_IWUSR; 1654 inode->i_uid = current_fsuid(); 1655 inode->i_gid = current_fsgid(); 1656 inode->i_flags |= S_PRIVATE; 1657 simple_inode_init_ts(inode); 1658 return inode; 1659 } 1660 EXPORT_SYMBOL(alloc_anon_inode); 1661 1662 /** 1663 * simple_nosetlease - generic helper for prohibiting leases 1664 * @filp: file pointer 1665 * @arg: type of lease to obtain 1666 * @flp: new lease supplied for insertion 1667 * @priv: private data for lm_setup operation 1668 * 1669 * Generic helper for filesystems that do not wish to allow leases to be set. 1670 * All arguments are ignored and it just returns -EINVAL. 1671 */ 1672 int 1673 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp, 1674 void **priv) 1675 { 1676 return -EINVAL; 1677 } 1678 EXPORT_SYMBOL(simple_nosetlease); 1679 1680 /** 1681 * simple_get_link - generic helper to get the target of "fast" symlinks 1682 * @dentry: not used here 1683 * @inode: the symlink inode 1684 * @done: not used here 1685 * 1686 * Generic helper for filesystems to use for symlink inodes where a pointer to 1687 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1688 * since as an optimization the path lookup code uses any non-NULL ->i_link 1689 * directly, without calling ->get_link(). But ->get_link() still must be set, 1690 * to mark the inode_operations as being for a symlink. 1691 * 1692 * Return: the symlink target 1693 */ 1694 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1695 struct delayed_call *done) 1696 { 1697 return inode->i_link; 1698 } 1699 EXPORT_SYMBOL(simple_get_link); 1700 1701 const struct inode_operations simple_symlink_inode_operations = { 1702 .get_link = simple_get_link, 1703 }; 1704 EXPORT_SYMBOL(simple_symlink_inode_operations); 1705 1706 /* 1707 * Operations for a permanently empty directory. 1708 */ 1709 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1710 { 1711 return ERR_PTR(-ENOENT); 1712 } 1713 1714 static int empty_dir_getattr(struct mnt_idmap *idmap, 1715 const struct path *path, struct kstat *stat, 1716 u32 request_mask, unsigned int query_flags) 1717 { 1718 struct inode *inode = d_inode(path->dentry); 1719 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1720 return 0; 1721 } 1722 1723 static int empty_dir_setattr(struct mnt_idmap *idmap, 1724 struct dentry *dentry, struct iattr *attr) 1725 { 1726 return -EPERM; 1727 } 1728 1729 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1730 { 1731 return -EOPNOTSUPP; 1732 } 1733 1734 static const struct inode_operations empty_dir_inode_operations = { 1735 .lookup = empty_dir_lookup, 1736 .permission = generic_permission, 1737 .setattr = empty_dir_setattr, 1738 .getattr = empty_dir_getattr, 1739 .listxattr = empty_dir_listxattr, 1740 }; 1741 1742 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1743 { 1744 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1745 return generic_file_llseek_size(file, offset, whence, 2, 2); 1746 } 1747 1748 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1749 { 1750 dir_emit_dots(file, ctx); 1751 return 0; 1752 } 1753 1754 static const struct file_operations empty_dir_operations = { 1755 .llseek = empty_dir_llseek, 1756 .read = generic_read_dir, 1757 .iterate_shared = empty_dir_readdir, 1758 .fsync = noop_fsync, 1759 }; 1760 1761 1762 void make_empty_dir_inode(struct inode *inode) 1763 { 1764 set_nlink(inode, 2); 1765 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1766 inode->i_uid = GLOBAL_ROOT_UID; 1767 inode->i_gid = GLOBAL_ROOT_GID; 1768 inode->i_rdev = 0; 1769 inode->i_size = 0; 1770 inode->i_blkbits = PAGE_SHIFT; 1771 inode->i_blocks = 0; 1772 1773 inode->i_op = &empty_dir_inode_operations; 1774 inode->i_opflags &= ~IOP_XATTR; 1775 inode->i_fop = &empty_dir_operations; 1776 } 1777 1778 bool is_empty_dir_inode(struct inode *inode) 1779 { 1780 return (inode->i_fop == &empty_dir_operations) && 1781 (inode->i_op == &empty_dir_inode_operations); 1782 } 1783 1784 #if IS_ENABLED(CONFIG_UNICODE) 1785 /** 1786 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1787 * @dentry: dentry whose name we are checking against 1788 * @len: len of name of dentry 1789 * @str: str pointer to name of dentry 1790 * @name: Name to compare against 1791 * 1792 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1793 */ 1794 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1795 const char *str, const struct qstr *name) 1796 { 1797 const struct dentry *parent; 1798 const struct inode *dir; 1799 char strbuf[DNAME_INLINE_LEN]; 1800 struct qstr qstr; 1801 1802 /* 1803 * Attempt a case-sensitive match first. It is cheaper and 1804 * should cover most lookups, including all the sane 1805 * applications that expect a case-sensitive filesystem. 1806 * 1807 * This comparison is safe under RCU because the caller 1808 * guarantees the consistency between str and len. See 1809 * __d_lookup_rcu_op_compare() for details. 1810 */ 1811 if (len == name->len && !memcmp(str, name->name, len)) 1812 return 0; 1813 1814 parent = READ_ONCE(dentry->d_parent); 1815 dir = READ_ONCE(parent->d_inode); 1816 if (!dir || !IS_CASEFOLDED(dir)) 1817 return 1; 1818 1819 /* 1820 * If the dentry name is stored in-line, then it may be concurrently 1821 * modified by a rename. If this happens, the VFS will eventually retry 1822 * the lookup, so it doesn't matter what ->d_compare() returns. 1823 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1824 * string. Therefore, we have to copy the name into a temporary buffer. 1825 */ 1826 if (len <= DNAME_INLINE_LEN - 1) { 1827 memcpy(strbuf, str, len); 1828 strbuf[len] = 0; 1829 str = strbuf; 1830 /* prevent compiler from optimizing out the temporary buffer */ 1831 barrier(); 1832 } 1833 qstr.len = len; 1834 qstr.name = str; 1835 1836 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr); 1837 } 1838 1839 /** 1840 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1841 * @dentry: dentry of the parent directory 1842 * @str: qstr of name whose hash we should fill in 1843 * 1844 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1845 */ 1846 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1847 { 1848 const struct inode *dir = READ_ONCE(dentry->d_inode); 1849 struct super_block *sb = dentry->d_sb; 1850 const struct unicode_map *um = sb->s_encoding; 1851 int ret; 1852 1853 if (!dir || !IS_CASEFOLDED(dir)) 1854 return 0; 1855 1856 ret = utf8_casefold_hash(um, dentry, str); 1857 if (ret < 0 && sb_has_strict_encoding(sb)) 1858 return -EINVAL; 1859 return 0; 1860 } 1861 1862 static const struct dentry_operations generic_ci_dentry_ops = { 1863 .d_hash = generic_ci_d_hash, 1864 .d_compare = generic_ci_d_compare, 1865 #ifdef CONFIG_FS_ENCRYPTION 1866 .d_revalidate = fscrypt_d_revalidate, 1867 #endif 1868 }; 1869 1870 /** 1871 * generic_ci_match() - Match a name (case-insensitively) with a dirent. 1872 * This is a filesystem helper for comparison with directory entries. 1873 * generic_ci_d_compare should be used in VFS' ->d_compare instead. 1874 * 1875 * @parent: Inode of the parent of the dirent under comparison 1876 * @name: name under lookup. 1877 * @folded_name: Optional pre-folded name under lookup 1878 * @de_name: Dirent name. 1879 * @de_name_len: dirent name length. 1880 * 1881 * Test whether a case-insensitive directory entry matches the filename 1882 * being searched. If @folded_name is provided, it is used instead of 1883 * recalculating the casefold of @name. 1884 * 1885 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or 1886 * < 0 on error. 1887 */ 1888 int generic_ci_match(const struct inode *parent, 1889 const struct qstr *name, 1890 const struct qstr *folded_name, 1891 const u8 *de_name, u32 de_name_len) 1892 { 1893 const struct super_block *sb = parent->i_sb; 1894 const struct unicode_map *um = sb->s_encoding; 1895 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len); 1896 struct qstr dirent = QSTR_INIT(de_name, de_name_len); 1897 int res = 0; 1898 1899 if (IS_ENCRYPTED(parent)) { 1900 const struct fscrypt_str encrypted_name = 1901 FSTR_INIT((u8 *) de_name, de_name_len); 1902 1903 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent))) 1904 return -EINVAL; 1905 1906 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL); 1907 if (!decrypted_name.name) 1908 return -ENOMEM; 1909 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name, 1910 &decrypted_name); 1911 if (res < 0) { 1912 kfree(decrypted_name.name); 1913 return res; 1914 } 1915 dirent.name = decrypted_name.name; 1916 dirent.len = decrypted_name.len; 1917 } 1918 1919 /* 1920 * Attempt a case-sensitive match first. It is cheaper and 1921 * should cover most lookups, including all the sane 1922 * applications that expect a case-sensitive filesystem. 1923 */ 1924 1925 if (dirent.len == name->len && 1926 !memcmp(name->name, dirent.name, dirent.len)) 1927 goto out; 1928 1929 if (folded_name->name) 1930 res = utf8_strncasecmp_folded(um, folded_name, &dirent); 1931 else 1932 res = utf8_strncasecmp(um, name, &dirent); 1933 1934 out: 1935 kfree(decrypted_name.name); 1936 if (res < 0 && sb_has_strict_encoding(sb)) { 1937 pr_err_ratelimited("Directory contains filename that is invalid UTF-8"); 1938 return 0; 1939 } 1940 return !res; 1941 } 1942 EXPORT_SYMBOL(generic_ci_match); 1943 #endif 1944 1945 #ifdef CONFIG_FS_ENCRYPTION 1946 static const struct dentry_operations generic_encrypted_dentry_ops = { 1947 .d_revalidate = fscrypt_d_revalidate, 1948 }; 1949 #endif 1950 1951 /** 1952 * generic_set_sb_d_ops - helper for choosing the set of 1953 * filesystem-wide dentry operations for the enabled features 1954 * @sb: superblock to be configured 1955 * 1956 * Filesystems supporting casefolding and/or fscrypt can call this 1957 * helper at mount-time to configure sb->s_d_op to best set of dentry 1958 * operations required for the enabled features. The helper must be 1959 * called after these have been configured, but before the root dentry 1960 * is created. 1961 */ 1962 void generic_set_sb_d_ops(struct super_block *sb) 1963 { 1964 #if IS_ENABLED(CONFIG_UNICODE) 1965 if (sb->s_encoding) { 1966 sb->s_d_op = &generic_ci_dentry_ops; 1967 return; 1968 } 1969 #endif 1970 #ifdef CONFIG_FS_ENCRYPTION 1971 if (sb->s_cop) { 1972 sb->s_d_op = &generic_encrypted_dentry_ops; 1973 return; 1974 } 1975 #endif 1976 } 1977 EXPORT_SYMBOL(generic_set_sb_d_ops); 1978 1979 /** 1980 * inode_maybe_inc_iversion - increments i_version 1981 * @inode: inode with the i_version that should be updated 1982 * @force: increment the counter even if it's not necessary? 1983 * 1984 * Every time the inode is modified, the i_version field must be seen to have 1985 * changed by any observer. 1986 * 1987 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1988 * the value, and clear the queried flag. 1989 * 1990 * In the common case where neither is set, then we can return "false" without 1991 * updating i_version. 1992 * 1993 * If this function returns false, and no other metadata has changed, then we 1994 * can avoid logging the metadata. 1995 */ 1996 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1997 { 1998 u64 cur, new; 1999 2000 /* 2001 * The i_version field is not strictly ordered with any other inode 2002 * information, but the legacy inode_inc_iversion code used a spinlock 2003 * to serialize increments. 2004 * 2005 * We add a full memory barrier to ensure that any de facto ordering 2006 * with other state is preserved (either implicitly coming from cmpxchg 2007 * or explicitly from smp_mb if we don't know upfront if we will execute 2008 * the former). 2009 * 2010 * These barriers pair with inode_query_iversion(). 2011 */ 2012 cur = inode_peek_iversion_raw(inode); 2013 if (!force && !(cur & I_VERSION_QUERIED)) { 2014 smp_mb(); 2015 cur = inode_peek_iversion_raw(inode); 2016 } 2017 2018 do { 2019 /* If flag is clear then we needn't do anything */ 2020 if (!force && !(cur & I_VERSION_QUERIED)) 2021 return false; 2022 2023 /* Since lowest bit is flag, add 2 to avoid it */ 2024 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 2025 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 2026 return true; 2027 } 2028 EXPORT_SYMBOL(inode_maybe_inc_iversion); 2029 2030 /** 2031 * inode_query_iversion - read i_version for later use 2032 * @inode: inode from which i_version should be read 2033 * 2034 * Read the inode i_version counter. This should be used by callers that wish 2035 * to store the returned i_version for later comparison. This will guarantee 2036 * that a later query of the i_version will result in a different value if 2037 * anything has changed. 2038 * 2039 * In this implementation, we fetch the current value, set the QUERIED flag and 2040 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 2041 * that fails, we try again with the newly fetched value from the cmpxchg. 2042 */ 2043 u64 inode_query_iversion(struct inode *inode) 2044 { 2045 u64 cur, new; 2046 bool fenced = false; 2047 2048 /* 2049 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with 2050 * inode_maybe_inc_iversion(), see that routine for more details. 2051 */ 2052 cur = inode_peek_iversion_raw(inode); 2053 do { 2054 /* If flag is already set, then no need to swap */ 2055 if (cur & I_VERSION_QUERIED) { 2056 if (!fenced) 2057 smp_mb(); 2058 break; 2059 } 2060 2061 fenced = true; 2062 new = cur | I_VERSION_QUERIED; 2063 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 2064 return cur >> I_VERSION_QUERIED_SHIFT; 2065 } 2066 EXPORT_SYMBOL(inode_query_iversion); 2067 2068 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 2069 ssize_t direct_written, ssize_t buffered_written) 2070 { 2071 struct address_space *mapping = iocb->ki_filp->f_mapping; 2072 loff_t pos = iocb->ki_pos - buffered_written; 2073 loff_t end = iocb->ki_pos - 1; 2074 int err; 2075 2076 /* 2077 * If the buffered write fallback returned an error, we want to return 2078 * the number of bytes which were written by direct I/O, or the error 2079 * code if that was zero. 2080 * 2081 * Note that this differs from normal direct-io semantics, which will 2082 * return -EFOO even if some bytes were written. 2083 */ 2084 if (unlikely(buffered_written < 0)) { 2085 if (direct_written) 2086 return direct_written; 2087 return buffered_written; 2088 } 2089 2090 /* 2091 * We need to ensure that the page cache pages are written to disk and 2092 * invalidated to preserve the expected O_DIRECT semantics. 2093 */ 2094 err = filemap_write_and_wait_range(mapping, pos, end); 2095 if (err < 0) { 2096 /* 2097 * We don't know how much we wrote, so just return the number of 2098 * bytes which were direct-written 2099 */ 2100 iocb->ki_pos -= buffered_written; 2101 if (direct_written) 2102 return direct_written; 2103 return err; 2104 } 2105 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 2106 return direct_written + buffered_written; 2107 } 2108 EXPORT_SYMBOL_GPL(direct_write_fallback); 2109 2110 /** 2111 * simple_inode_init_ts - initialize the timestamps for a new inode 2112 * @inode: inode to be initialized 2113 * 2114 * When a new inode is created, most filesystems set the timestamps to the 2115 * current time. Add a helper to do this. 2116 */ 2117 struct timespec64 simple_inode_init_ts(struct inode *inode) 2118 { 2119 struct timespec64 ts = inode_set_ctime_current(inode); 2120 2121 inode_set_atime_to_ts(inode, ts); 2122 inode_set_mtime_to_ts(inode, ts); 2123 return ts; 2124 } 2125 EXPORT_SYMBOL(simple_inode_init_ts); 2126 2127 static inline struct dentry *get_stashed_dentry(struct dentry **stashed) 2128 { 2129 struct dentry *dentry; 2130 2131 guard(rcu)(); 2132 dentry = rcu_dereference(*stashed); 2133 if (!dentry) 2134 return NULL; 2135 if (!lockref_get_not_dead(&dentry->d_lockref)) 2136 return NULL; 2137 return dentry; 2138 } 2139 2140 static struct dentry *prepare_anon_dentry(struct dentry **stashed, 2141 struct super_block *sb, 2142 void *data) 2143 { 2144 struct dentry *dentry; 2145 struct inode *inode; 2146 const struct stashed_operations *sops = sb->s_fs_info; 2147 int ret; 2148 2149 inode = new_inode_pseudo(sb); 2150 if (!inode) { 2151 sops->put_data(data); 2152 return ERR_PTR(-ENOMEM); 2153 } 2154 2155 inode->i_flags |= S_IMMUTABLE; 2156 inode->i_mode = S_IFREG; 2157 simple_inode_init_ts(inode); 2158 2159 ret = sops->init_inode(inode, data); 2160 if (ret < 0) { 2161 iput(inode); 2162 return ERR_PTR(ret); 2163 } 2164 2165 /* Notice when this is changed. */ 2166 WARN_ON_ONCE(!S_ISREG(inode->i_mode)); 2167 WARN_ON_ONCE(!IS_IMMUTABLE(inode)); 2168 2169 dentry = d_alloc_anon(sb); 2170 if (!dentry) { 2171 iput(inode); 2172 return ERR_PTR(-ENOMEM); 2173 } 2174 2175 /* Store address of location where dentry's supposed to be stashed. */ 2176 dentry->d_fsdata = stashed; 2177 2178 /* @data is now owned by the fs */ 2179 d_instantiate(dentry, inode); 2180 return dentry; 2181 } 2182 2183 static struct dentry *stash_dentry(struct dentry **stashed, 2184 struct dentry *dentry) 2185 { 2186 guard(rcu)(); 2187 for (;;) { 2188 struct dentry *old; 2189 2190 /* Assume any old dentry was cleared out. */ 2191 old = cmpxchg(stashed, NULL, dentry); 2192 if (likely(!old)) 2193 return dentry; 2194 2195 /* Check if somebody else installed a reusable dentry. */ 2196 if (lockref_get_not_dead(&old->d_lockref)) 2197 return old; 2198 2199 /* There's an old dead dentry there, try to take it over. */ 2200 if (likely(try_cmpxchg(stashed, &old, dentry))) 2201 return dentry; 2202 } 2203 } 2204 2205 /** 2206 * path_from_stashed - create path from stashed or new dentry 2207 * @stashed: where to retrieve or stash dentry 2208 * @mnt: mnt of the filesystems to use 2209 * @data: data to store in inode->i_private 2210 * @path: path to create 2211 * 2212 * The function tries to retrieve a stashed dentry from @stashed. If the dentry 2213 * is still valid then it will be reused. If the dentry isn't able the function 2214 * will allocate a new dentry and inode. It will then check again whether it 2215 * can reuse an existing dentry in case one has been added in the meantime or 2216 * update @stashed with the newly added dentry. 2217 * 2218 * Special-purpose helper for nsfs and pidfs. 2219 * 2220 * Return: On success zero and on failure a negative error is returned. 2221 */ 2222 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data, 2223 struct path *path) 2224 { 2225 struct dentry *dentry; 2226 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info; 2227 2228 /* See if dentry can be reused. */ 2229 path->dentry = get_stashed_dentry(stashed); 2230 if (path->dentry) { 2231 sops->put_data(data); 2232 goto out_path; 2233 } 2234 2235 /* Allocate a new dentry. */ 2236 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data); 2237 if (IS_ERR(dentry)) 2238 return PTR_ERR(dentry); 2239 2240 /* Added a new dentry. @data is now owned by the filesystem. */ 2241 path->dentry = stash_dentry(stashed, dentry); 2242 if (path->dentry != dentry) 2243 dput(dentry); 2244 2245 out_path: 2246 WARN_ON_ONCE(path->dentry->d_fsdata != stashed); 2247 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data); 2248 path->mnt = mntget(mnt); 2249 return 0; 2250 } 2251 2252 void stashed_dentry_prune(struct dentry *dentry) 2253 { 2254 struct dentry **stashed = dentry->d_fsdata; 2255 struct inode *inode = d_inode(dentry); 2256 2257 if (WARN_ON_ONCE(!stashed)) 2258 return; 2259 2260 if (!inode) 2261 return; 2262 2263 /* 2264 * Only replace our own @dentry as someone else might've 2265 * already cleared out @dentry and stashed their own 2266 * dentry in there. 2267 */ 2268 cmpxchg(stashed, dentry, NULL); 2269 } 2270