1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/export.h> 7 #include <linux/pagemap.h> 8 #include <linux/slab.h> 9 #include <linux/mount.h> 10 #include <linux/vfs.h> 11 #include <linux/quotaops.h> 12 #include <linux/mutex.h> 13 #include <linux/namei.h> 14 #include <linux/exportfs.h> 15 #include <linux/writeback.h> 16 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 17 18 #include <asm/uaccess.h> 19 20 #include "internal.h" 21 22 static inline int simple_positive(struct dentry *dentry) 23 { 24 return dentry->d_inode && !d_unhashed(dentry); 25 } 26 27 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 28 struct kstat *stat) 29 { 30 struct inode *inode = dentry->d_inode; 31 generic_fillattr(inode, stat); 32 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 33 return 0; 34 } 35 EXPORT_SYMBOL(simple_getattr); 36 37 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 38 { 39 buf->f_type = dentry->d_sb->s_magic; 40 buf->f_bsize = PAGE_CACHE_SIZE; 41 buf->f_namelen = NAME_MAX; 42 return 0; 43 } 44 EXPORT_SYMBOL(simple_statfs); 45 46 /* 47 * Retaining negative dentries for an in-memory filesystem just wastes 48 * memory and lookup time: arrange for them to be deleted immediately. 49 */ 50 static int simple_delete_dentry(const struct dentry *dentry) 51 { 52 return 1; 53 } 54 55 /* 56 * Lookup the data. This is trivial - if the dentry didn't already 57 * exist, we know it is negative. Set d_op to delete negative dentries. 58 */ 59 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 60 { 61 static const struct dentry_operations simple_dentry_operations = { 62 .d_delete = simple_delete_dentry, 63 }; 64 65 if (dentry->d_name.len > NAME_MAX) 66 return ERR_PTR(-ENAMETOOLONG); 67 if (!dentry->d_sb->s_d_op) 68 d_set_d_op(dentry, &simple_dentry_operations); 69 d_add(dentry, NULL); 70 return NULL; 71 } 72 EXPORT_SYMBOL(simple_lookup); 73 74 int dcache_dir_open(struct inode *inode, struct file *file) 75 { 76 static struct qstr cursor_name = QSTR_INIT(".", 1); 77 78 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 79 80 return file->private_data ? 0 : -ENOMEM; 81 } 82 EXPORT_SYMBOL(dcache_dir_open); 83 84 int dcache_dir_close(struct inode *inode, struct file *file) 85 { 86 dput(file->private_data); 87 return 0; 88 } 89 EXPORT_SYMBOL(dcache_dir_close); 90 91 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 92 { 93 struct dentry *dentry = file->f_path.dentry; 94 mutex_lock(&dentry->d_inode->i_mutex); 95 switch (whence) { 96 case 1: 97 offset += file->f_pos; 98 case 0: 99 if (offset >= 0) 100 break; 101 default: 102 mutex_unlock(&dentry->d_inode->i_mutex); 103 return -EINVAL; 104 } 105 if (offset != file->f_pos) { 106 file->f_pos = offset; 107 if (file->f_pos >= 2) { 108 struct list_head *p; 109 struct dentry *cursor = file->private_data; 110 loff_t n = file->f_pos - 2; 111 112 spin_lock(&dentry->d_lock); 113 /* d_lock not required for cursor */ 114 list_del(&cursor->d_u.d_child); 115 p = dentry->d_subdirs.next; 116 while (n && p != &dentry->d_subdirs) { 117 struct dentry *next; 118 next = list_entry(p, struct dentry, d_u.d_child); 119 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 120 if (simple_positive(next)) 121 n--; 122 spin_unlock(&next->d_lock); 123 p = p->next; 124 } 125 list_add_tail(&cursor->d_u.d_child, p); 126 spin_unlock(&dentry->d_lock); 127 } 128 } 129 mutex_unlock(&dentry->d_inode->i_mutex); 130 return offset; 131 } 132 EXPORT_SYMBOL(dcache_dir_lseek); 133 134 /* Relationship between i_mode and the DT_xxx types */ 135 static inline unsigned char dt_type(struct inode *inode) 136 { 137 return (inode->i_mode >> 12) & 15; 138 } 139 140 /* 141 * Directory is locked and all positive dentries in it are safe, since 142 * for ramfs-type trees they can't go away without unlink() or rmdir(), 143 * both impossible due to the lock on directory. 144 */ 145 146 int dcache_readdir(struct file *file, struct dir_context *ctx) 147 { 148 struct dentry *dentry = file->f_path.dentry; 149 struct dentry *cursor = file->private_data; 150 struct list_head *p, *q = &cursor->d_u.d_child; 151 152 if (!dir_emit_dots(file, ctx)) 153 return 0; 154 spin_lock(&dentry->d_lock); 155 if (ctx->pos == 2) 156 list_move(q, &dentry->d_subdirs); 157 158 for (p = q->next; p != &dentry->d_subdirs; p = p->next) { 159 struct dentry *next = list_entry(p, struct dentry, d_u.d_child); 160 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 161 if (!simple_positive(next)) { 162 spin_unlock(&next->d_lock); 163 continue; 164 } 165 166 spin_unlock(&next->d_lock); 167 spin_unlock(&dentry->d_lock); 168 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 169 next->d_inode->i_ino, dt_type(next->d_inode))) 170 return 0; 171 spin_lock(&dentry->d_lock); 172 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 173 /* next is still alive */ 174 list_move(q, p); 175 spin_unlock(&next->d_lock); 176 p = q; 177 ctx->pos++; 178 } 179 spin_unlock(&dentry->d_lock); 180 return 0; 181 } 182 EXPORT_SYMBOL(dcache_readdir); 183 184 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 185 { 186 return -EISDIR; 187 } 188 EXPORT_SYMBOL(generic_read_dir); 189 190 const struct file_operations simple_dir_operations = { 191 .open = dcache_dir_open, 192 .release = dcache_dir_close, 193 .llseek = dcache_dir_lseek, 194 .read = generic_read_dir, 195 .iterate = dcache_readdir, 196 .fsync = noop_fsync, 197 }; 198 EXPORT_SYMBOL(simple_dir_operations); 199 200 const struct inode_operations simple_dir_inode_operations = { 201 .lookup = simple_lookup, 202 }; 203 EXPORT_SYMBOL(simple_dir_inode_operations); 204 205 static const struct super_operations simple_super_operations = { 206 .statfs = simple_statfs, 207 }; 208 209 /* 210 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 211 * will never be mountable) 212 */ 213 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name, 214 const struct super_operations *ops, 215 const struct dentry_operations *dops, unsigned long magic) 216 { 217 struct super_block *s; 218 struct dentry *dentry; 219 struct inode *root; 220 struct qstr d_name = QSTR_INIT(name, strlen(name)); 221 222 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL); 223 if (IS_ERR(s)) 224 return ERR_CAST(s); 225 226 s->s_maxbytes = MAX_LFS_FILESIZE; 227 s->s_blocksize = PAGE_SIZE; 228 s->s_blocksize_bits = PAGE_SHIFT; 229 s->s_magic = magic; 230 s->s_op = ops ? ops : &simple_super_operations; 231 s->s_time_gran = 1; 232 root = new_inode(s); 233 if (!root) 234 goto Enomem; 235 /* 236 * since this is the first inode, make it number 1. New inodes created 237 * after this must take care not to collide with it (by passing 238 * max_reserved of 1 to iunique). 239 */ 240 root->i_ino = 1; 241 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 242 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 243 dentry = __d_alloc(s, &d_name); 244 if (!dentry) { 245 iput(root); 246 goto Enomem; 247 } 248 d_instantiate(dentry, root); 249 s->s_root = dentry; 250 s->s_d_op = dops; 251 s->s_flags |= MS_ACTIVE; 252 return dget(s->s_root); 253 254 Enomem: 255 deactivate_locked_super(s); 256 return ERR_PTR(-ENOMEM); 257 } 258 EXPORT_SYMBOL(mount_pseudo); 259 260 int simple_open(struct inode *inode, struct file *file) 261 { 262 if (inode->i_private) 263 file->private_data = inode->i_private; 264 return 0; 265 } 266 EXPORT_SYMBOL(simple_open); 267 268 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 269 { 270 struct inode *inode = old_dentry->d_inode; 271 272 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 273 inc_nlink(inode); 274 ihold(inode); 275 dget(dentry); 276 d_instantiate(dentry, inode); 277 return 0; 278 } 279 EXPORT_SYMBOL(simple_link); 280 281 int simple_empty(struct dentry *dentry) 282 { 283 struct dentry *child; 284 int ret = 0; 285 286 spin_lock(&dentry->d_lock); 287 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) { 288 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 289 if (simple_positive(child)) { 290 spin_unlock(&child->d_lock); 291 goto out; 292 } 293 spin_unlock(&child->d_lock); 294 } 295 ret = 1; 296 out: 297 spin_unlock(&dentry->d_lock); 298 return ret; 299 } 300 EXPORT_SYMBOL(simple_empty); 301 302 int simple_unlink(struct inode *dir, struct dentry *dentry) 303 { 304 struct inode *inode = dentry->d_inode; 305 306 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 307 drop_nlink(inode); 308 dput(dentry); 309 return 0; 310 } 311 EXPORT_SYMBOL(simple_unlink); 312 313 int simple_rmdir(struct inode *dir, struct dentry *dentry) 314 { 315 if (!simple_empty(dentry)) 316 return -ENOTEMPTY; 317 318 drop_nlink(dentry->d_inode); 319 simple_unlink(dir, dentry); 320 drop_nlink(dir); 321 return 0; 322 } 323 EXPORT_SYMBOL(simple_rmdir); 324 325 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 326 struct inode *new_dir, struct dentry *new_dentry) 327 { 328 struct inode *inode = old_dentry->d_inode; 329 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode); 330 331 if (!simple_empty(new_dentry)) 332 return -ENOTEMPTY; 333 334 if (new_dentry->d_inode) { 335 simple_unlink(new_dir, new_dentry); 336 if (they_are_dirs) { 337 drop_nlink(new_dentry->d_inode); 338 drop_nlink(old_dir); 339 } 340 } else if (they_are_dirs) { 341 drop_nlink(old_dir); 342 inc_nlink(new_dir); 343 } 344 345 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 346 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 347 348 return 0; 349 } 350 EXPORT_SYMBOL(simple_rename); 351 352 /** 353 * simple_setattr - setattr for simple filesystem 354 * @dentry: dentry 355 * @iattr: iattr structure 356 * 357 * Returns 0 on success, -error on failure. 358 * 359 * simple_setattr is a simple ->setattr implementation without a proper 360 * implementation of size changes. 361 * 362 * It can either be used for in-memory filesystems or special files 363 * on simple regular filesystems. Anything that needs to change on-disk 364 * or wire state on size changes needs its own setattr method. 365 */ 366 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 367 { 368 struct inode *inode = dentry->d_inode; 369 int error; 370 371 error = inode_change_ok(inode, iattr); 372 if (error) 373 return error; 374 375 if (iattr->ia_valid & ATTR_SIZE) 376 truncate_setsize(inode, iattr->ia_size); 377 setattr_copy(inode, iattr); 378 mark_inode_dirty(inode); 379 return 0; 380 } 381 EXPORT_SYMBOL(simple_setattr); 382 383 int simple_readpage(struct file *file, struct page *page) 384 { 385 clear_highpage(page); 386 flush_dcache_page(page); 387 SetPageUptodate(page); 388 unlock_page(page); 389 return 0; 390 } 391 EXPORT_SYMBOL(simple_readpage); 392 393 int simple_write_begin(struct file *file, struct address_space *mapping, 394 loff_t pos, unsigned len, unsigned flags, 395 struct page **pagep, void **fsdata) 396 { 397 struct page *page; 398 pgoff_t index; 399 400 index = pos >> PAGE_CACHE_SHIFT; 401 402 page = grab_cache_page_write_begin(mapping, index, flags); 403 if (!page) 404 return -ENOMEM; 405 406 *pagep = page; 407 408 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) { 409 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 410 411 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE); 412 } 413 return 0; 414 } 415 EXPORT_SYMBOL(simple_write_begin); 416 417 /** 418 * simple_write_end - .write_end helper for non-block-device FSes 419 * @available: See .write_end of address_space_operations 420 * @file: " 421 * @mapping: " 422 * @pos: " 423 * @len: " 424 * @copied: " 425 * @page: " 426 * @fsdata: " 427 * 428 * simple_write_end does the minimum needed for updating a page after writing is 429 * done. It has the same API signature as the .write_end of 430 * address_space_operations vector. So it can just be set onto .write_end for 431 * FSes that don't need any other processing. i_mutex is assumed to be held. 432 * Block based filesystems should use generic_write_end(). 433 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 434 * is not called, so a filesystem that actually does store data in .write_inode 435 * should extend on what's done here with a call to mark_inode_dirty() in the 436 * case that i_size has changed. 437 */ 438 int simple_write_end(struct file *file, struct address_space *mapping, 439 loff_t pos, unsigned len, unsigned copied, 440 struct page *page, void *fsdata) 441 { 442 struct inode *inode = page->mapping->host; 443 loff_t last_pos = pos + copied; 444 445 /* zero the stale part of the page if we did a short copy */ 446 if (copied < len) { 447 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 448 449 zero_user(page, from + copied, len - copied); 450 } 451 452 if (!PageUptodate(page)) 453 SetPageUptodate(page); 454 /* 455 * No need to use i_size_read() here, the i_size 456 * cannot change under us because we hold the i_mutex. 457 */ 458 if (last_pos > inode->i_size) 459 i_size_write(inode, last_pos); 460 461 set_page_dirty(page); 462 unlock_page(page); 463 page_cache_release(page); 464 465 return copied; 466 } 467 EXPORT_SYMBOL(simple_write_end); 468 469 /* 470 * the inodes created here are not hashed. If you use iunique to generate 471 * unique inode values later for this filesystem, then you must take care 472 * to pass it an appropriate max_reserved value to avoid collisions. 473 */ 474 int simple_fill_super(struct super_block *s, unsigned long magic, 475 struct tree_descr *files) 476 { 477 struct inode *inode; 478 struct dentry *root; 479 struct dentry *dentry; 480 int i; 481 482 s->s_blocksize = PAGE_CACHE_SIZE; 483 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 484 s->s_magic = magic; 485 s->s_op = &simple_super_operations; 486 s->s_time_gran = 1; 487 488 inode = new_inode(s); 489 if (!inode) 490 return -ENOMEM; 491 /* 492 * because the root inode is 1, the files array must not contain an 493 * entry at index 1 494 */ 495 inode->i_ino = 1; 496 inode->i_mode = S_IFDIR | 0755; 497 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 498 inode->i_op = &simple_dir_inode_operations; 499 inode->i_fop = &simple_dir_operations; 500 set_nlink(inode, 2); 501 root = d_make_root(inode); 502 if (!root) 503 return -ENOMEM; 504 for (i = 0; !files->name || files->name[0]; i++, files++) { 505 if (!files->name) 506 continue; 507 508 /* warn if it tries to conflict with the root inode */ 509 if (unlikely(i == 1)) 510 printk(KERN_WARNING "%s: %s passed in a files array" 511 "with an index of 1!\n", __func__, 512 s->s_type->name); 513 514 dentry = d_alloc_name(root, files->name); 515 if (!dentry) 516 goto out; 517 inode = new_inode(s); 518 if (!inode) { 519 dput(dentry); 520 goto out; 521 } 522 inode->i_mode = S_IFREG | files->mode; 523 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 524 inode->i_fop = files->ops; 525 inode->i_ino = i; 526 d_add(dentry, inode); 527 } 528 s->s_root = root; 529 return 0; 530 out: 531 d_genocide(root); 532 shrink_dcache_parent(root); 533 dput(root); 534 return -ENOMEM; 535 } 536 EXPORT_SYMBOL(simple_fill_super); 537 538 static DEFINE_SPINLOCK(pin_fs_lock); 539 540 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 541 { 542 struct vfsmount *mnt = NULL; 543 spin_lock(&pin_fs_lock); 544 if (unlikely(!*mount)) { 545 spin_unlock(&pin_fs_lock); 546 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL); 547 if (IS_ERR(mnt)) 548 return PTR_ERR(mnt); 549 spin_lock(&pin_fs_lock); 550 if (!*mount) 551 *mount = mnt; 552 } 553 mntget(*mount); 554 ++*count; 555 spin_unlock(&pin_fs_lock); 556 mntput(mnt); 557 return 0; 558 } 559 EXPORT_SYMBOL(simple_pin_fs); 560 561 void simple_release_fs(struct vfsmount **mount, int *count) 562 { 563 struct vfsmount *mnt; 564 spin_lock(&pin_fs_lock); 565 mnt = *mount; 566 if (!--*count) 567 *mount = NULL; 568 spin_unlock(&pin_fs_lock); 569 mntput(mnt); 570 } 571 EXPORT_SYMBOL(simple_release_fs); 572 573 /** 574 * simple_read_from_buffer - copy data from the buffer to user space 575 * @to: the user space buffer to read to 576 * @count: the maximum number of bytes to read 577 * @ppos: the current position in the buffer 578 * @from: the buffer to read from 579 * @available: the size of the buffer 580 * 581 * The simple_read_from_buffer() function reads up to @count bytes from the 582 * buffer @from at offset @ppos into the user space address starting at @to. 583 * 584 * On success, the number of bytes read is returned and the offset @ppos is 585 * advanced by this number, or negative value is returned on error. 586 **/ 587 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 588 const void *from, size_t available) 589 { 590 loff_t pos = *ppos; 591 size_t ret; 592 593 if (pos < 0) 594 return -EINVAL; 595 if (pos >= available || !count) 596 return 0; 597 if (count > available - pos) 598 count = available - pos; 599 ret = copy_to_user(to, from + pos, count); 600 if (ret == count) 601 return -EFAULT; 602 count -= ret; 603 *ppos = pos + count; 604 return count; 605 } 606 EXPORT_SYMBOL(simple_read_from_buffer); 607 608 /** 609 * simple_write_to_buffer - copy data from user space to the buffer 610 * @to: the buffer to write to 611 * @available: the size of the buffer 612 * @ppos: the current position in the buffer 613 * @from: the user space buffer to read from 614 * @count: the maximum number of bytes to read 615 * 616 * The simple_write_to_buffer() function reads up to @count bytes from the user 617 * space address starting at @from into the buffer @to at offset @ppos. 618 * 619 * On success, the number of bytes written is returned and the offset @ppos is 620 * advanced by this number, or negative value is returned on error. 621 **/ 622 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 623 const void __user *from, size_t count) 624 { 625 loff_t pos = *ppos; 626 size_t res; 627 628 if (pos < 0) 629 return -EINVAL; 630 if (pos >= available || !count) 631 return 0; 632 if (count > available - pos) 633 count = available - pos; 634 res = copy_from_user(to + pos, from, count); 635 if (res == count) 636 return -EFAULT; 637 count -= res; 638 *ppos = pos + count; 639 return count; 640 } 641 EXPORT_SYMBOL(simple_write_to_buffer); 642 643 /** 644 * memory_read_from_buffer - copy data from the buffer 645 * @to: the kernel space buffer to read to 646 * @count: the maximum number of bytes to read 647 * @ppos: the current position in the buffer 648 * @from: the buffer to read from 649 * @available: the size of the buffer 650 * 651 * The memory_read_from_buffer() function reads up to @count bytes from the 652 * buffer @from at offset @ppos into the kernel space address starting at @to. 653 * 654 * On success, the number of bytes read is returned and the offset @ppos is 655 * advanced by this number, or negative value is returned on error. 656 **/ 657 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 658 const void *from, size_t available) 659 { 660 loff_t pos = *ppos; 661 662 if (pos < 0) 663 return -EINVAL; 664 if (pos >= available) 665 return 0; 666 if (count > available - pos) 667 count = available - pos; 668 memcpy(to, from + pos, count); 669 *ppos = pos + count; 670 671 return count; 672 } 673 EXPORT_SYMBOL(memory_read_from_buffer); 674 675 /* 676 * Transaction based IO. 677 * The file expects a single write which triggers the transaction, and then 678 * possibly a read which collects the result - which is stored in a 679 * file-local buffer. 680 */ 681 682 void simple_transaction_set(struct file *file, size_t n) 683 { 684 struct simple_transaction_argresp *ar = file->private_data; 685 686 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 687 688 /* 689 * The barrier ensures that ar->size will really remain zero until 690 * ar->data is ready for reading. 691 */ 692 smp_mb(); 693 ar->size = n; 694 } 695 EXPORT_SYMBOL(simple_transaction_set); 696 697 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 698 { 699 struct simple_transaction_argresp *ar; 700 static DEFINE_SPINLOCK(simple_transaction_lock); 701 702 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 703 return ERR_PTR(-EFBIG); 704 705 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 706 if (!ar) 707 return ERR_PTR(-ENOMEM); 708 709 spin_lock(&simple_transaction_lock); 710 711 /* only one write allowed per open */ 712 if (file->private_data) { 713 spin_unlock(&simple_transaction_lock); 714 free_page((unsigned long)ar); 715 return ERR_PTR(-EBUSY); 716 } 717 718 file->private_data = ar; 719 720 spin_unlock(&simple_transaction_lock); 721 722 if (copy_from_user(ar->data, buf, size)) 723 return ERR_PTR(-EFAULT); 724 725 return ar->data; 726 } 727 EXPORT_SYMBOL(simple_transaction_get); 728 729 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 730 { 731 struct simple_transaction_argresp *ar = file->private_data; 732 733 if (!ar) 734 return 0; 735 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 736 } 737 EXPORT_SYMBOL(simple_transaction_read); 738 739 int simple_transaction_release(struct inode *inode, struct file *file) 740 { 741 free_page((unsigned long)file->private_data); 742 return 0; 743 } 744 EXPORT_SYMBOL(simple_transaction_release); 745 746 /* Simple attribute files */ 747 748 struct simple_attr { 749 int (*get)(void *, u64 *); 750 int (*set)(void *, u64); 751 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 752 char set_buf[24]; 753 void *data; 754 const char *fmt; /* format for read operation */ 755 struct mutex mutex; /* protects access to these buffers */ 756 }; 757 758 /* simple_attr_open is called by an actual attribute open file operation 759 * to set the attribute specific access operations. */ 760 int simple_attr_open(struct inode *inode, struct file *file, 761 int (*get)(void *, u64 *), int (*set)(void *, u64), 762 const char *fmt) 763 { 764 struct simple_attr *attr; 765 766 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 767 if (!attr) 768 return -ENOMEM; 769 770 attr->get = get; 771 attr->set = set; 772 attr->data = inode->i_private; 773 attr->fmt = fmt; 774 mutex_init(&attr->mutex); 775 776 file->private_data = attr; 777 778 return nonseekable_open(inode, file); 779 } 780 EXPORT_SYMBOL_GPL(simple_attr_open); 781 782 int simple_attr_release(struct inode *inode, struct file *file) 783 { 784 kfree(file->private_data); 785 return 0; 786 } 787 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 788 789 /* read from the buffer that is filled with the get function */ 790 ssize_t simple_attr_read(struct file *file, char __user *buf, 791 size_t len, loff_t *ppos) 792 { 793 struct simple_attr *attr; 794 size_t size; 795 ssize_t ret; 796 797 attr = file->private_data; 798 799 if (!attr->get) 800 return -EACCES; 801 802 ret = mutex_lock_interruptible(&attr->mutex); 803 if (ret) 804 return ret; 805 806 if (*ppos) { /* continued read */ 807 size = strlen(attr->get_buf); 808 } else { /* first read */ 809 u64 val; 810 ret = attr->get(attr->data, &val); 811 if (ret) 812 goto out; 813 814 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 815 attr->fmt, (unsigned long long)val); 816 } 817 818 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 819 out: 820 mutex_unlock(&attr->mutex); 821 return ret; 822 } 823 EXPORT_SYMBOL_GPL(simple_attr_read); 824 825 /* interpret the buffer as a number to call the set function with */ 826 ssize_t simple_attr_write(struct file *file, const char __user *buf, 827 size_t len, loff_t *ppos) 828 { 829 struct simple_attr *attr; 830 u64 val; 831 size_t size; 832 ssize_t ret; 833 834 attr = file->private_data; 835 if (!attr->set) 836 return -EACCES; 837 838 ret = mutex_lock_interruptible(&attr->mutex); 839 if (ret) 840 return ret; 841 842 ret = -EFAULT; 843 size = min(sizeof(attr->set_buf) - 1, len); 844 if (copy_from_user(attr->set_buf, buf, size)) 845 goto out; 846 847 attr->set_buf[size] = '\0'; 848 val = simple_strtoll(attr->set_buf, NULL, 0); 849 ret = attr->set(attr->data, val); 850 if (ret == 0) 851 ret = len; /* on success, claim we got the whole input */ 852 out: 853 mutex_unlock(&attr->mutex); 854 return ret; 855 } 856 EXPORT_SYMBOL_GPL(simple_attr_write); 857 858 /** 859 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 860 * @sb: filesystem to do the file handle conversion on 861 * @fid: file handle to convert 862 * @fh_len: length of the file handle in bytes 863 * @fh_type: type of file handle 864 * @get_inode: filesystem callback to retrieve inode 865 * 866 * This function decodes @fid as long as it has one of the well-known 867 * Linux filehandle types and calls @get_inode on it to retrieve the 868 * inode for the object specified in the file handle. 869 */ 870 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 871 int fh_len, int fh_type, struct inode *(*get_inode) 872 (struct super_block *sb, u64 ino, u32 gen)) 873 { 874 struct inode *inode = NULL; 875 876 if (fh_len < 2) 877 return NULL; 878 879 switch (fh_type) { 880 case FILEID_INO32_GEN: 881 case FILEID_INO32_GEN_PARENT: 882 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 883 break; 884 } 885 886 return d_obtain_alias(inode); 887 } 888 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 889 890 /** 891 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 892 * @sb: filesystem to do the file handle conversion on 893 * @fid: file handle to convert 894 * @fh_len: length of the file handle in bytes 895 * @fh_type: type of file handle 896 * @get_inode: filesystem callback to retrieve inode 897 * 898 * This function decodes @fid as long as it has one of the well-known 899 * Linux filehandle types and calls @get_inode on it to retrieve the 900 * inode for the _parent_ object specified in the file handle if it 901 * is specified in the file handle, or NULL otherwise. 902 */ 903 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 904 int fh_len, int fh_type, struct inode *(*get_inode) 905 (struct super_block *sb, u64 ino, u32 gen)) 906 { 907 struct inode *inode = NULL; 908 909 if (fh_len <= 2) 910 return NULL; 911 912 switch (fh_type) { 913 case FILEID_INO32_GEN_PARENT: 914 inode = get_inode(sb, fid->i32.parent_ino, 915 (fh_len > 3 ? fid->i32.parent_gen : 0)); 916 break; 917 } 918 919 return d_obtain_alias(inode); 920 } 921 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 922 923 /** 924 * generic_file_fsync - generic fsync implementation for simple filesystems 925 * @file: file to synchronize 926 * @datasync: only synchronize essential metadata if true 927 * 928 * This is a generic implementation of the fsync method for simple 929 * filesystems which track all non-inode metadata in the buffers list 930 * hanging off the address_space structure. 931 */ 932 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 933 int datasync) 934 { 935 struct inode *inode = file->f_mapping->host; 936 int err; 937 int ret; 938 939 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 940 if (err) 941 return err; 942 943 mutex_lock(&inode->i_mutex); 944 ret = sync_mapping_buffers(inode->i_mapping); 945 if (!(inode->i_state & I_DIRTY)) 946 goto out; 947 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 948 goto out; 949 950 err = sync_inode_metadata(inode, 1); 951 if (ret == 0) 952 ret = err; 953 out: 954 mutex_unlock(&inode->i_mutex); 955 return ret; 956 } 957 EXPORT_SYMBOL(generic_file_fsync); 958 959 /** 960 * generic_check_addressable - Check addressability of file system 961 * @blocksize_bits: log of file system block size 962 * @num_blocks: number of blocks in file system 963 * 964 * Determine whether a file system with @num_blocks blocks (and a 965 * block size of 2**@blocksize_bits) is addressable by the sector_t 966 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 967 */ 968 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 969 { 970 u64 last_fs_block = num_blocks - 1; 971 u64 last_fs_page = 972 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits); 973 974 if (unlikely(num_blocks == 0)) 975 return 0; 976 977 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT)) 978 return -EINVAL; 979 980 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 981 (last_fs_page > (pgoff_t)(~0ULL))) { 982 return -EFBIG; 983 } 984 return 0; 985 } 986 EXPORT_SYMBOL(generic_check_addressable); 987 988 /* 989 * No-op implementation of ->fsync for in-memory filesystems. 990 */ 991 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 992 { 993 return 0; 994 } 995 EXPORT_SYMBOL(noop_fsync); 996 997 void kfree_put_link(struct dentry *dentry, struct nameidata *nd, 998 void *cookie) 999 { 1000 char *s = nd_get_link(nd); 1001 if (!IS_ERR(s)) 1002 kfree(s); 1003 } 1004 EXPORT_SYMBOL(kfree_put_link); 1005 1006 /* 1007 * nop .set_page_dirty method so that people can use .page_mkwrite on 1008 * anon inodes. 1009 */ 1010 static int anon_set_page_dirty(struct page *page) 1011 { 1012 return 0; 1013 }; 1014 1015 /* 1016 * A single inode exists for all anon_inode files. Contrary to pipes, 1017 * anon_inode inodes have no associated per-instance data, so we need 1018 * only allocate one of them. 1019 */ 1020 struct inode *alloc_anon_inode(struct super_block *s) 1021 { 1022 static const struct address_space_operations anon_aops = { 1023 .set_page_dirty = anon_set_page_dirty, 1024 }; 1025 struct inode *inode = new_inode_pseudo(s); 1026 1027 if (!inode) 1028 return ERR_PTR(-ENOMEM); 1029 1030 inode->i_ino = get_next_ino(); 1031 inode->i_mapping->a_ops = &anon_aops; 1032 1033 /* 1034 * Mark the inode dirty from the very beginning, 1035 * that way it will never be moved to the dirty 1036 * list because mark_inode_dirty() will think 1037 * that it already _is_ on the dirty list. 1038 */ 1039 inode->i_state = I_DIRTY; 1040 inode->i_mode = S_IRUSR | S_IWUSR; 1041 inode->i_uid = current_fsuid(); 1042 inode->i_gid = current_fsgid(); 1043 inode->i_flags |= S_PRIVATE; 1044 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1045 return inode; 1046 } 1047 EXPORT_SYMBOL(alloc_anon_inode); 1048