xref: /linux/fs/libfs.c (revision 498d319bb512992ef0784c278fa03679f2f5649d)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/export.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/namei.h>
14 #include <linux/exportfs.h>
15 #include <linux/writeback.h>
16 #include <linux/buffer_head.h> /* sync_mapping_buffers */
17 
18 #include <asm/uaccess.h>
19 
20 #include "internal.h"
21 
22 static inline int simple_positive(struct dentry *dentry)
23 {
24 	return dentry->d_inode && !d_unhashed(dentry);
25 }
26 
27 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
28 		   struct kstat *stat)
29 {
30 	struct inode *inode = dentry->d_inode;
31 	generic_fillattr(inode, stat);
32 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
33 	return 0;
34 }
35 EXPORT_SYMBOL(simple_getattr);
36 
37 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
38 {
39 	buf->f_type = dentry->d_sb->s_magic;
40 	buf->f_bsize = PAGE_CACHE_SIZE;
41 	buf->f_namelen = NAME_MAX;
42 	return 0;
43 }
44 EXPORT_SYMBOL(simple_statfs);
45 
46 /*
47  * Retaining negative dentries for an in-memory filesystem just wastes
48  * memory and lookup time: arrange for them to be deleted immediately.
49  */
50 static int simple_delete_dentry(const struct dentry *dentry)
51 {
52 	return 1;
53 }
54 
55 /*
56  * Lookup the data. This is trivial - if the dentry didn't already
57  * exist, we know it is negative.  Set d_op to delete negative dentries.
58  */
59 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
60 {
61 	static const struct dentry_operations simple_dentry_operations = {
62 		.d_delete = simple_delete_dentry,
63 	};
64 
65 	if (dentry->d_name.len > NAME_MAX)
66 		return ERR_PTR(-ENAMETOOLONG);
67 	if (!dentry->d_sb->s_d_op)
68 		d_set_d_op(dentry, &simple_dentry_operations);
69 	d_add(dentry, NULL);
70 	return NULL;
71 }
72 EXPORT_SYMBOL(simple_lookup);
73 
74 int dcache_dir_open(struct inode *inode, struct file *file)
75 {
76 	static struct qstr cursor_name = QSTR_INIT(".", 1);
77 
78 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
79 
80 	return file->private_data ? 0 : -ENOMEM;
81 }
82 EXPORT_SYMBOL(dcache_dir_open);
83 
84 int dcache_dir_close(struct inode *inode, struct file *file)
85 {
86 	dput(file->private_data);
87 	return 0;
88 }
89 EXPORT_SYMBOL(dcache_dir_close);
90 
91 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
92 {
93 	struct dentry *dentry = file->f_path.dentry;
94 	mutex_lock(&dentry->d_inode->i_mutex);
95 	switch (whence) {
96 		case 1:
97 			offset += file->f_pos;
98 		case 0:
99 			if (offset >= 0)
100 				break;
101 		default:
102 			mutex_unlock(&dentry->d_inode->i_mutex);
103 			return -EINVAL;
104 	}
105 	if (offset != file->f_pos) {
106 		file->f_pos = offset;
107 		if (file->f_pos >= 2) {
108 			struct list_head *p;
109 			struct dentry *cursor = file->private_data;
110 			loff_t n = file->f_pos - 2;
111 
112 			spin_lock(&dentry->d_lock);
113 			/* d_lock not required for cursor */
114 			list_del(&cursor->d_u.d_child);
115 			p = dentry->d_subdirs.next;
116 			while (n && p != &dentry->d_subdirs) {
117 				struct dentry *next;
118 				next = list_entry(p, struct dentry, d_u.d_child);
119 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
120 				if (simple_positive(next))
121 					n--;
122 				spin_unlock(&next->d_lock);
123 				p = p->next;
124 			}
125 			list_add_tail(&cursor->d_u.d_child, p);
126 			spin_unlock(&dentry->d_lock);
127 		}
128 	}
129 	mutex_unlock(&dentry->d_inode->i_mutex);
130 	return offset;
131 }
132 EXPORT_SYMBOL(dcache_dir_lseek);
133 
134 /* Relationship between i_mode and the DT_xxx types */
135 static inline unsigned char dt_type(struct inode *inode)
136 {
137 	return (inode->i_mode >> 12) & 15;
138 }
139 
140 /*
141  * Directory is locked and all positive dentries in it are safe, since
142  * for ramfs-type trees they can't go away without unlink() or rmdir(),
143  * both impossible due to the lock on directory.
144  */
145 
146 int dcache_readdir(struct file *file, struct dir_context *ctx)
147 {
148 	struct dentry *dentry = file->f_path.dentry;
149 	struct dentry *cursor = file->private_data;
150 	struct list_head *p, *q = &cursor->d_u.d_child;
151 
152 	if (!dir_emit_dots(file, ctx))
153 		return 0;
154 	spin_lock(&dentry->d_lock);
155 	if (ctx->pos == 2)
156 		list_move(q, &dentry->d_subdirs);
157 
158 	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
159 		struct dentry *next = list_entry(p, struct dentry, d_u.d_child);
160 		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
161 		if (!simple_positive(next)) {
162 			spin_unlock(&next->d_lock);
163 			continue;
164 		}
165 
166 		spin_unlock(&next->d_lock);
167 		spin_unlock(&dentry->d_lock);
168 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
169 			      next->d_inode->i_ino, dt_type(next->d_inode)))
170 			return 0;
171 		spin_lock(&dentry->d_lock);
172 		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
173 		/* next is still alive */
174 		list_move(q, p);
175 		spin_unlock(&next->d_lock);
176 		p = q;
177 		ctx->pos++;
178 	}
179 	spin_unlock(&dentry->d_lock);
180 	return 0;
181 }
182 EXPORT_SYMBOL(dcache_readdir);
183 
184 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
185 {
186 	return -EISDIR;
187 }
188 EXPORT_SYMBOL(generic_read_dir);
189 
190 const struct file_operations simple_dir_operations = {
191 	.open		= dcache_dir_open,
192 	.release	= dcache_dir_close,
193 	.llseek		= dcache_dir_lseek,
194 	.read		= generic_read_dir,
195 	.iterate	= dcache_readdir,
196 	.fsync		= noop_fsync,
197 };
198 EXPORT_SYMBOL(simple_dir_operations);
199 
200 const struct inode_operations simple_dir_inode_operations = {
201 	.lookup		= simple_lookup,
202 };
203 EXPORT_SYMBOL(simple_dir_inode_operations);
204 
205 static const struct super_operations simple_super_operations = {
206 	.statfs		= simple_statfs,
207 };
208 
209 /*
210  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
211  * will never be mountable)
212  */
213 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
214 	const struct super_operations *ops,
215 	const struct dentry_operations *dops, unsigned long magic)
216 {
217 	struct super_block *s;
218 	struct dentry *dentry;
219 	struct inode *root;
220 	struct qstr d_name = QSTR_INIT(name, strlen(name));
221 
222 	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
223 	if (IS_ERR(s))
224 		return ERR_CAST(s);
225 
226 	s->s_maxbytes = MAX_LFS_FILESIZE;
227 	s->s_blocksize = PAGE_SIZE;
228 	s->s_blocksize_bits = PAGE_SHIFT;
229 	s->s_magic = magic;
230 	s->s_op = ops ? ops : &simple_super_operations;
231 	s->s_time_gran = 1;
232 	root = new_inode(s);
233 	if (!root)
234 		goto Enomem;
235 	/*
236 	 * since this is the first inode, make it number 1. New inodes created
237 	 * after this must take care not to collide with it (by passing
238 	 * max_reserved of 1 to iunique).
239 	 */
240 	root->i_ino = 1;
241 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
242 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
243 	dentry = __d_alloc(s, &d_name);
244 	if (!dentry) {
245 		iput(root);
246 		goto Enomem;
247 	}
248 	d_instantiate(dentry, root);
249 	s->s_root = dentry;
250 	s->s_d_op = dops;
251 	s->s_flags |= MS_ACTIVE;
252 	return dget(s->s_root);
253 
254 Enomem:
255 	deactivate_locked_super(s);
256 	return ERR_PTR(-ENOMEM);
257 }
258 EXPORT_SYMBOL(mount_pseudo);
259 
260 int simple_open(struct inode *inode, struct file *file)
261 {
262 	if (inode->i_private)
263 		file->private_data = inode->i_private;
264 	return 0;
265 }
266 EXPORT_SYMBOL(simple_open);
267 
268 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
269 {
270 	struct inode *inode = old_dentry->d_inode;
271 
272 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
273 	inc_nlink(inode);
274 	ihold(inode);
275 	dget(dentry);
276 	d_instantiate(dentry, inode);
277 	return 0;
278 }
279 EXPORT_SYMBOL(simple_link);
280 
281 int simple_empty(struct dentry *dentry)
282 {
283 	struct dentry *child;
284 	int ret = 0;
285 
286 	spin_lock(&dentry->d_lock);
287 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
288 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
289 		if (simple_positive(child)) {
290 			spin_unlock(&child->d_lock);
291 			goto out;
292 		}
293 		spin_unlock(&child->d_lock);
294 	}
295 	ret = 1;
296 out:
297 	spin_unlock(&dentry->d_lock);
298 	return ret;
299 }
300 EXPORT_SYMBOL(simple_empty);
301 
302 int simple_unlink(struct inode *dir, struct dentry *dentry)
303 {
304 	struct inode *inode = dentry->d_inode;
305 
306 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
307 	drop_nlink(inode);
308 	dput(dentry);
309 	return 0;
310 }
311 EXPORT_SYMBOL(simple_unlink);
312 
313 int simple_rmdir(struct inode *dir, struct dentry *dentry)
314 {
315 	if (!simple_empty(dentry))
316 		return -ENOTEMPTY;
317 
318 	drop_nlink(dentry->d_inode);
319 	simple_unlink(dir, dentry);
320 	drop_nlink(dir);
321 	return 0;
322 }
323 EXPORT_SYMBOL(simple_rmdir);
324 
325 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
326 		struct inode *new_dir, struct dentry *new_dentry)
327 {
328 	struct inode *inode = old_dentry->d_inode;
329 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
330 
331 	if (!simple_empty(new_dentry))
332 		return -ENOTEMPTY;
333 
334 	if (new_dentry->d_inode) {
335 		simple_unlink(new_dir, new_dentry);
336 		if (they_are_dirs) {
337 			drop_nlink(new_dentry->d_inode);
338 			drop_nlink(old_dir);
339 		}
340 	} else if (they_are_dirs) {
341 		drop_nlink(old_dir);
342 		inc_nlink(new_dir);
343 	}
344 
345 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
346 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
347 
348 	return 0;
349 }
350 EXPORT_SYMBOL(simple_rename);
351 
352 /**
353  * simple_setattr - setattr for simple filesystem
354  * @dentry: dentry
355  * @iattr: iattr structure
356  *
357  * Returns 0 on success, -error on failure.
358  *
359  * simple_setattr is a simple ->setattr implementation without a proper
360  * implementation of size changes.
361  *
362  * It can either be used for in-memory filesystems or special files
363  * on simple regular filesystems.  Anything that needs to change on-disk
364  * or wire state on size changes needs its own setattr method.
365  */
366 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
367 {
368 	struct inode *inode = dentry->d_inode;
369 	int error;
370 
371 	error = inode_change_ok(inode, iattr);
372 	if (error)
373 		return error;
374 
375 	if (iattr->ia_valid & ATTR_SIZE)
376 		truncate_setsize(inode, iattr->ia_size);
377 	setattr_copy(inode, iattr);
378 	mark_inode_dirty(inode);
379 	return 0;
380 }
381 EXPORT_SYMBOL(simple_setattr);
382 
383 int simple_readpage(struct file *file, struct page *page)
384 {
385 	clear_highpage(page);
386 	flush_dcache_page(page);
387 	SetPageUptodate(page);
388 	unlock_page(page);
389 	return 0;
390 }
391 EXPORT_SYMBOL(simple_readpage);
392 
393 int simple_write_begin(struct file *file, struct address_space *mapping,
394 			loff_t pos, unsigned len, unsigned flags,
395 			struct page **pagep, void **fsdata)
396 {
397 	struct page *page;
398 	pgoff_t index;
399 
400 	index = pos >> PAGE_CACHE_SHIFT;
401 
402 	page = grab_cache_page_write_begin(mapping, index, flags);
403 	if (!page)
404 		return -ENOMEM;
405 
406 	*pagep = page;
407 
408 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
409 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
410 
411 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
412 	}
413 	return 0;
414 }
415 EXPORT_SYMBOL(simple_write_begin);
416 
417 /**
418  * simple_write_end - .write_end helper for non-block-device FSes
419  * @available: See .write_end of address_space_operations
420  * @file: 		"
421  * @mapping: 		"
422  * @pos: 		"
423  * @len: 		"
424  * @copied: 		"
425  * @page: 		"
426  * @fsdata: 		"
427  *
428  * simple_write_end does the minimum needed for updating a page after writing is
429  * done. It has the same API signature as the .write_end of
430  * address_space_operations vector. So it can just be set onto .write_end for
431  * FSes that don't need any other processing. i_mutex is assumed to be held.
432  * Block based filesystems should use generic_write_end().
433  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
434  * is not called, so a filesystem that actually does store data in .write_inode
435  * should extend on what's done here with a call to mark_inode_dirty() in the
436  * case that i_size has changed.
437  */
438 int simple_write_end(struct file *file, struct address_space *mapping,
439 			loff_t pos, unsigned len, unsigned copied,
440 			struct page *page, void *fsdata)
441 {
442 	struct inode *inode = page->mapping->host;
443 	loff_t last_pos = pos + copied;
444 
445 	/* zero the stale part of the page if we did a short copy */
446 	if (copied < len) {
447 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
448 
449 		zero_user(page, from + copied, len - copied);
450 	}
451 
452 	if (!PageUptodate(page))
453 		SetPageUptodate(page);
454 	/*
455 	 * No need to use i_size_read() here, the i_size
456 	 * cannot change under us because we hold the i_mutex.
457 	 */
458 	if (last_pos > inode->i_size)
459 		i_size_write(inode, last_pos);
460 
461 	set_page_dirty(page);
462 	unlock_page(page);
463 	page_cache_release(page);
464 
465 	return copied;
466 }
467 EXPORT_SYMBOL(simple_write_end);
468 
469 /*
470  * the inodes created here are not hashed. If you use iunique to generate
471  * unique inode values later for this filesystem, then you must take care
472  * to pass it an appropriate max_reserved value to avoid collisions.
473  */
474 int simple_fill_super(struct super_block *s, unsigned long magic,
475 		      struct tree_descr *files)
476 {
477 	struct inode *inode;
478 	struct dentry *root;
479 	struct dentry *dentry;
480 	int i;
481 
482 	s->s_blocksize = PAGE_CACHE_SIZE;
483 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
484 	s->s_magic = magic;
485 	s->s_op = &simple_super_operations;
486 	s->s_time_gran = 1;
487 
488 	inode = new_inode(s);
489 	if (!inode)
490 		return -ENOMEM;
491 	/*
492 	 * because the root inode is 1, the files array must not contain an
493 	 * entry at index 1
494 	 */
495 	inode->i_ino = 1;
496 	inode->i_mode = S_IFDIR | 0755;
497 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
498 	inode->i_op = &simple_dir_inode_operations;
499 	inode->i_fop = &simple_dir_operations;
500 	set_nlink(inode, 2);
501 	root = d_make_root(inode);
502 	if (!root)
503 		return -ENOMEM;
504 	for (i = 0; !files->name || files->name[0]; i++, files++) {
505 		if (!files->name)
506 			continue;
507 
508 		/* warn if it tries to conflict with the root inode */
509 		if (unlikely(i == 1))
510 			printk(KERN_WARNING "%s: %s passed in a files array"
511 				"with an index of 1!\n", __func__,
512 				s->s_type->name);
513 
514 		dentry = d_alloc_name(root, files->name);
515 		if (!dentry)
516 			goto out;
517 		inode = new_inode(s);
518 		if (!inode) {
519 			dput(dentry);
520 			goto out;
521 		}
522 		inode->i_mode = S_IFREG | files->mode;
523 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
524 		inode->i_fop = files->ops;
525 		inode->i_ino = i;
526 		d_add(dentry, inode);
527 	}
528 	s->s_root = root;
529 	return 0;
530 out:
531 	d_genocide(root);
532 	shrink_dcache_parent(root);
533 	dput(root);
534 	return -ENOMEM;
535 }
536 EXPORT_SYMBOL(simple_fill_super);
537 
538 static DEFINE_SPINLOCK(pin_fs_lock);
539 
540 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
541 {
542 	struct vfsmount *mnt = NULL;
543 	spin_lock(&pin_fs_lock);
544 	if (unlikely(!*mount)) {
545 		spin_unlock(&pin_fs_lock);
546 		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
547 		if (IS_ERR(mnt))
548 			return PTR_ERR(mnt);
549 		spin_lock(&pin_fs_lock);
550 		if (!*mount)
551 			*mount = mnt;
552 	}
553 	mntget(*mount);
554 	++*count;
555 	spin_unlock(&pin_fs_lock);
556 	mntput(mnt);
557 	return 0;
558 }
559 EXPORT_SYMBOL(simple_pin_fs);
560 
561 void simple_release_fs(struct vfsmount **mount, int *count)
562 {
563 	struct vfsmount *mnt;
564 	spin_lock(&pin_fs_lock);
565 	mnt = *mount;
566 	if (!--*count)
567 		*mount = NULL;
568 	spin_unlock(&pin_fs_lock);
569 	mntput(mnt);
570 }
571 EXPORT_SYMBOL(simple_release_fs);
572 
573 /**
574  * simple_read_from_buffer - copy data from the buffer to user space
575  * @to: the user space buffer to read to
576  * @count: the maximum number of bytes to read
577  * @ppos: the current position in the buffer
578  * @from: the buffer to read from
579  * @available: the size of the buffer
580  *
581  * The simple_read_from_buffer() function reads up to @count bytes from the
582  * buffer @from at offset @ppos into the user space address starting at @to.
583  *
584  * On success, the number of bytes read is returned and the offset @ppos is
585  * advanced by this number, or negative value is returned on error.
586  **/
587 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
588 				const void *from, size_t available)
589 {
590 	loff_t pos = *ppos;
591 	size_t ret;
592 
593 	if (pos < 0)
594 		return -EINVAL;
595 	if (pos >= available || !count)
596 		return 0;
597 	if (count > available - pos)
598 		count = available - pos;
599 	ret = copy_to_user(to, from + pos, count);
600 	if (ret == count)
601 		return -EFAULT;
602 	count -= ret;
603 	*ppos = pos + count;
604 	return count;
605 }
606 EXPORT_SYMBOL(simple_read_from_buffer);
607 
608 /**
609  * simple_write_to_buffer - copy data from user space to the buffer
610  * @to: the buffer to write to
611  * @available: the size of the buffer
612  * @ppos: the current position in the buffer
613  * @from: the user space buffer to read from
614  * @count: the maximum number of bytes to read
615  *
616  * The simple_write_to_buffer() function reads up to @count bytes from the user
617  * space address starting at @from into the buffer @to at offset @ppos.
618  *
619  * On success, the number of bytes written is returned and the offset @ppos is
620  * advanced by this number, or negative value is returned on error.
621  **/
622 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
623 		const void __user *from, size_t count)
624 {
625 	loff_t pos = *ppos;
626 	size_t res;
627 
628 	if (pos < 0)
629 		return -EINVAL;
630 	if (pos >= available || !count)
631 		return 0;
632 	if (count > available - pos)
633 		count = available - pos;
634 	res = copy_from_user(to + pos, from, count);
635 	if (res == count)
636 		return -EFAULT;
637 	count -= res;
638 	*ppos = pos + count;
639 	return count;
640 }
641 EXPORT_SYMBOL(simple_write_to_buffer);
642 
643 /**
644  * memory_read_from_buffer - copy data from the buffer
645  * @to: the kernel space buffer to read to
646  * @count: the maximum number of bytes to read
647  * @ppos: the current position in the buffer
648  * @from: the buffer to read from
649  * @available: the size of the buffer
650  *
651  * The memory_read_from_buffer() function reads up to @count bytes from the
652  * buffer @from at offset @ppos into the kernel space address starting at @to.
653  *
654  * On success, the number of bytes read is returned and the offset @ppos is
655  * advanced by this number, or negative value is returned on error.
656  **/
657 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
658 				const void *from, size_t available)
659 {
660 	loff_t pos = *ppos;
661 
662 	if (pos < 0)
663 		return -EINVAL;
664 	if (pos >= available)
665 		return 0;
666 	if (count > available - pos)
667 		count = available - pos;
668 	memcpy(to, from + pos, count);
669 	*ppos = pos + count;
670 
671 	return count;
672 }
673 EXPORT_SYMBOL(memory_read_from_buffer);
674 
675 /*
676  * Transaction based IO.
677  * The file expects a single write which triggers the transaction, and then
678  * possibly a read which collects the result - which is stored in a
679  * file-local buffer.
680  */
681 
682 void simple_transaction_set(struct file *file, size_t n)
683 {
684 	struct simple_transaction_argresp *ar = file->private_data;
685 
686 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
687 
688 	/*
689 	 * The barrier ensures that ar->size will really remain zero until
690 	 * ar->data is ready for reading.
691 	 */
692 	smp_mb();
693 	ar->size = n;
694 }
695 EXPORT_SYMBOL(simple_transaction_set);
696 
697 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
698 {
699 	struct simple_transaction_argresp *ar;
700 	static DEFINE_SPINLOCK(simple_transaction_lock);
701 
702 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
703 		return ERR_PTR(-EFBIG);
704 
705 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
706 	if (!ar)
707 		return ERR_PTR(-ENOMEM);
708 
709 	spin_lock(&simple_transaction_lock);
710 
711 	/* only one write allowed per open */
712 	if (file->private_data) {
713 		spin_unlock(&simple_transaction_lock);
714 		free_page((unsigned long)ar);
715 		return ERR_PTR(-EBUSY);
716 	}
717 
718 	file->private_data = ar;
719 
720 	spin_unlock(&simple_transaction_lock);
721 
722 	if (copy_from_user(ar->data, buf, size))
723 		return ERR_PTR(-EFAULT);
724 
725 	return ar->data;
726 }
727 EXPORT_SYMBOL(simple_transaction_get);
728 
729 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
730 {
731 	struct simple_transaction_argresp *ar = file->private_data;
732 
733 	if (!ar)
734 		return 0;
735 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
736 }
737 EXPORT_SYMBOL(simple_transaction_read);
738 
739 int simple_transaction_release(struct inode *inode, struct file *file)
740 {
741 	free_page((unsigned long)file->private_data);
742 	return 0;
743 }
744 EXPORT_SYMBOL(simple_transaction_release);
745 
746 /* Simple attribute files */
747 
748 struct simple_attr {
749 	int (*get)(void *, u64 *);
750 	int (*set)(void *, u64);
751 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
752 	char set_buf[24];
753 	void *data;
754 	const char *fmt;	/* format for read operation */
755 	struct mutex mutex;	/* protects access to these buffers */
756 };
757 
758 /* simple_attr_open is called by an actual attribute open file operation
759  * to set the attribute specific access operations. */
760 int simple_attr_open(struct inode *inode, struct file *file,
761 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
762 		     const char *fmt)
763 {
764 	struct simple_attr *attr;
765 
766 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
767 	if (!attr)
768 		return -ENOMEM;
769 
770 	attr->get = get;
771 	attr->set = set;
772 	attr->data = inode->i_private;
773 	attr->fmt = fmt;
774 	mutex_init(&attr->mutex);
775 
776 	file->private_data = attr;
777 
778 	return nonseekable_open(inode, file);
779 }
780 EXPORT_SYMBOL_GPL(simple_attr_open);
781 
782 int simple_attr_release(struct inode *inode, struct file *file)
783 {
784 	kfree(file->private_data);
785 	return 0;
786 }
787 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
788 
789 /* read from the buffer that is filled with the get function */
790 ssize_t simple_attr_read(struct file *file, char __user *buf,
791 			 size_t len, loff_t *ppos)
792 {
793 	struct simple_attr *attr;
794 	size_t size;
795 	ssize_t ret;
796 
797 	attr = file->private_data;
798 
799 	if (!attr->get)
800 		return -EACCES;
801 
802 	ret = mutex_lock_interruptible(&attr->mutex);
803 	if (ret)
804 		return ret;
805 
806 	if (*ppos) {		/* continued read */
807 		size = strlen(attr->get_buf);
808 	} else {		/* first read */
809 		u64 val;
810 		ret = attr->get(attr->data, &val);
811 		if (ret)
812 			goto out;
813 
814 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
815 				 attr->fmt, (unsigned long long)val);
816 	}
817 
818 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
819 out:
820 	mutex_unlock(&attr->mutex);
821 	return ret;
822 }
823 EXPORT_SYMBOL_GPL(simple_attr_read);
824 
825 /* interpret the buffer as a number to call the set function with */
826 ssize_t simple_attr_write(struct file *file, const char __user *buf,
827 			  size_t len, loff_t *ppos)
828 {
829 	struct simple_attr *attr;
830 	u64 val;
831 	size_t size;
832 	ssize_t ret;
833 
834 	attr = file->private_data;
835 	if (!attr->set)
836 		return -EACCES;
837 
838 	ret = mutex_lock_interruptible(&attr->mutex);
839 	if (ret)
840 		return ret;
841 
842 	ret = -EFAULT;
843 	size = min(sizeof(attr->set_buf) - 1, len);
844 	if (copy_from_user(attr->set_buf, buf, size))
845 		goto out;
846 
847 	attr->set_buf[size] = '\0';
848 	val = simple_strtoll(attr->set_buf, NULL, 0);
849 	ret = attr->set(attr->data, val);
850 	if (ret == 0)
851 		ret = len; /* on success, claim we got the whole input */
852 out:
853 	mutex_unlock(&attr->mutex);
854 	return ret;
855 }
856 EXPORT_SYMBOL_GPL(simple_attr_write);
857 
858 /**
859  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
860  * @sb:		filesystem to do the file handle conversion on
861  * @fid:	file handle to convert
862  * @fh_len:	length of the file handle in bytes
863  * @fh_type:	type of file handle
864  * @get_inode:	filesystem callback to retrieve inode
865  *
866  * This function decodes @fid as long as it has one of the well-known
867  * Linux filehandle types and calls @get_inode on it to retrieve the
868  * inode for the object specified in the file handle.
869  */
870 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
871 		int fh_len, int fh_type, struct inode *(*get_inode)
872 			(struct super_block *sb, u64 ino, u32 gen))
873 {
874 	struct inode *inode = NULL;
875 
876 	if (fh_len < 2)
877 		return NULL;
878 
879 	switch (fh_type) {
880 	case FILEID_INO32_GEN:
881 	case FILEID_INO32_GEN_PARENT:
882 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
883 		break;
884 	}
885 
886 	return d_obtain_alias(inode);
887 }
888 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
889 
890 /**
891  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
892  * @sb:		filesystem to do the file handle conversion on
893  * @fid:	file handle to convert
894  * @fh_len:	length of the file handle in bytes
895  * @fh_type:	type of file handle
896  * @get_inode:	filesystem callback to retrieve inode
897  *
898  * This function decodes @fid as long as it has one of the well-known
899  * Linux filehandle types and calls @get_inode on it to retrieve the
900  * inode for the _parent_ object specified in the file handle if it
901  * is specified in the file handle, or NULL otherwise.
902  */
903 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
904 		int fh_len, int fh_type, struct inode *(*get_inode)
905 			(struct super_block *sb, u64 ino, u32 gen))
906 {
907 	struct inode *inode = NULL;
908 
909 	if (fh_len <= 2)
910 		return NULL;
911 
912 	switch (fh_type) {
913 	case FILEID_INO32_GEN_PARENT:
914 		inode = get_inode(sb, fid->i32.parent_ino,
915 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
916 		break;
917 	}
918 
919 	return d_obtain_alias(inode);
920 }
921 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
922 
923 /**
924  * generic_file_fsync - generic fsync implementation for simple filesystems
925  * @file:	file to synchronize
926  * @datasync:	only synchronize essential metadata if true
927  *
928  * This is a generic implementation of the fsync method for simple
929  * filesystems which track all non-inode metadata in the buffers list
930  * hanging off the address_space structure.
931  */
932 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
933 		       int datasync)
934 {
935 	struct inode *inode = file->f_mapping->host;
936 	int err;
937 	int ret;
938 
939 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
940 	if (err)
941 		return err;
942 
943 	mutex_lock(&inode->i_mutex);
944 	ret = sync_mapping_buffers(inode->i_mapping);
945 	if (!(inode->i_state & I_DIRTY))
946 		goto out;
947 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
948 		goto out;
949 
950 	err = sync_inode_metadata(inode, 1);
951 	if (ret == 0)
952 		ret = err;
953 out:
954 	mutex_unlock(&inode->i_mutex);
955 	return ret;
956 }
957 EXPORT_SYMBOL(generic_file_fsync);
958 
959 /**
960  * generic_check_addressable - Check addressability of file system
961  * @blocksize_bits:	log of file system block size
962  * @num_blocks:		number of blocks in file system
963  *
964  * Determine whether a file system with @num_blocks blocks (and a
965  * block size of 2**@blocksize_bits) is addressable by the sector_t
966  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
967  */
968 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
969 {
970 	u64 last_fs_block = num_blocks - 1;
971 	u64 last_fs_page =
972 		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
973 
974 	if (unlikely(num_blocks == 0))
975 		return 0;
976 
977 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
978 		return -EINVAL;
979 
980 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
981 	    (last_fs_page > (pgoff_t)(~0ULL))) {
982 		return -EFBIG;
983 	}
984 	return 0;
985 }
986 EXPORT_SYMBOL(generic_check_addressable);
987 
988 /*
989  * No-op implementation of ->fsync for in-memory filesystems.
990  */
991 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
992 {
993 	return 0;
994 }
995 EXPORT_SYMBOL(noop_fsync);
996 
997 void kfree_put_link(struct dentry *dentry, struct nameidata *nd,
998 				void *cookie)
999 {
1000 	char *s = nd_get_link(nd);
1001 	if (!IS_ERR(s))
1002 		kfree(s);
1003 }
1004 EXPORT_SYMBOL(kfree_put_link);
1005 
1006 /*
1007  * nop .set_page_dirty method so that people can use .page_mkwrite on
1008  * anon inodes.
1009  */
1010 static int anon_set_page_dirty(struct page *page)
1011 {
1012 	return 0;
1013 };
1014 
1015 /*
1016  * A single inode exists for all anon_inode files. Contrary to pipes,
1017  * anon_inode inodes have no associated per-instance data, so we need
1018  * only allocate one of them.
1019  */
1020 struct inode *alloc_anon_inode(struct super_block *s)
1021 {
1022 	static const struct address_space_operations anon_aops = {
1023 		.set_page_dirty = anon_set_page_dirty,
1024 	};
1025 	struct inode *inode = new_inode_pseudo(s);
1026 
1027 	if (!inode)
1028 		return ERR_PTR(-ENOMEM);
1029 
1030 	inode->i_ino = get_next_ino();
1031 	inode->i_mapping->a_ops = &anon_aops;
1032 
1033 	/*
1034 	 * Mark the inode dirty from the very beginning,
1035 	 * that way it will never be moved to the dirty
1036 	 * list because mark_inode_dirty() will think
1037 	 * that it already _is_ on the dirty list.
1038 	 */
1039 	inode->i_state = I_DIRTY;
1040 	inode->i_mode = S_IRUSR | S_IWUSR;
1041 	inode->i_uid = current_fsuid();
1042 	inode->i_gid = current_fsgid();
1043 	inode->i_flags |= S_PRIVATE;
1044 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1045 	return inode;
1046 }
1047 EXPORT_SYMBOL(alloc_anon_inode);
1048