xref: /linux/fs/libfs.c (revision 4af8528f90e6a2c030598162c62d012c122a1e20)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 		   struct kstat *stat, u32 request_mask,
33 		   unsigned int query_flags)
34 {
35 	struct inode *inode = d_inode(path->dentry);
36 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41 
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 	buf->f_type = dentry->d_sb->s_magic;
45 	buf->f_bsize = PAGE_SIZE;
46 	buf->f_namelen = NAME_MAX;
47 	return 0;
48 }
49 EXPORT_SYMBOL(simple_statfs);
50 
51 /*
52  * Retaining negative dentries for an in-memory filesystem just wastes
53  * memory and lookup time: arrange for them to be deleted immediately.
54  */
55 int always_delete_dentry(const struct dentry *dentry)
56 {
57 	return 1;
58 }
59 EXPORT_SYMBOL(always_delete_dentry);
60 
61 const struct dentry_operations simple_dentry_operations = {
62 	.d_delete = always_delete_dentry,
63 };
64 EXPORT_SYMBOL(simple_dentry_operations);
65 
66 /*
67  * Lookup the data. This is trivial - if the dentry didn't already
68  * exist, we know it is negative.  Set d_op to delete negative dentries.
69  */
70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 	if (dentry->d_name.len > NAME_MAX)
73 		return ERR_PTR(-ENAMETOOLONG);
74 	if (!dentry->d_sb->s_d_op)
75 		d_set_d_op(dentry, &simple_dentry_operations);
76 	d_add(dentry, NULL);
77 	return NULL;
78 }
79 EXPORT_SYMBOL(simple_lookup);
80 
81 int dcache_dir_open(struct inode *inode, struct file *file)
82 {
83 	file->private_data = d_alloc_cursor(file->f_path.dentry);
84 
85 	return file->private_data ? 0 : -ENOMEM;
86 }
87 EXPORT_SYMBOL(dcache_dir_open);
88 
89 int dcache_dir_close(struct inode *inode, struct file *file)
90 {
91 	dput(file->private_data);
92 	return 0;
93 }
94 EXPORT_SYMBOL(dcache_dir_close);
95 
96 /* parent is locked at least shared */
97 /*
98  * Returns an element of siblings' list.
99  * We are looking for <count>th positive after <p>; if
100  * found, dentry is grabbed and returned to caller.
101  * If no such element exists, NULL is returned.
102  */
103 static struct dentry *scan_positives(struct dentry *cursor,
104 					struct list_head *p,
105 					loff_t count,
106 					struct dentry *last)
107 {
108 	struct dentry *dentry = cursor->d_parent, *found = NULL;
109 
110 	spin_lock(&dentry->d_lock);
111 	while ((p = p->next) != &dentry->d_subdirs) {
112 		struct dentry *d = list_entry(p, struct dentry, d_child);
113 		// we must at least skip cursors, to avoid livelocks
114 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 			continue;
116 		if (simple_positive(d) && !--count) {
117 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 			if (simple_positive(d))
119 				found = dget_dlock(d);
120 			spin_unlock(&d->d_lock);
121 			if (likely(found))
122 				break;
123 			count = 1;
124 		}
125 		if (need_resched()) {
126 			list_move(&cursor->d_child, p);
127 			p = &cursor->d_child;
128 			spin_unlock(&dentry->d_lock);
129 			cond_resched();
130 			spin_lock(&dentry->d_lock);
131 		}
132 	}
133 	spin_unlock(&dentry->d_lock);
134 	dput(last);
135 	return found;
136 }
137 
138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 {
140 	struct dentry *dentry = file->f_path.dentry;
141 	switch (whence) {
142 		case 1:
143 			offset += file->f_pos;
144 			fallthrough;
145 		case 0:
146 			if (offset >= 0)
147 				break;
148 			fallthrough;
149 		default:
150 			return -EINVAL;
151 	}
152 	if (offset != file->f_pos) {
153 		struct dentry *cursor = file->private_data;
154 		struct dentry *to = NULL;
155 
156 		inode_lock_shared(dentry->d_inode);
157 
158 		if (offset > 2)
159 			to = scan_positives(cursor, &dentry->d_subdirs,
160 					    offset - 2, NULL);
161 		spin_lock(&dentry->d_lock);
162 		if (to)
163 			list_move(&cursor->d_child, &to->d_child);
164 		else
165 			list_del_init(&cursor->d_child);
166 		spin_unlock(&dentry->d_lock);
167 		dput(to);
168 
169 		file->f_pos = offset;
170 
171 		inode_unlock_shared(dentry->d_inode);
172 	}
173 	return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176 
177 /*
178  * Directory is locked and all positive dentries in it are safe, since
179  * for ramfs-type trees they can't go away without unlink() or rmdir(),
180  * both impossible due to the lock on directory.
181  */
182 
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 	struct dentry *dentry = file->f_path.dentry;
186 	struct dentry *cursor = file->private_data;
187 	struct list_head *anchor = &dentry->d_subdirs;
188 	struct dentry *next = NULL;
189 	struct list_head *p;
190 
191 	if (!dir_emit_dots(file, ctx))
192 		return 0;
193 
194 	if (ctx->pos == 2)
195 		p = anchor;
196 	else if (!list_empty(&cursor->d_child))
197 		p = &cursor->d_child;
198 	else
199 		return 0;
200 
201 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203 			      d_inode(next)->i_ino,
204 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
205 			break;
206 		ctx->pos++;
207 		p = &next->d_child;
208 	}
209 	spin_lock(&dentry->d_lock);
210 	if (next)
211 		list_move_tail(&cursor->d_child, &next->d_child);
212 	else
213 		list_del_init(&cursor->d_child);
214 	spin_unlock(&dentry->d_lock);
215 	dput(next);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220 
221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 	return -EISDIR;
224 }
225 EXPORT_SYMBOL(generic_read_dir);
226 
227 const struct file_operations simple_dir_operations = {
228 	.open		= dcache_dir_open,
229 	.release	= dcache_dir_close,
230 	.llseek		= dcache_dir_lseek,
231 	.read		= generic_read_dir,
232 	.iterate_shared	= dcache_readdir,
233 	.fsync		= noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236 
237 const struct inode_operations simple_dir_inode_operations = {
238 	.lookup		= simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241 
242 static void offset_set(struct dentry *dentry, u32 offset)
243 {
244 	dentry->d_fsdata = (void *)((uintptr_t)(offset));
245 }
246 
247 static u32 dentry2offset(struct dentry *dentry)
248 {
249 	return (u32)((uintptr_t)(dentry->d_fsdata));
250 }
251 
252 static struct lock_class_key simple_offset_xa_lock;
253 
254 /**
255  * simple_offset_init - initialize an offset_ctx
256  * @octx: directory offset map to be initialized
257  *
258  */
259 void simple_offset_init(struct offset_ctx *octx)
260 {
261 	xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
262 	lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
263 
264 	/* 0 is '.', 1 is '..', so always start with offset 2 */
265 	octx->next_offset = 2;
266 }
267 
268 /**
269  * simple_offset_add - Add an entry to a directory's offset map
270  * @octx: directory offset ctx to be updated
271  * @dentry: new dentry being added
272  *
273  * Returns zero on success. @so_ctx and the dentry offset are updated.
274  * Otherwise, a negative errno value is returned.
275  */
276 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
277 {
278 	static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
279 	u32 offset;
280 	int ret;
281 
282 	if (dentry2offset(dentry) != 0)
283 		return -EBUSY;
284 
285 	ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
286 			      &octx->next_offset, GFP_KERNEL);
287 	if (ret < 0)
288 		return ret;
289 
290 	offset_set(dentry, offset);
291 	return 0;
292 }
293 
294 /**
295  * simple_offset_remove - Remove an entry to a directory's offset map
296  * @octx: directory offset ctx to be updated
297  * @dentry: dentry being removed
298  *
299  */
300 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
301 {
302 	u32 offset;
303 
304 	offset = dentry2offset(dentry);
305 	if (offset == 0)
306 		return;
307 
308 	xa_erase(&octx->xa, offset);
309 	offset_set(dentry, 0);
310 }
311 
312 /**
313  * simple_offset_rename_exchange - exchange rename with directory offsets
314  * @old_dir: parent of dentry being moved
315  * @old_dentry: dentry being moved
316  * @new_dir: destination parent
317  * @new_dentry: destination dentry
318  *
319  * Returns zero on success. Otherwise a negative errno is returned and the
320  * rename is rolled back.
321  */
322 int simple_offset_rename_exchange(struct inode *old_dir,
323 				  struct dentry *old_dentry,
324 				  struct inode *new_dir,
325 				  struct dentry *new_dentry)
326 {
327 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
328 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
329 	u32 old_index = dentry2offset(old_dentry);
330 	u32 new_index = dentry2offset(new_dentry);
331 	int ret;
332 
333 	simple_offset_remove(old_ctx, old_dentry);
334 	simple_offset_remove(new_ctx, new_dentry);
335 
336 	ret = simple_offset_add(new_ctx, old_dentry);
337 	if (ret)
338 		goto out_restore;
339 
340 	ret = simple_offset_add(old_ctx, new_dentry);
341 	if (ret) {
342 		simple_offset_remove(new_ctx, old_dentry);
343 		goto out_restore;
344 	}
345 
346 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
347 	if (ret) {
348 		simple_offset_remove(new_ctx, old_dentry);
349 		simple_offset_remove(old_ctx, new_dentry);
350 		goto out_restore;
351 	}
352 	return 0;
353 
354 out_restore:
355 	offset_set(old_dentry, old_index);
356 	xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
357 	offset_set(new_dentry, new_index);
358 	xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
359 	return ret;
360 }
361 
362 /**
363  * simple_offset_destroy - Release offset map
364  * @octx: directory offset ctx that is about to be destroyed
365  *
366  * During fs teardown (eg. umount), a directory's offset map might still
367  * contain entries. xa_destroy() cleans out anything that remains.
368  */
369 void simple_offset_destroy(struct offset_ctx *octx)
370 {
371 	xa_destroy(&octx->xa);
372 }
373 
374 /**
375  * offset_dir_llseek - Advance the read position of a directory descriptor
376  * @file: an open directory whose position is to be updated
377  * @offset: a byte offset
378  * @whence: enumerator describing the starting position for this update
379  *
380  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
381  *
382  * Returns the updated read position if successful; otherwise a
383  * negative errno is returned and the read position remains unchanged.
384  */
385 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
386 {
387 	switch (whence) {
388 	case SEEK_CUR:
389 		offset += file->f_pos;
390 		fallthrough;
391 	case SEEK_SET:
392 		if (offset >= 0)
393 			break;
394 		fallthrough;
395 	default:
396 		return -EINVAL;
397 	}
398 
399 	return vfs_setpos(file, offset, U32_MAX);
400 }
401 
402 static struct dentry *offset_find_next(struct xa_state *xas)
403 {
404 	struct dentry *child, *found = NULL;
405 
406 	rcu_read_lock();
407 	child = xas_next_entry(xas, U32_MAX);
408 	if (!child)
409 		goto out;
410 	spin_lock(&child->d_lock);
411 	if (simple_positive(child))
412 		found = dget_dlock(child);
413 	spin_unlock(&child->d_lock);
414 out:
415 	rcu_read_unlock();
416 	return found;
417 }
418 
419 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
420 {
421 	u32 offset = dentry2offset(dentry);
422 	struct inode *inode = d_inode(dentry);
423 
424 	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
425 			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
426 }
427 
428 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
429 {
430 	struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
431 	XA_STATE(xas, &so_ctx->xa, ctx->pos);
432 	struct dentry *dentry;
433 
434 	while (true) {
435 		dentry = offset_find_next(&xas);
436 		if (!dentry)
437 			break;
438 
439 		if (!offset_dir_emit(ctx, dentry)) {
440 			dput(dentry);
441 			break;
442 		}
443 
444 		dput(dentry);
445 		ctx->pos = xas.xa_index + 1;
446 	}
447 }
448 
449 /**
450  * offset_readdir - Emit entries starting at offset @ctx->pos
451  * @file: an open directory to iterate over
452  * @ctx: directory iteration context
453  *
454  * Caller must hold @file's i_rwsem to prevent insertion or removal of
455  * entries during this call.
456  *
457  * On entry, @ctx->pos contains an offset that represents the first entry
458  * to be read from the directory.
459  *
460  * The operation continues until there are no more entries to read, or
461  * until the ctx->actor indicates there is no more space in the caller's
462  * output buffer.
463  *
464  * On return, @ctx->pos contains an offset that will read the next entry
465  * in this directory when offset_readdir() is called again with @ctx.
466  *
467  * Return values:
468  *   %0 - Complete
469  */
470 static int offset_readdir(struct file *file, struct dir_context *ctx)
471 {
472 	struct dentry *dir = file->f_path.dentry;
473 
474 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
475 
476 	if (!dir_emit_dots(file, ctx))
477 		return 0;
478 
479 	offset_iterate_dir(d_inode(dir), ctx);
480 	return 0;
481 }
482 
483 const struct file_operations simple_offset_dir_operations = {
484 	.llseek		= offset_dir_llseek,
485 	.iterate_shared	= offset_readdir,
486 	.read		= generic_read_dir,
487 	.fsync		= noop_fsync,
488 };
489 
490 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
491 {
492 	struct dentry *child = NULL;
493 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
494 
495 	spin_lock(&parent->d_lock);
496 	while ((p = p->next) != &parent->d_subdirs) {
497 		struct dentry *d = container_of(p, struct dentry, d_child);
498 		if (simple_positive(d)) {
499 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
500 			if (simple_positive(d))
501 				child = dget_dlock(d);
502 			spin_unlock(&d->d_lock);
503 			if (likely(child))
504 				break;
505 		}
506 	}
507 	spin_unlock(&parent->d_lock);
508 	dput(prev);
509 	return child;
510 }
511 
512 void simple_recursive_removal(struct dentry *dentry,
513                               void (*callback)(struct dentry *))
514 {
515 	struct dentry *this = dget(dentry);
516 	while (true) {
517 		struct dentry *victim = NULL, *child;
518 		struct inode *inode = this->d_inode;
519 
520 		inode_lock(inode);
521 		if (d_is_dir(this))
522 			inode->i_flags |= S_DEAD;
523 		while ((child = find_next_child(this, victim)) == NULL) {
524 			// kill and ascend
525 			// update metadata while it's still locked
526 			inode_set_ctime_current(inode);
527 			clear_nlink(inode);
528 			inode_unlock(inode);
529 			victim = this;
530 			this = this->d_parent;
531 			inode = this->d_inode;
532 			inode_lock(inode);
533 			if (simple_positive(victim)) {
534 				d_invalidate(victim);	// avoid lost mounts
535 				if (d_is_dir(victim))
536 					fsnotify_rmdir(inode, victim);
537 				else
538 					fsnotify_unlink(inode, victim);
539 				if (callback)
540 					callback(victim);
541 				dput(victim);		// unpin it
542 			}
543 			if (victim == dentry) {
544 				inode->i_mtime = inode_set_ctime_current(inode);
545 				if (d_is_dir(dentry))
546 					drop_nlink(inode);
547 				inode_unlock(inode);
548 				dput(dentry);
549 				return;
550 			}
551 		}
552 		inode_unlock(inode);
553 		this = child;
554 	}
555 }
556 EXPORT_SYMBOL(simple_recursive_removal);
557 
558 static const struct super_operations simple_super_operations = {
559 	.statfs		= simple_statfs,
560 };
561 
562 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
563 {
564 	struct pseudo_fs_context *ctx = fc->fs_private;
565 	struct inode *root;
566 
567 	s->s_maxbytes = MAX_LFS_FILESIZE;
568 	s->s_blocksize = PAGE_SIZE;
569 	s->s_blocksize_bits = PAGE_SHIFT;
570 	s->s_magic = ctx->magic;
571 	s->s_op = ctx->ops ?: &simple_super_operations;
572 	s->s_xattr = ctx->xattr;
573 	s->s_time_gran = 1;
574 	root = new_inode(s);
575 	if (!root)
576 		return -ENOMEM;
577 
578 	/*
579 	 * since this is the first inode, make it number 1. New inodes created
580 	 * after this must take care not to collide with it (by passing
581 	 * max_reserved of 1 to iunique).
582 	 */
583 	root->i_ino = 1;
584 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
585 	root->i_atime = root->i_mtime = inode_set_ctime_current(root);
586 	s->s_root = d_make_root(root);
587 	if (!s->s_root)
588 		return -ENOMEM;
589 	s->s_d_op = ctx->dops;
590 	return 0;
591 }
592 
593 static int pseudo_fs_get_tree(struct fs_context *fc)
594 {
595 	return get_tree_nodev(fc, pseudo_fs_fill_super);
596 }
597 
598 static void pseudo_fs_free(struct fs_context *fc)
599 {
600 	kfree(fc->fs_private);
601 }
602 
603 static const struct fs_context_operations pseudo_fs_context_ops = {
604 	.free		= pseudo_fs_free,
605 	.get_tree	= pseudo_fs_get_tree,
606 };
607 
608 /*
609  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
610  * will never be mountable)
611  */
612 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
613 					unsigned long magic)
614 {
615 	struct pseudo_fs_context *ctx;
616 
617 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
618 	if (likely(ctx)) {
619 		ctx->magic = magic;
620 		fc->fs_private = ctx;
621 		fc->ops = &pseudo_fs_context_ops;
622 		fc->sb_flags |= SB_NOUSER;
623 		fc->global = true;
624 	}
625 	return ctx;
626 }
627 EXPORT_SYMBOL(init_pseudo);
628 
629 int simple_open(struct inode *inode, struct file *file)
630 {
631 	if (inode->i_private)
632 		file->private_data = inode->i_private;
633 	return 0;
634 }
635 EXPORT_SYMBOL(simple_open);
636 
637 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
638 {
639 	struct inode *inode = d_inode(old_dentry);
640 
641 	dir->i_mtime = inode_set_ctime_to_ts(dir,
642 					     inode_set_ctime_current(inode));
643 	inc_nlink(inode);
644 	ihold(inode);
645 	dget(dentry);
646 	d_instantiate(dentry, inode);
647 	return 0;
648 }
649 EXPORT_SYMBOL(simple_link);
650 
651 int simple_empty(struct dentry *dentry)
652 {
653 	struct dentry *child;
654 	int ret = 0;
655 
656 	spin_lock(&dentry->d_lock);
657 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
658 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
659 		if (simple_positive(child)) {
660 			spin_unlock(&child->d_lock);
661 			goto out;
662 		}
663 		spin_unlock(&child->d_lock);
664 	}
665 	ret = 1;
666 out:
667 	spin_unlock(&dentry->d_lock);
668 	return ret;
669 }
670 EXPORT_SYMBOL(simple_empty);
671 
672 int simple_unlink(struct inode *dir, struct dentry *dentry)
673 {
674 	struct inode *inode = d_inode(dentry);
675 
676 	dir->i_mtime = inode_set_ctime_to_ts(dir,
677 					     inode_set_ctime_current(inode));
678 	drop_nlink(inode);
679 	dput(dentry);
680 	return 0;
681 }
682 EXPORT_SYMBOL(simple_unlink);
683 
684 int simple_rmdir(struct inode *dir, struct dentry *dentry)
685 {
686 	if (!simple_empty(dentry))
687 		return -ENOTEMPTY;
688 
689 	drop_nlink(d_inode(dentry));
690 	simple_unlink(dir, dentry);
691 	drop_nlink(dir);
692 	return 0;
693 }
694 EXPORT_SYMBOL(simple_rmdir);
695 
696 /**
697  * simple_rename_timestamp - update the various inode timestamps for rename
698  * @old_dir: old parent directory
699  * @old_dentry: dentry that is being renamed
700  * @new_dir: new parent directory
701  * @new_dentry: target for rename
702  *
703  * POSIX mandates that the old and new parent directories have their ctime and
704  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
705  * their ctime updated.
706  */
707 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
708 			     struct inode *new_dir, struct dentry *new_dentry)
709 {
710 	struct inode *newino = d_inode(new_dentry);
711 
712 	old_dir->i_mtime = inode_set_ctime_current(old_dir);
713 	if (new_dir != old_dir)
714 		new_dir->i_mtime = inode_set_ctime_current(new_dir);
715 	inode_set_ctime_current(d_inode(old_dentry));
716 	if (newino)
717 		inode_set_ctime_current(newino);
718 }
719 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
720 
721 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
722 			   struct inode *new_dir, struct dentry *new_dentry)
723 {
724 	bool old_is_dir = d_is_dir(old_dentry);
725 	bool new_is_dir = d_is_dir(new_dentry);
726 
727 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
728 		if (old_is_dir) {
729 			drop_nlink(old_dir);
730 			inc_nlink(new_dir);
731 		} else {
732 			drop_nlink(new_dir);
733 			inc_nlink(old_dir);
734 		}
735 	}
736 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
737 	return 0;
738 }
739 EXPORT_SYMBOL_GPL(simple_rename_exchange);
740 
741 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
742 		  struct dentry *old_dentry, struct inode *new_dir,
743 		  struct dentry *new_dentry, unsigned int flags)
744 {
745 	int they_are_dirs = d_is_dir(old_dentry);
746 
747 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
748 		return -EINVAL;
749 
750 	if (flags & RENAME_EXCHANGE)
751 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
752 
753 	if (!simple_empty(new_dentry))
754 		return -ENOTEMPTY;
755 
756 	if (d_really_is_positive(new_dentry)) {
757 		simple_unlink(new_dir, new_dentry);
758 		if (they_are_dirs) {
759 			drop_nlink(d_inode(new_dentry));
760 			drop_nlink(old_dir);
761 		}
762 	} else if (they_are_dirs) {
763 		drop_nlink(old_dir);
764 		inc_nlink(new_dir);
765 	}
766 
767 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
768 	return 0;
769 }
770 EXPORT_SYMBOL(simple_rename);
771 
772 /**
773  * simple_setattr - setattr for simple filesystem
774  * @idmap: idmap of the target mount
775  * @dentry: dentry
776  * @iattr: iattr structure
777  *
778  * Returns 0 on success, -error on failure.
779  *
780  * simple_setattr is a simple ->setattr implementation without a proper
781  * implementation of size changes.
782  *
783  * It can either be used for in-memory filesystems or special files
784  * on simple regular filesystems.  Anything that needs to change on-disk
785  * or wire state on size changes needs its own setattr method.
786  */
787 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
788 		   struct iattr *iattr)
789 {
790 	struct inode *inode = d_inode(dentry);
791 	int error;
792 
793 	error = setattr_prepare(idmap, dentry, iattr);
794 	if (error)
795 		return error;
796 
797 	if (iattr->ia_valid & ATTR_SIZE)
798 		truncate_setsize(inode, iattr->ia_size);
799 	setattr_copy(idmap, inode, iattr);
800 	mark_inode_dirty(inode);
801 	return 0;
802 }
803 EXPORT_SYMBOL(simple_setattr);
804 
805 static int simple_read_folio(struct file *file, struct folio *folio)
806 {
807 	folio_zero_range(folio, 0, folio_size(folio));
808 	flush_dcache_folio(folio);
809 	folio_mark_uptodate(folio);
810 	folio_unlock(folio);
811 	return 0;
812 }
813 
814 int simple_write_begin(struct file *file, struct address_space *mapping,
815 			loff_t pos, unsigned len,
816 			struct page **pagep, void **fsdata)
817 {
818 	struct folio *folio;
819 
820 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
821 			mapping_gfp_mask(mapping));
822 	if (IS_ERR(folio))
823 		return PTR_ERR(folio);
824 
825 	*pagep = &folio->page;
826 
827 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
828 		size_t from = offset_in_folio(folio, pos);
829 
830 		folio_zero_segments(folio, 0, from,
831 				from + len, folio_size(folio));
832 	}
833 	return 0;
834 }
835 EXPORT_SYMBOL(simple_write_begin);
836 
837 /**
838  * simple_write_end - .write_end helper for non-block-device FSes
839  * @file: See .write_end of address_space_operations
840  * @mapping: 		"
841  * @pos: 		"
842  * @len: 		"
843  * @copied: 		"
844  * @page: 		"
845  * @fsdata: 		"
846  *
847  * simple_write_end does the minimum needed for updating a page after writing is
848  * done. It has the same API signature as the .write_end of
849  * address_space_operations vector. So it can just be set onto .write_end for
850  * FSes that don't need any other processing. i_mutex is assumed to be held.
851  * Block based filesystems should use generic_write_end().
852  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
853  * is not called, so a filesystem that actually does store data in .write_inode
854  * should extend on what's done here with a call to mark_inode_dirty() in the
855  * case that i_size has changed.
856  *
857  * Use *ONLY* with simple_read_folio()
858  */
859 static int simple_write_end(struct file *file, struct address_space *mapping,
860 			loff_t pos, unsigned len, unsigned copied,
861 			struct page *page, void *fsdata)
862 {
863 	struct folio *folio = page_folio(page);
864 	struct inode *inode = folio->mapping->host;
865 	loff_t last_pos = pos + copied;
866 
867 	/* zero the stale part of the folio if we did a short copy */
868 	if (!folio_test_uptodate(folio)) {
869 		if (copied < len) {
870 			size_t from = offset_in_folio(folio, pos);
871 
872 			folio_zero_range(folio, from + copied, len - copied);
873 		}
874 		folio_mark_uptodate(folio);
875 	}
876 	/*
877 	 * No need to use i_size_read() here, the i_size
878 	 * cannot change under us because we hold the i_mutex.
879 	 */
880 	if (last_pos > inode->i_size)
881 		i_size_write(inode, last_pos);
882 
883 	folio_mark_dirty(folio);
884 	folio_unlock(folio);
885 	folio_put(folio);
886 
887 	return copied;
888 }
889 
890 /*
891  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
892  */
893 const struct address_space_operations ram_aops = {
894 	.read_folio	= simple_read_folio,
895 	.write_begin	= simple_write_begin,
896 	.write_end	= simple_write_end,
897 	.dirty_folio	= noop_dirty_folio,
898 };
899 EXPORT_SYMBOL(ram_aops);
900 
901 /*
902  * the inodes created here are not hashed. If you use iunique to generate
903  * unique inode values later for this filesystem, then you must take care
904  * to pass it an appropriate max_reserved value to avoid collisions.
905  */
906 int simple_fill_super(struct super_block *s, unsigned long magic,
907 		      const struct tree_descr *files)
908 {
909 	struct inode *inode;
910 	struct dentry *root;
911 	struct dentry *dentry;
912 	int i;
913 
914 	s->s_blocksize = PAGE_SIZE;
915 	s->s_blocksize_bits = PAGE_SHIFT;
916 	s->s_magic = magic;
917 	s->s_op = &simple_super_operations;
918 	s->s_time_gran = 1;
919 
920 	inode = new_inode(s);
921 	if (!inode)
922 		return -ENOMEM;
923 	/*
924 	 * because the root inode is 1, the files array must not contain an
925 	 * entry at index 1
926 	 */
927 	inode->i_ino = 1;
928 	inode->i_mode = S_IFDIR | 0755;
929 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
930 	inode->i_op = &simple_dir_inode_operations;
931 	inode->i_fop = &simple_dir_operations;
932 	set_nlink(inode, 2);
933 	root = d_make_root(inode);
934 	if (!root)
935 		return -ENOMEM;
936 	for (i = 0; !files->name || files->name[0]; i++, files++) {
937 		if (!files->name)
938 			continue;
939 
940 		/* warn if it tries to conflict with the root inode */
941 		if (unlikely(i == 1))
942 			printk(KERN_WARNING "%s: %s passed in a files array"
943 				"with an index of 1!\n", __func__,
944 				s->s_type->name);
945 
946 		dentry = d_alloc_name(root, files->name);
947 		if (!dentry)
948 			goto out;
949 		inode = new_inode(s);
950 		if (!inode) {
951 			dput(dentry);
952 			goto out;
953 		}
954 		inode->i_mode = S_IFREG | files->mode;
955 		inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
956 		inode->i_fop = files->ops;
957 		inode->i_ino = i;
958 		d_add(dentry, inode);
959 	}
960 	s->s_root = root;
961 	return 0;
962 out:
963 	d_genocide(root);
964 	shrink_dcache_parent(root);
965 	dput(root);
966 	return -ENOMEM;
967 }
968 EXPORT_SYMBOL(simple_fill_super);
969 
970 static DEFINE_SPINLOCK(pin_fs_lock);
971 
972 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
973 {
974 	struct vfsmount *mnt = NULL;
975 	spin_lock(&pin_fs_lock);
976 	if (unlikely(!*mount)) {
977 		spin_unlock(&pin_fs_lock);
978 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
979 		if (IS_ERR(mnt))
980 			return PTR_ERR(mnt);
981 		spin_lock(&pin_fs_lock);
982 		if (!*mount)
983 			*mount = mnt;
984 	}
985 	mntget(*mount);
986 	++*count;
987 	spin_unlock(&pin_fs_lock);
988 	mntput(mnt);
989 	return 0;
990 }
991 EXPORT_SYMBOL(simple_pin_fs);
992 
993 void simple_release_fs(struct vfsmount **mount, int *count)
994 {
995 	struct vfsmount *mnt;
996 	spin_lock(&pin_fs_lock);
997 	mnt = *mount;
998 	if (!--*count)
999 		*mount = NULL;
1000 	spin_unlock(&pin_fs_lock);
1001 	mntput(mnt);
1002 }
1003 EXPORT_SYMBOL(simple_release_fs);
1004 
1005 /**
1006  * simple_read_from_buffer - copy data from the buffer to user space
1007  * @to: the user space buffer to read to
1008  * @count: the maximum number of bytes to read
1009  * @ppos: the current position in the buffer
1010  * @from: the buffer to read from
1011  * @available: the size of the buffer
1012  *
1013  * The simple_read_from_buffer() function reads up to @count bytes from the
1014  * buffer @from at offset @ppos into the user space address starting at @to.
1015  *
1016  * On success, the number of bytes read is returned and the offset @ppos is
1017  * advanced by this number, or negative value is returned on error.
1018  **/
1019 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1020 				const void *from, size_t available)
1021 {
1022 	loff_t pos = *ppos;
1023 	size_t ret;
1024 
1025 	if (pos < 0)
1026 		return -EINVAL;
1027 	if (pos >= available || !count)
1028 		return 0;
1029 	if (count > available - pos)
1030 		count = available - pos;
1031 	ret = copy_to_user(to, from + pos, count);
1032 	if (ret == count)
1033 		return -EFAULT;
1034 	count -= ret;
1035 	*ppos = pos + count;
1036 	return count;
1037 }
1038 EXPORT_SYMBOL(simple_read_from_buffer);
1039 
1040 /**
1041  * simple_write_to_buffer - copy data from user space to the buffer
1042  * @to: the buffer to write to
1043  * @available: the size of the buffer
1044  * @ppos: the current position in the buffer
1045  * @from: the user space buffer to read from
1046  * @count: the maximum number of bytes to read
1047  *
1048  * The simple_write_to_buffer() function reads up to @count bytes from the user
1049  * space address starting at @from into the buffer @to at offset @ppos.
1050  *
1051  * On success, the number of bytes written is returned and the offset @ppos is
1052  * advanced by this number, or negative value is returned on error.
1053  **/
1054 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1055 		const void __user *from, size_t count)
1056 {
1057 	loff_t pos = *ppos;
1058 	size_t res;
1059 
1060 	if (pos < 0)
1061 		return -EINVAL;
1062 	if (pos >= available || !count)
1063 		return 0;
1064 	if (count > available - pos)
1065 		count = available - pos;
1066 	res = copy_from_user(to + pos, from, count);
1067 	if (res == count)
1068 		return -EFAULT;
1069 	count -= res;
1070 	*ppos = pos + count;
1071 	return count;
1072 }
1073 EXPORT_SYMBOL(simple_write_to_buffer);
1074 
1075 /**
1076  * memory_read_from_buffer - copy data from the buffer
1077  * @to: the kernel space buffer to read to
1078  * @count: the maximum number of bytes to read
1079  * @ppos: the current position in the buffer
1080  * @from: the buffer to read from
1081  * @available: the size of the buffer
1082  *
1083  * The memory_read_from_buffer() function reads up to @count bytes from the
1084  * buffer @from at offset @ppos into the kernel space address starting at @to.
1085  *
1086  * On success, the number of bytes read is returned and the offset @ppos is
1087  * advanced by this number, or negative value is returned on error.
1088  **/
1089 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1090 				const void *from, size_t available)
1091 {
1092 	loff_t pos = *ppos;
1093 
1094 	if (pos < 0)
1095 		return -EINVAL;
1096 	if (pos >= available)
1097 		return 0;
1098 	if (count > available - pos)
1099 		count = available - pos;
1100 	memcpy(to, from + pos, count);
1101 	*ppos = pos + count;
1102 
1103 	return count;
1104 }
1105 EXPORT_SYMBOL(memory_read_from_buffer);
1106 
1107 /*
1108  * Transaction based IO.
1109  * The file expects a single write which triggers the transaction, and then
1110  * possibly a read which collects the result - which is stored in a
1111  * file-local buffer.
1112  */
1113 
1114 void simple_transaction_set(struct file *file, size_t n)
1115 {
1116 	struct simple_transaction_argresp *ar = file->private_data;
1117 
1118 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1119 
1120 	/*
1121 	 * The barrier ensures that ar->size will really remain zero until
1122 	 * ar->data is ready for reading.
1123 	 */
1124 	smp_mb();
1125 	ar->size = n;
1126 }
1127 EXPORT_SYMBOL(simple_transaction_set);
1128 
1129 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1130 {
1131 	struct simple_transaction_argresp *ar;
1132 	static DEFINE_SPINLOCK(simple_transaction_lock);
1133 
1134 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1135 		return ERR_PTR(-EFBIG);
1136 
1137 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1138 	if (!ar)
1139 		return ERR_PTR(-ENOMEM);
1140 
1141 	spin_lock(&simple_transaction_lock);
1142 
1143 	/* only one write allowed per open */
1144 	if (file->private_data) {
1145 		spin_unlock(&simple_transaction_lock);
1146 		free_page((unsigned long)ar);
1147 		return ERR_PTR(-EBUSY);
1148 	}
1149 
1150 	file->private_data = ar;
1151 
1152 	spin_unlock(&simple_transaction_lock);
1153 
1154 	if (copy_from_user(ar->data, buf, size))
1155 		return ERR_PTR(-EFAULT);
1156 
1157 	return ar->data;
1158 }
1159 EXPORT_SYMBOL(simple_transaction_get);
1160 
1161 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1162 {
1163 	struct simple_transaction_argresp *ar = file->private_data;
1164 
1165 	if (!ar)
1166 		return 0;
1167 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1168 }
1169 EXPORT_SYMBOL(simple_transaction_read);
1170 
1171 int simple_transaction_release(struct inode *inode, struct file *file)
1172 {
1173 	free_page((unsigned long)file->private_data);
1174 	return 0;
1175 }
1176 EXPORT_SYMBOL(simple_transaction_release);
1177 
1178 /* Simple attribute files */
1179 
1180 struct simple_attr {
1181 	int (*get)(void *, u64 *);
1182 	int (*set)(void *, u64);
1183 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1184 	char set_buf[24];
1185 	void *data;
1186 	const char *fmt;	/* format for read operation */
1187 	struct mutex mutex;	/* protects access to these buffers */
1188 };
1189 
1190 /* simple_attr_open is called by an actual attribute open file operation
1191  * to set the attribute specific access operations. */
1192 int simple_attr_open(struct inode *inode, struct file *file,
1193 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1194 		     const char *fmt)
1195 {
1196 	struct simple_attr *attr;
1197 
1198 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1199 	if (!attr)
1200 		return -ENOMEM;
1201 
1202 	attr->get = get;
1203 	attr->set = set;
1204 	attr->data = inode->i_private;
1205 	attr->fmt = fmt;
1206 	mutex_init(&attr->mutex);
1207 
1208 	file->private_data = attr;
1209 
1210 	return nonseekable_open(inode, file);
1211 }
1212 EXPORT_SYMBOL_GPL(simple_attr_open);
1213 
1214 int simple_attr_release(struct inode *inode, struct file *file)
1215 {
1216 	kfree(file->private_data);
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1220 
1221 /* read from the buffer that is filled with the get function */
1222 ssize_t simple_attr_read(struct file *file, char __user *buf,
1223 			 size_t len, loff_t *ppos)
1224 {
1225 	struct simple_attr *attr;
1226 	size_t size;
1227 	ssize_t ret;
1228 
1229 	attr = file->private_data;
1230 
1231 	if (!attr->get)
1232 		return -EACCES;
1233 
1234 	ret = mutex_lock_interruptible(&attr->mutex);
1235 	if (ret)
1236 		return ret;
1237 
1238 	if (*ppos && attr->get_buf[0]) {
1239 		/* continued read */
1240 		size = strlen(attr->get_buf);
1241 	} else {
1242 		/* first read */
1243 		u64 val;
1244 		ret = attr->get(attr->data, &val);
1245 		if (ret)
1246 			goto out;
1247 
1248 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1249 				 attr->fmt, (unsigned long long)val);
1250 	}
1251 
1252 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1253 out:
1254 	mutex_unlock(&attr->mutex);
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL_GPL(simple_attr_read);
1258 
1259 /* interpret the buffer as a number to call the set function with */
1260 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1261 			  size_t len, loff_t *ppos, bool is_signed)
1262 {
1263 	struct simple_attr *attr;
1264 	unsigned long long val;
1265 	size_t size;
1266 	ssize_t ret;
1267 
1268 	attr = file->private_data;
1269 	if (!attr->set)
1270 		return -EACCES;
1271 
1272 	ret = mutex_lock_interruptible(&attr->mutex);
1273 	if (ret)
1274 		return ret;
1275 
1276 	ret = -EFAULT;
1277 	size = min(sizeof(attr->set_buf) - 1, len);
1278 	if (copy_from_user(attr->set_buf, buf, size))
1279 		goto out;
1280 
1281 	attr->set_buf[size] = '\0';
1282 	if (is_signed)
1283 		ret = kstrtoll(attr->set_buf, 0, &val);
1284 	else
1285 		ret = kstrtoull(attr->set_buf, 0, &val);
1286 	if (ret)
1287 		goto out;
1288 	ret = attr->set(attr->data, val);
1289 	if (ret == 0)
1290 		ret = len; /* on success, claim we got the whole input */
1291 out:
1292 	mutex_unlock(&attr->mutex);
1293 	return ret;
1294 }
1295 
1296 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1297 			  size_t len, loff_t *ppos)
1298 {
1299 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1300 }
1301 EXPORT_SYMBOL_GPL(simple_attr_write);
1302 
1303 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1304 			  size_t len, loff_t *ppos)
1305 {
1306 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1307 }
1308 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1309 
1310 /**
1311  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1312  * @sb:		filesystem to do the file handle conversion on
1313  * @fid:	file handle to convert
1314  * @fh_len:	length of the file handle in bytes
1315  * @fh_type:	type of file handle
1316  * @get_inode:	filesystem callback to retrieve inode
1317  *
1318  * This function decodes @fid as long as it has one of the well-known
1319  * Linux filehandle types and calls @get_inode on it to retrieve the
1320  * inode for the object specified in the file handle.
1321  */
1322 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1323 		int fh_len, int fh_type, struct inode *(*get_inode)
1324 			(struct super_block *sb, u64 ino, u32 gen))
1325 {
1326 	struct inode *inode = NULL;
1327 
1328 	if (fh_len < 2)
1329 		return NULL;
1330 
1331 	switch (fh_type) {
1332 	case FILEID_INO32_GEN:
1333 	case FILEID_INO32_GEN_PARENT:
1334 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1335 		break;
1336 	}
1337 
1338 	return d_obtain_alias(inode);
1339 }
1340 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1341 
1342 /**
1343  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1344  * @sb:		filesystem to do the file handle conversion on
1345  * @fid:	file handle to convert
1346  * @fh_len:	length of the file handle in bytes
1347  * @fh_type:	type of file handle
1348  * @get_inode:	filesystem callback to retrieve inode
1349  *
1350  * This function decodes @fid as long as it has one of the well-known
1351  * Linux filehandle types and calls @get_inode on it to retrieve the
1352  * inode for the _parent_ object specified in the file handle if it
1353  * is specified in the file handle, or NULL otherwise.
1354  */
1355 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1356 		int fh_len, int fh_type, struct inode *(*get_inode)
1357 			(struct super_block *sb, u64 ino, u32 gen))
1358 {
1359 	struct inode *inode = NULL;
1360 
1361 	if (fh_len <= 2)
1362 		return NULL;
1363 
1364 	switch (fh_type) {
1365 	case FILEID_INO32_GEN_PARENT:
1366 		inode = get_inode(sb, fid->i32.parent_ino,
1367 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1368 		break;
1369 	}
1370 
1371 	return d_obtain_alias(inode);
1372 }
1373 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1374 
1375 /**
1376  * __generic_file_fsync - generic fsync implementation for simple filesystems
1377  *
1378  * @file:	file to synchronize
1379  * @start:	start offset in bytes
1380  * @end:	end offset in bytes (inclusive)
1381  * @datasync:	only synchronize essential metadata if true
1382  *
1383  * This is a generic implementation of the fsync method for simple
1384  * filesystems which track all non-inode metadata in the buffers list
1385  * hanging off the address_space structure.
1386  */
1387 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1388 				 int datasync)
1389 {
1390 	struct inode *inode = file->f_mapping->host;
1391 	int err;
1392 	int ret;
1393 
1394 	err = file_write_and_wait_range(file, start, end);
1395 	if (err)
1396 		return err;
1397 
1398 	inode_lock(inode);
1399 	ret = sync_mapping_buffers(inode->i_mapping);
1400 	if (!(inode->i_state & I_DIRTY_ALL))
1401 		goto out;
1402 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1403 		goto out;
1404 
1405 	err = sync_inode_metadata(inode, 1);
1406 	if (ret == 0)
1407 		ret = err;
1408 
1409 out:
1410 	inode_unlock(inode);
1411 	/* check and advance again to catch errors after syncing out buffers */
1412 	err = file_check_and_advance_wb_err(file);
1413 	if (ret == 0)
1414 		ret = err;
1415 	return ret;
1416 }
1417 EXPORT_SYMBOL(__generic_file_fsync);
1418 
1419 /**
1420  * generic_file_fsync - generic fsync implementation for simple filesystems
1421  *			with flush
1422  * @file:	file to synchronize
1423  * @start:	start offset in bytes
1424  * @end:	end offset in bytes (inclusive)
1425  * @datasync:	only synchronize essential metadata if true
1426  *
1427  */
1428 
1429 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1430 		       int datasync)
1431 {
1432 	struct inode *inode = file->f_mapping->host;
1433 	int err;
1434 
1435 	err = __generic_file_fsync(file, start, end, datasync);
1436 	if (err)
1437 		return err;
1438 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1439 }
1440 EXPORT_SYMBOL(generic_file_fsync);
1441 
1442 /**
1443  * generic_check_addressable - Check addressability of file system
1444  * @blocksize_bits:	log of file system block size
1445  * @num_blocks:		number of blocks in file system
1446  *
1447  * Determine whether a file system with @num_blocks blocks (and a
1448  * block size of 2**@blocksize_bits) is addressable by the sector_t
1449  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1450  */
1451 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1452 {
1453 	u64 last_fs_block = num_blocks - 1;
1454 	u64 last_fs_page =
1455 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1456 
1457 	if (unlikely(num_blocks == 0))
1458 		return 0;
1459 
1460 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1461 		return -EINVAL;
1462 
1463 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1464 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1465 		return -EFBIG;
1466 	}
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL(generic_check_addressable);
1470 
1471 /*
1472  * No-op implementation of ->fsync for in-memory filesystems.
1473  */
1474 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1475 {
1476 	return 0;
1477 }
1478 EXPORT_SYMBOL(noop_fsync);
1479 
1480 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1481 {
1482 	/*
1483 	 * iomap based filesystems support direct I/O without need for
1484 	 * this callback. However, it still needs to be set in
1485 	 * inode->a_ops so that open/fcntl know that direct I/O is
1486 	 * generally supported.
1487 	 */
1488 	return -EINVAL;
1489 }
1490 EXPORT_SYMBOL_GPL(noop_direct_IO);
1491 
1492 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1493 void kfree_link(void *p)
1494 {
1495 	kfree(p);
1496 }
1497 EXPORT_SYMBOL(kfree_link);
1498 
1499 struct inode *alloc_anon_inode(struct super_block *s)
1500 {
1501 	static const struct address_space_operations anon_aops = {
1502 		.dirty_folio	= noop_dirty_folio,
1503 	};
1504 	struct inode *inode = new_inode_pseudo(s);
1505 
1506 	if (!inode)
1507 		return ERR_PTR(-ENOMEM);
1508 
1509 	inode->i_ino = get_next_ino();
1510 	inode->i_mapping->a_ops = &anon_aops;
1511 
1512 	/*
1513 	 * Mark the inode dirty from the very beginning,
1514 	 * that way it will never be moved to the dirty
1515 	 * list because mark_inode_dirty() will think
1516 	 * that it already _is_ on the dirty list.
1517 	 */
1518 	inode->i_state = I_DIRTY;
1519 	inode->i_mode = S_IRUSR | S_IWUSR;
1520 	inode->i_uid = current_fsuid();
1521 	inode->i_gid = current_fsgid();
1522 	inode->i_flags |= S_PRIVATE;
1523 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1524 	return inode;
1525 }
1526 EXPORT_SYMBOL(alloc_anon_inode);
1527 
1528 /**
1529  * simple_nosetlease - generic helper for prohibiting leases
1530  * @filp: file pointer
1531  * @arg: type of lease to obtain
1532  * @flp: new lease supplied for insertion
1533  * @priv: private data for lm_setup operation
1534  *
1535  * Generic helper for filesystems that do not wish to allow leases to be set.
1536  * All arguments are ignored and it just returns -EINVAL.
1537  */
1538 int
1539 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1540 		  void **priv)
1541 {
1542 	return -EINVAL;
1543 }
1544 EXPORT_SYMBOL(simple_nosetlease);
1545 
1546 /**
1547  * simple_get_link - generic helper to get the target of "fast" symlinks
1548  * @dentry: not used here
1549  * @inode: the symlink inode
1550  * @done: not used here
1551  *
1552  * Generic helper for filesystems to use for symlink inodes where a pointer to
1553  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1554  * since as an optimization the path lookup code uses any non-NULL ->i_link
1555  * directly, without calling ->get_link().  But ->get_link() still must be set,
1556  * to mark the inode_operations as being for a symlink.
1557  *
1558  * Return: the symlink target
1559  */
1560 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1561 			    struct delayed_call *done)
1562 {
1563 	return inode->i_link;
1564 }
1565 EXPORT_SYMBOL(simple_get_link);
1566 
1567 const struct inode_operations simple_symlink_inode_operations = {
1568 	.get_link = simple_get_link,
1569 };
1570 EXPORT_SYMBOL(simple_symlink_inode_operations);
1571 
1572 /*
1573  * Operations for a permanently empty directory.
1574  */
1575 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1576 {
1577 	return ERR_PTR(-ENOENT);
1578 }
1579 
1580 static int empty_dir_getattr(struct mnt_idmap *idmap,
1581 			     const struct path *path, struct kstat *stat,
1582 			     u32 request_mask, unsigned int query_flags)
1583 {
1584 	struct inode *inode = d_inode(path->dentry);
1585 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1586 	return 0;
1587 }
1588 
1589 static int empty_dir_setattr(struct mnt_idmap *idmap,
1590 			     struct dentry *dentry, struct iattr *attr)
1591 {
1592 	return -EPERM;
1593 }
1594 
1595 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1596 {
1597 	return -EOPNOTSUPP;
1598 }
1599 
1600 static const struct inode_operations empty_dir_inode_operations = {
1601 	.lookup		= empty_dir_lookup,
1602 	.permission	= generic_permission,
1603 	.setattr	= empty_dir_setattr,
1604 	.getattr	= empty_dir_getattr,
1605 	.listxattr	= empty_dir_listxattr,
1606 };
1607 
1608 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1609 {
1610 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1611 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1612 }
1613 
1614 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1615 {
1616 	dir_emit_dots(file, ctx);
1617 	return 0;
1618 }
1619 
1620 static const struct file_operations empty_dir_operations = {
1621 	.llseek		= empty_dir_llseek,
1622 	.read		= generic_read_dir,
1623 	.iterate_shared	= empty_dir_readdir,
1624 	.fsync		= noop_fsync,
1625 };
1626 
1627 
1628 void make_empty_dir_inode(struct inode *inode)
1629 {
1630 	set_nlink(inode, 2);
1631 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1632 	inode->i_uid = GLOBAL_ROOT_UID;
1633 	inode->i_gid = GLOBAL_ROOT_GID;
1634 	inode->i_rdev = 0;
1635 	inode->i_size = 0;
1636 	inode->i_blkbits = PAGE_SHIFT;
1637 	inode->i_blocks = 0;
1638 
1639 	inode->i_op = &empty_dir_inode_operations;
1640 	inode->i_opflags &= ~IOP_XATTR;
1641 	inode->i_fop = &empty_dir_operations;
1642 }
1643 
1644 bool is_empty_dir_inode(struct inode *inode)
1645 {
1646 	return (inode->i_fop == &empty_dir_operations) &&
1647 		(inode->i_op == &empty_dir_inode_operations);
1648 }
1649 
1650 #if IS_ENABLED(CONFIG_UNICODE)
1651 /**
1652  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1653  * @dentry:	dentry whose name we are checking against
1654  * @len:	len of name of dentry
1655  * @str:	str pointer to name of dentry
1656  * @name:	Name to compare against
1657  *
1658  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1659  */
1660 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1661 				const char *str, const struct qstr *name)
1662 {
1663 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1664 	const struct inode *dir = READ_ONCE(parent->d_inode);
1665 	const struct super_block *sb = dentry->d_sb;
1666 	const struct unicode_map *um = sb->s_encoding;
1667 	struct qstr qstr = QSTR_INIT(str, len);
1668 	char strbuf[DNAME_INLINE_LEN];
1669 	int ret;
1670 
1671 	if (!dir || !IS_CASEFOLDED(dir))
1672 		goto fallback;
1673 	/*
1674 	 * If the dentry name is stored in-line, then it may be concurrently
1675 	 * modified by a rename.  If this happens, the VFS will eventually retry
1676 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1677 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1678 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1679 	 */
1680 	if (len <= DNAME_INLINE_LEN - 1) {
1681 		memcpy(strbuf, str, len);
1682 		strbuf[len] = 0;
1683 		qstr.name = strbuf;
1684 		/* prevent compiler from optimizing out the temporary buffer */
1685 		barrier();
1686 	}
1687 	ret = utf8_strncasecmp(um, name, &qstr);
1688 	if (ret >= 0)
1689 		return ret;
1690 
1691 	if (sb_has_strict_encoding(sb))
1692 		return -EINVAL;
1693 fallback:
1694 	if (len != name->len)
1695 		return 1;
1696 	return !!memcmp(str, name->name, len);
1697 }
1698 
1699 /**
1700  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1701  * @dentry:	dentry of the parent directory
1702  * @str:	qstr of name whose hash we should fill in
1703  *
1704  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1705  */
1706 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1707 {
1708 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1709 	struct super_block *sb = dentry->d_sb;
1710 	const struct unicode_map *um = sb->s_encoding;
1711 	int ret = 0;
1712 
1713 	if (!dir || !IS_CASEFOLDED(dir))
1714 		return 0;
1715 
1716 	ret = utf8_casefold_hash(um, dentry, str);
1717 	if (ret < 0 && sb_has_strict_encoding(sb))
1718 		return -EINVAL;
1719 	return 0;
1720 }
1721 
1722 static const struct dentry_operations generic_ci_dentry_ops = {
1723 	.d_hash = generic_ci_d_hash,
1724 	.d_compare = generic_ci_d_compare,
1725 };
1726 #endif
1727 
1728 #ifdef CONFIG_FS_ENCRYPTION
1729 static const struct dentry_operations generic_encrypted_dentry_ops = {
1730 	.d_revalidate = fscrypt_d_revalidate,
1731 };
1732 #endif
1733 
1734 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1735 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1736 	.d_hash = generic_ci_d_hash,
1737 	.d_compare = generic_ci_d_compare,
1738 	.d_revalidate = fscrypt_d_revalidate,
1739 };
1740 #endif
1741 
1742 /**
1743  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1744  * @dentry:	dentry to set ops on
1745  *
1746  * Casefolded directories need d_hash and d_compare set, so that the dentries
1747  * contained in them are handled case-insensitively.  Note that these operations
1748  * are needed on the parent directory rather than on the dentries in it, and
1749  * while the casefolding flag can be toggled on and off on an empty directory,
1750  * dentry_operations can't be changed later.  As a result, if the filesystem has
1751  * casefolding support enabled at all, we have to give all dentries the
1752  * casefolding operations even if their inode doesn't have the casefolding flag
1753  * currently (and thus the casefolding ops would be no-ops for now).
1754  *
1755  * Encryption works differently in that the only dentry operation it needs is
1756  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1757  * The no-key flag can't be set "later", so we don't have to worry about that.
1758  *
1759  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1760  * with certain dentry operations) and to avoid taking an unnecessary
1761  * performance hit, we use custom dentry_operations for each possible
1762  * combination rather than always installing all operations.
1763  */
1764 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1765 {
1766 #ifdef CONFIG_FS_ENCRYPTION
1767 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1768 #endif
1769 #if IS_ENABLED(CONFIG_UNICODE)
1770 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1771 #endif
1772 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1773 	if (needs_encrypt_ops && needs_ci_ops) {
1774 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1775 		return;
1776 	}
1777 #endif
1778 #ifdef CONFIG_FS_ENCRYPTION
1779 	if (needs_encrypt_ops) {
1780 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1781 		return;
1782 	}
1783 #endif
1784 #if IS_ENABLED(CONFIG_UNICODE)
1785 	if (needs_ci_ops) {
1786 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1787 		return;
1788 	}
1789 #endif
1790 }
1791 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1792 
1793 /**
1794  * inode_maybe_inc_iversion - increments i_version
1795  * @inode: inode with the i_version that should be updated
1796  * @force: increment the counter even if it's not necessary?
1797  *
1798  * Every time the inode is modified, the i_version field must be seen to have
1799  * changed by any observer.
1800  *
1801  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1802  * the value, and clear the queried flag.
1803  *
1804  * In the common case where neither is set, then we can return "false" without
1805  * updating i_version.
1806  *
1807  * If this function returns false, and no other metadata has changed, then we
1808  * can avoid logging the metadata.
1809  */
1810 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1811 {
1812 	u64 cur, new;
1813 
1814 	/*
1815 	 * The i_version field is not strictly ordered with any other inode
1816 	 * information, but the legacy inode_inc_iversion code used a spinlock
1817 	 * to serialize increments.
1818 	 *
1819 	 * Here, we add full memory barriers to ensure that any de-facto
1820 	 * ordering with other info is preserved.
1821 	 *
1822 	 * This barrier pairs with the barrier in inode_query_iversion()
1823 	 */
1824 	smp_mb();
1825 	cur = inode_peek_iversion_raw(inode);
1826 	do {
1827 		/* If flag is clear then we needn't do anything */
1828 		if (!force && !(cur & I_VERSION_QUERIED))
1829 			return false;
1830 
1831 		/* Since lowest bit is flag, add 2 to avoid it */
1832 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1833 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1834 	return true;
1835 }
1836 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1837 
1838 /**
1839  * inode_query_iversion - read i_version for later use
1840  * @inode: inode from which i_version should be read
1841  *
1842  * Read the inode i_version counter. This should be used by callers that wish
1843  * to store the returned i_version for later comparison. This will guarantee
1844  * that a later query of the i_version will result in a different value if
1845  * anything has changed.
1846  *
1847  * In this implementation, we fetch the current value, set the QUERIED flag and
1848  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1849  * that fails, we try again with the newly fetched value from the cmpxchg.
1850  */
1851 u64 inode_query_iversion(struct inode *inode)
1852 {
1853 	u64 cur, new;
1854 
1855 	cur = inode_peek_iversion_raw(inode);
1856 	do {
1857 		/* If flag is already set, then no need to swap */
1858 		if (cur & I_VERSION_QUERIED) {
1859 			/*
1860 			 * This barrier (and the implicit barrier in the
1861 			 * cmpxchg below) pairs with the barrier in
1862 			 * inode_maybe_inc_iversion().
1863 			 */
1864 			smp_mb();
1865 			break;
1866 		}
1867 
1868 		new = cur | I_VERSION_QUERIED;
1869 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1870 	return cur >> I_VERSION_QUERIED_SHIFT;
1871 }
1872 EXPORT_SYMBOL(inode_query_iversion);
1873 
1874 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1875 		ssize_t direct_written, ssize_t buffered_written)
1876 {
1877 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1878 	loff_t pos = iocb->ki_pos - buffered_written;
1879 	loff_t end = iocb->ki_pos - 1;
1880 	int err;
1881 
1882 	/*
1883 	 * If the buffered write fallback returned an error, we want to return
1884 	 * the number of bytes which were written by direct I/O, or the error
1885 	 * code if that was zero.
1886 	 *
1887 	 * Note that this differs from normal direct-io semantics, which will
1888 	 * return -EFOO even if some bytes were written.
1889 	 */
1890 	if (unlikely(buffered_written < 0)) {
1891 		if (direct_written)
1892 			return direct_written;
1893 		return buffered_written;
1894 	}
1895 
1896 	/*
1897 	 * We need to ensure that the page cache pages are written to disk and
1898 	 * invalidated to preserve the expected O_DIRECT semantics.
1899 	 */
1900 	err = filemap_write_and_wait_range(mapping, pos, end);
1901 	if (err < 0) {
1902 		/*
1903 		 * We don't know how much we wrote, so just return the number of
1904 		 * bytes which were direct-written
1905 		 */
1906 		if (direct_written)
1907 			return direct_written;
1908 		return err;
1909 	}
1910 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1911 	return direct_written + buffered_written;
1912 }
1913 EXPORT_SYMBOL_GPL(direct_write_fallback);
1914