xref: /linux/fs/libfs.c (revision 48f7ab21f731f5a02ec34a4b83ae88c4a41d6a10)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 		   struct kstat *stat, u32 request_mask,
33 		   unsigned int query_flags)
34 {
35 	struct inode *inode = d_inode(path->dentry);
36 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41 
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
45 
46 	buf->f_fsid = u64_to_fsid(id);
47 	buf->f_type = dentry->d_sb->s_magic;
48 	buf->f_bsize = PAGE_SIZE;
49 	buf->f_namelen = NAME_MAX;
50 	return 0;
51 }
52 EXPORT_SYMBOL(simple_statfs);
53 
54 /*
55  * Retaining negative dentries for an in-memory filesystem just wastes
56  * memory and lookup time: arrange for them to be deleted immediately.
57  */
58 int always_delete_dentry(const struct dentry *dentry)
59 {
60 	return 1;
61 }
62 EXPORT_SYMBOL(always_delete_dentry);
63 
64 const struct dentry_operations simple_dentry_operations = {
65 	.d_delete = always_delete_dentry,
66 };
67 EXPORT_SYMBOL(simple_dentry_operations);
68 
69 /*
70  * Lookup the data. This is trivial - if the dentry didn't already
71  * exist, we know it is negative.  Set d_op to delete negative dentries.
72  */
73 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
74 {
75 	if (dentry->d_name.len > NAME_MAX)
76 		return ERR_PTR(-ENAMETOOLONG);
77 	if (!dentry->d_sb->s_d_op)
78 		d_set_d_op(dentry, &simple_dentry_operations);
79 	d_add(dentry, NULL);
80 	return NULL;
81 }
82 EXPORT_SYMBOL(simple_lookup);
83 
84 int dcache_dir_open(struct inode *inode, struct file *file)
85 {
86 	file->private_data = d_alloc_cursor(file->f_path.dentry);
87 
88 	return file->private_data ? 0 : -ENOMEM;
89 }
90 EXPORT_SYMBOL(dcache_dir_open);
91 
92 int dcache_dir_close(struct inode *inode, struct file *file)
93 {
94 	dput(file->private_data);
95 	return 0;
96 }
97 EXPORT_SYMBOL(dcache_dir_close);
98 
99 /* parent is locked at least shared */
100 /*
101  * Returns an element of siblings' list.
102  * We are looking for <count>th positive after <p>; if
103  * found, dentry is grabbed and returned to caller.
104  * If no such element exists, NULL is returned.
105  */
106 static struct dentry *scan_positives(struct dentry *cursor,
107 					struct list_head *p,
108 					loff_t count,
109 					struct dentry *last)
110 {
111 	struct dentry *dentry = cursor->d_parent, *found = NULL;
112 
113 	spin_lock(&dentry->d_lock);
114 	while ((p = p->next) != &dentry->d_subdirs) {
115 		struct dentry *d = list_entry(p, struct dentry, d_child);
116 		// we must at least skip cursors, to avoid livelocks
117 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
118 			continue;
119 		if (simple_positive(d) && !--count) {
120 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
121 			if (simple_positive(d))
122 				found = dget_dlock(d);
123 			spin_unlock(&d->d_lock);
124 			if (likely(found))
125 				break;
126 			count = 1;
127 		}
128 		if (need_resched()) {
129 			list_move(&cursor->d_child, p);
130 			p = &cursor->d_child;
131 			spin_unlock(&dentry->d_lock);
132 			cond_resched();
133 			spin_lock(&dentry->d_lock);
134 		}
135 	}
136 	spin_unlock(&dentry->d_lock);
137 	dput(last);
138 	return found;
139 }
140 
141 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
142 {
143 	struct dentry *dentry = file->f_path.dentry;
144 	switch (whence) {
145 		case 1:
146 			offset += file->f_pos;
147 			fallthrough;
148 		case 0:
149 			if (offset >= 0)
150 				break;
151 			fallthrough;
152 		default:
153 			return -EINVAL;
154 	}
155 	if (offset != file->f_pos) {
156 		struct dentry *cursor = file->private_data;
157 		struct dentry *to = NULL;
158 
159 		inode_lock_shared(dentry->d_inode);
160 
161 		if (offset > 2)
162 			to = scan_positives(cursor, &dentry->d_subdirs,
163 					    offset - 2, NULL);
164 		spin_lock(&dentry->d_lock);
165 		if (to)
166 			list_move(&cursor->d_child, &to->d_child);
167 		else
168 			list_del_init(&cursor->d_child);
169 		spin_unlock(&dentry->d_lock);
170 		dput(to);
171 
172 		file->f_pos = offset;
173 
174 		inode_unlock_shared(dentry->d_inode);
175 	}
176 	return offset;
177 }
178 EXPORT_SYMBOL(dcache_dir_lseek);
179 
180 /*
181  * Directory is locked and all positive dentries in it are safe, since
182  * for ramfs-type trees they can't go away without unlink() or rmdir(),
183  * both impossible due to the lock on directory.
184  */
185 
186 int dcache_readdir(struct file *file, struct dir_context *ctx)
187 {
188 	struct dentry *dentry = file->f_path.dentry;
189 	struct dentry *cursor = file->private_data;
190 	struct list_head *anchor = &dentry->d_subdirs;
191 	struct dentry *next = NULL;
192 	struct list_head *p;
193 
194 	if (!dir_emit_dots(file, ctx))
195 		return 0;
196 
197 	if (ctx->pos == 2)
198 		p = anchor;
199 	else if (!list_empty(&cursor->d_child))
200 		p = &cursor->d_child;
201 	else
202 		return 0;
203 
204 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206 			      d_inode(next)->i_ino,
207 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
208 			break;
209 		ctx->pos++;
210 		p = &next->d_child;
211 	}
212 	spin_lock(&dentry->d_lock);
213 	if (next)
214 		list_move_tail(&cursor->d_child, &next->d_child);
215 	else
216 		list_del_init(&cursor->d_child);
217 	spin_unlock(&dentry->d_lock);
218 	dput(next);
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL(dcache_readdir);
223 
224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225 {
226 	return -EISDIR;
227 }
228 EXPORT_SYMBOL(generic_read_dir);
229 
230 const struct file_operations simple_dir_operations = {
231 	.open		= dcache_dir_open,
232 	.release	= dcache_dir_close,
233 	.llseek		= dcache_dir_lseek,
234 	.read		= generic_read_dir,
235 	.iterate_shared	= dcache_readdir,
236 	.fsync		= noop_fsync,
237 };
238 EXPORT_SYMBOL(simple_dir_operations);
239 
240 const struct inode_operations simple_dir_inode_operations = {
241 	.lookup		= simple_lookup,
242 };
243 EXPORT_SYMBOL(simple_dir_inode_operations);
244 
245 static void offset_set(struct dentry *dentry, u32 offset)
246 {
247 	dentry->d_fsdata = (void *)((uintptr_t)(offset));
248 }
249 
250 static u32 dentry2offset(struct dentry *dentry)
251 {
252 	return (u32)((uintptr_t)(dentry->d_fsdata));
253 }
254 
255 static struct lock_class_key simple_offset_xa_lock;
256 
257 /**
258  * simple_offset_init - initialize an offset_ctx
259  * @octx: directory offset map to be initialized
260  *
261  */
262 void simple_offset_init(struct offset_ctx *octx)
263 {
264 	xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
265 	lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
266 
267 	/* 0 is '.', 1 is '..', so always start with offset 2 */
268 	octx->next_offset = 2;
269 }
270 
271 /**
272  * simple_offset_add - Add an entry to a directory's offset map
273  * @octx: directory offset ctx to be updated
274  * @dentry: new dentry being added
275  *
276  * Returns zero on success. @so_ctx and the dentry offset are updated.
277  * Otherwise, a negative errno value is returned.
278  */
279 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
280 {
281 	static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
282 	u32 offset;
283 	int ret;
284 
285 	if (dentry2offset(dentry) != 0)
286 		return -EBUSY;
287 
288 	ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
289 			      &octx->next_offset, GFP_KERNEL);
290 	if (ret < 0)
291 		return ret;
292 
293 	offset_set(dentry, offset);
294 	return 0;
295 }
296 
297 /**
298  * simple_offset_remove - Remove an entry to a directory's offset map
299  * @octx: directory offset ctx to be updated
300  * @dentry: dentry being removed
301  *
302  */
303 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
304 {
305 	u32 offset;
306 
307 	offset = dentry2offset(dentry);
308 	if (offset == 0)
309 		return;
310 
311 	xa_erase(&octx->xa, offset);
312 	offset_set(dentry, 0);
313 }
314 
315 /**
316  * simple_offset_rename_exchange - exchange rename with directory offsets
317  * @old_dir: parent of dentry being moved
318  * @old_dentry: dentry being moved
319  * @new_dir: destination parent
320  * @new_dentry: destination dentry
321  *
322  * Returns zero on success. Otherwise a negative errno is returned and the
323  * rename is rolled back.
324  */
325 int simple_offset_rename_exchange(struct inode *old_dir,
326 				  struct dentry *old_dentry,
327 				  struct inode *new_dir,
328 				  struct dentry *new_dentry)
329 {
330 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
331 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
332 	u32 old_index = dentry2offset(old_dentry);
333 	u32 new_index = dentry2offset(new_dentry);
334 	int ret;
335 
336 	simple_offset_remove(old_ctx, old_dentry);
337 	simple_offset_remove(new_ctx, new_dentry);
338 
339 	ret = simple_offset_add(new_ctx, old_dentry);
340 	if (ret)
341 		goto out_restore;
342 
343 	ret = simple_offset_add(old_ctx, new_dentry);
344 	if (ret) {
345 		simple_offset_remove(new_ctx, old_dentry);
346 		goto out_restore;
347 	}
348 
349 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
350 	if (ret) {
351 		simple_offset_remove(new_ctx, old_dentry);
352 		simple_offset_remove(old_ctx, new_dentry);
353 		goto out_restore;
354 	}
355 	return 0;
356 
357 out_restore:
358 	offset_set(old_dentry, old_index);
359 	xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
360 	offset_set(new_dentry, new_index);
361 	xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
362 	return ret;
363 }
364 
365 /**
366  * simple_offset_destroy - Release offset map
367  * @octx: directory offset ctx that is about to be destroyed
368  *
369  * During fs teardown (eg. umount), a directory's offset map might still
370  * contain entries. xa_destroy() cleans out anything that remains.
371  */
372 void simple_offset_destroy(struct offset_ctx *octx)
373 {
374 	xa_destroy(&octx->xa);
375 }
376 
377 /**
378  * offset_dir_llseek - Advance the read position of a directory descriptor
379  * @file: an open directory whose position is to be updated
380  * @offset: a byte offset
381  * @whence: enumerator describing the starting position for this update
382  *
383  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
384  *
385  * Returns the updated read position if successful; otherwise a
386  * negative errno is returned and the read position remains unchanged.
387  */
388 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
389 {
390 	switch (whence) {
391 	case SEEK_CUR:
392 		offset += file->f_pos;
393 		fallthrough;
394 	case SEEK_SET:
395 		if (offset >= 0)
396 			break;
397 		fallthrough;
398 	default:
399 		return -EINVAL;
400 	}
401 
402 	/* In this case, ->private_data is protected by f_pos_lock */
403 	file->private_data = NULL;
404 	return vfs_setpos(file, offset, U32_MAX);
405 }
406 
407 static struct dentry *offset_find_next(struct xa_state *xas)
408 {
409 	struct dentry *child, *found = NULL;
410 
411 	rcu_read_lock();
412 	child = xas_next_entry(xas, U32_MAX);
413 	if (!child)
414 		goto out;
415 	spin_lock(&child->d_lock);
416 	if (simple_positive(child))
417 		found = dget_dlock(child);
418 	spin_unlock(&child->d_lock);
419 out:
420 	rcu_read_unlock();
421 	return found;
422 }
423 
424 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
425 {
426 	u32 offset = dentry2offset(dentry);
427 	struct inode *inode = d_inode(dentry);
428 
429 	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
430 			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
431 }
432 
433 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
434 {
435 	struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
436 	XA_STATE(xas, &so_ctx->xa, ctx->pos);
437 	struct dentry *dentry;
438 
439 	while (true) {
440 		dentry = offset_find_next(&xas);
441 		if (!dentry)
442 			return ERR_PTR(-ENOENT);
443 
444 		if (!offset_dir_emit(ctx, dentry)) {
445 			dput(dentry);
446 			break;
447 		}
448 
449 		dput(dentry);
450 		ctx->pos = xas.xa_index + 1;
451 	}
452 	return NULL;
453 }
454 
455 /**
456  * offset_readdir - Emit entries starting at offset @ctx->pos
457  * @file: an open directory to iterate over
458  * @ctx: directory iteration context
459  *
460  * Caller must hold @file's i_rwsem to prevent insertion or removal of
461  * entries during this call.
462  *
463  * On entry, @ctx->pos contains an offset that represents the first entry
464  * to be read from the directory.
465  *
466  * The operation continues until there are no more entries to read, or
467  * until the ctx->actor indicates there is no more space in the caller's
468  * output buffer.
469  *
470  * On return, @ctx->pos contains an offset that will read the next entry
471  * in this directory when offset_readdir() is called again with @ctx.
472  *
473  * Return values:
474  *   %0 - Complete
475  */
476 static int offset_readdir(struct file *file, struct dir_context *ctx)
477 {
478 	struct dentry *dir = file->f_path.dentry;
479 
480 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
481 
482 	if (!dir_emit_dots(file, ctx))
483 		return 0;
484 
485 	/* In this case, ->private_data is protected by f_pos_lock */
486 	if (ctx->pos == 2)
487 		file->private_data = NULL;
488 	else if (file->private_data == ERR_PTR(-ENOENT))
489 		return 0;
490 	file->private_data = offset_iterate_dir(d_inode(dir), ctx);
491 	return 0;
492 }
493 
494 const struct file_operations simple_offset_dir_operations = {
495 	.llseek		= offset_dir_llseek,
496 	.iterate_shared	= offset_readdir,
497 	.read		= generic_read_dir,
498 	.fsync		= noop_fsync,
499 };
500 
501 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
502 {
503 	struct dentry *child = NULL;
504 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
505 
506 	spin_lock(&parent->d_lock);
507 	while ((p = p->next) != &parent->d_subdirs) {
508 		struct dentry *d = container_of(p, struct dentry, d_child);
509 		if (simple_positive(d)) {
510 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
511 			if (simple_positive(d))
512 				child = dget_dlock(d);
513 			spin_unlock(&d->d_lock);
514 			if (likely(child))
515 				break;
516 		}
517 	}
518 	spin_unlock(&parent->d_lock);
519 	dput(prev);
520 	return child;
521 }
522 
523 void simple_recursive_removal(struct dentry *dentry,
524                               void (*callback)(struct dentry *))
525 {
526 	struct dentry *this = dget(dentry);
527 	while (true) {
528 		struct dentry *victim = NULL, *child;
529 		struct inode *inode = this->d_inode;
530 
531 		inode_lock(inode);
532 		if (d_is_dir(this))
533 			inode->i_flags |= S_DEAD;
534 		while ((child = find_next_child(this, victim)) == NULL) {
535 			// kill and ascend
536 			// update metadata while it's still locked
537 			inode_set_ctime_current(inode);
538 			clear_nlink(inode);
539 			inode_unlock(inode);
540 			victim = this;
541 			this = this->d_parent;
542 			inode = this->d_inode;
543 			inode_lock(inode);
544 			if (simple_positive(victim)) {
545 				d_invalidate(victim);	// avoid lost mounts
546 				if (d_is_dir(victim))
547 					fsnotify_rmdir(inode, victim);
548 				else
549 					fsnotify_unlink(inode, victim);
550 				if (callback)
551 					callback(victim);
552 				dput(victim);		// unpin it
553 			}
554 			if (victim == dentry) {
555 				inode_set_mtime_to_ts(inode,
556 						      inode_set_ctime_current(inode));
557 				if (d_is_dir(dentry))
558 					drop_nlink(inode);
559 				inode_unlock(inode);
560 				dput(dentry);
561 				return;
562 			}
563 		}
564 		inode_unlock(inode);
565 		this = child;
566 	}
567 }
568 EXPORT_SYMBOL(simple_recursive_removal);
569 
570 static const struct super_operations simple_super_operations = {
571 	.statfs		= simple_statfs,
572 };
573 
574 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
575 {
576 	struct pseudo_fs_context *ctx = fc->fs_private;
577 	struct inode *root;
578 
579 	s->s_maxbytes = MAX_LFS_FILESIZE;
580 	s->s_blocksize = PAGE_SIZE;
581 	s->s_blocksize_bits = PAGE_SHIFT;
582 	s->s_magic = ctx->magic;
583 	s->s_op = ctx->ops ?: &simple_super_operations;
584 	s->s_xattr = ctx->xattr;
585 	s->s_time_gran = 1;
586 	root = new_inode(s);
587 	if (!root)
588 		return -ENOMEM;
589 
590 	/*
591 	 * since this is the first inode, make it number 1. New inodes created
592 	 * after this must take care not to collide with it (by passing
593 	 * max_reserved of 1 to iunique).
594 	 */
595 	root->i_ino = 1;
596 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
597 	simple_inode_init_ts(root);
598 	s->s_root = d_make_root(root);
599 	if (!s->s_root)
600 		return -ENOMEM;
601 	s->s_d_op = ctx->dops;
602 	return 0;
603 }
604 
605 static int pseudo_fs_get_tree(struct fs_context *fc)
606 {
607 	return get_tree_nodev(fc, pseudo_fs_fill_super);
608 }
609 
610 static void pseudo_fs_free(struct fs_context *fc)
611 {
612 	kfree(fc->fs_private);
613 }
614 
615 static const struct fs_context_operations pseudo_fs_context_ops = {
616 	.free		= pseudo_fs_free,
617 	.get_tree	= pseudo_fs_get_tree,
618 };
619 
620 /*
621  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
622  * will never be mountable)
623  */
624 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
625 					unsigned long magic)
626 {
627 	struct pseudo_fs_context *ctx;
628 
629 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
630 	if (likely(ctx)) {
631 		ctx->magic = magic;
632 		fc->fs_private = ctx;
633 		fc->ops = &pseudo_fs_context_ops;
634 		fc->sb_flags |= SB_NOUSER;
635 		fc->global = true;
636 	}
637 	return ctx;
638 }
639 EXPORT_SYMBOL(init_pseudo);
640 
641 int simple_open(struct inode *inode, struct file *file)
642 {
643 	if (inode->i_private)
644 		file->private_data = inode->i_private;
645 	return 0;
646 }
647 EXPORT_SYMBOL(simple_open);
648 
649 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
650 {
651 	struct inode *inode = d_inode(old_dentry);
652 
653 	inode_set_mtime_to_ts(dir,
654 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
655 	inc_nlink(inode);
656 	ihold(inode);
657 	dget(dentry);
658 	d_instantiate(dentry, inode);
659 	return 0;
660 }
661 EXPORT_SYMBOL(simple_link);
662 
663 int simple_empty(struct dentry *dentry)
664 {
665 	struct dentry *child;
666 	int ret = 0;
667 
668 	spin_lock(&dentry->d_lock);
669 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
670 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
671 		if (simple_positive(child)) {
672 			spin_unlock(&child->d_lock);
673 			goto out;
674 		}
675 		spin_unlock(&child->d_lock);
676 	}
677 	ret = 1;
678 out:
679 	spin_unlock(&dentry->d_lock);
680 	return ret;
681 }
682 EXPORT_SYMBOL(simple_empty);
683 
684 int simple_unlink(struct inode *dir, struct dentry *dentry)
685 {
686 	struct inode *inode = d_inode(dentry);
687 
688 	inode_set_mtime_to_ts(dir,
689 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
690 	drop_nlink(inode);
691 	dput(dentry);
692 	return 0;
693 }
694 EXPORT_SYMBOL(simple_unlink);
695 
696 int simple_rmdir(struct inode *dir, struct dentry *dentry)
697 {
698 	if (!simple_empty(dentry))
699 		return -ENOTEMPTY;
700 
701 	drop_nlink(d_inode(dentry));
702 	simple_unlink(dir, dentry);
703 	drop_nlink(dir);
704 	return 0;
705 }
706 EXPORT_SYMBOL(simple_rmdir);
707 
708 /**
709  * simple_rename_timestamp - update the various inode timestamps for rename
710  * @old_dir: old parent directory
711  * @old_dentry: dentry that is being renamed
712  * @new_dir: new parent directory
713  * @new_dentry: target for rename
714  *
715  * POSIX mandates that the old and new parent directories have their ctime and
716  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
717  * their ctime updated.
718  */
719 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
720 			     struct inode *new_dir, struct dentry *new_dentry)
721 {
722 	struct inode *newino = d_inode(new_dentry);
723 
724 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
725 	if (new_dir != old_dir)
726 		inode_set_mtime_to_ts(new_dir,
727 				      inode_set_ctime_current(new_dir));
728 	inode_set_ctime_current(d_inode(old_dentry));
729 	if (newino)
730 		inode_set_ctime_current(newino);
731 }
732 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
733 
734 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
735 			   struct inode *new_dir, struct dentry *new_dentry)
736 {
737 	bool old_is_dir = d_is_dir(old_dentry);
738 	bool new_is_dir = d_is_dir(new_dentry);
739 
740 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
741 		if (old_is_dir) {
742 			drop_nlink(old_dir);
743 			inc_nlink(new_dir);
744 		} else {
745 			drop_nlink(new_dir);
746 			inc_nlink(old_dir);
747 		}
748 	}
749 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(simple_rename_exchange);
753 
754 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
755 		  struct dentry *old_dentry, struct inode *new_dir,
756 		  struct dentry *new_dentry, unsigned int flags)
757 {
758 	int they_are_dirs = d_is_dir(old_dentry);
759 
760 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
761 		return -EINVAL;
762 
763 	if (flags & RENAME_EXCHANGE)
764 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
765 
766 	if (!simple_empty(new_dentry))
767 		return -ENOTEMPTY;
768 
769 	if (d_really_is_positive(new_dentry)) {
770 		simple_unlink(new_dir, new_dentry);
771 		if (they_are_dirs) {
772 			drop_nlink(d_inode(new_dentry));
773 			drop_nlink(old_dir);
774 		}
775 	} else if (they_are_dirs) {
776 		drop_nlink(old_dir);
777 		inc_nlink(new_dir);
778 	}
779 
780 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
781 	return 0;
782 }
783 EXPORT_SYMBOL(simple_rename);
784 
785 /**
786  * simple_setattr - setattr for simple filesystem
787  * @idmap: idmap of the target mount
788  * @dentry: dentry
789  * @iattr: iattr structure
790  *
791  * Returns 0 on success, -error on failure.
792  *
793  * simple_setattr is a simple ->setattr implementation without a proper
794  * implementation of size changes.
795  *
796  * It can either be used for in-memory filesystems or special files
797  * on simple regular filesystems.  Anything that needs to change on-disk
798  * or wire state on size changes needs its own setattr method.
799  */
800 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
801 		   struct iattr *iattr)
802 {
803 	struct inode *inode = d_inode(dentry);
804 	int error;
805 
806 	error = setattr_prepare(idmap, dentry, iattr);
807 	if (error)
808 		return error;
809 
810 	if (iattr->ia_valid & ATTR_SIZE)
811 		truncate_setsize(inode, iattr->ia_size);
812 	setattr_copy(idmap, inode, iattr);
813 	mark_inode_dirty(inode);
814 	return 0;
815 }
816 EXPORT_SYMBOL(simple_setattr);
817 
818 static int simple_read_folio(struct file *file, struct folio *folio)
819 {
820 	folio_zero_range(folio, 0, folio_size(folio));
821 	flush_dcache_folio(folio);
822 	folio_mark_uptodate(folio);
823 	folio_unlock(folio);
824 	return 0;
825 }
826 
827 int simple_write_begin(struct file *file, struct address_space *mapping,
828 			loff_t pos, unsigned len,
829 			struct page **pagep, void **fsdata)
830 {
831 	struct folio *folio;
832 
833 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
834 			mapping_gfp_mask(mapping));
835 	if (IS_ERR(folio))
836 		return PTR_ERR(folio);
837 
838 	*pagep = &folio->page;
839 
840 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
841 		size_t from = offset_in_folio(folio, pos);
842 
843 		folio_zero_segments(folio, 0, from,
844 				from + len, folio_size(folio));
845 	}
846 	return 0;
847 }
848 EXPORT_SYMBOL(simple_write_begin);
849 
850 /**
851  * simple_write_end - .write_end helper for non-block-device FSes
852  * @file: See .write_end of address_space_operations
853  * @mapping: 		"
854  * @pos: 		"
855  * @len: 		"
856  * @copied: 		"
857  * @page: 		"
858  * @fsdata: 		"
859  *
860  * simple_write_end does the minimum needed for updating a page after writing is
861  * done. It has the same API signature as the .write_end of
862  * address_space_operations vector. So it can just be set onto .write_end for
863  * FSes that don't need any other processing. i_mutex is assumed to be held.
864  * Block based filesystems should use generic_write_end().
865  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
866  * is not called, so a filesystem that actually does store data in .write_inode
867  * should extend on what's done here with a call to mark_inode_dirty() in the
868  * case that i_size has changed.
869  *
870  * Use *ONLY* with simple_read_folio()
871  */
872 static int simple_write_end(struct file *file, struct address_space *mapping,
873 			loff_t pos, unsigned len, unsigned copied,
874 			struct page *page, void *fsdata)
875 {
876 	struct folio *folio = page_folio(page);
877 	struct inode *inode = folio->mapping->host;
878 	loff_t last_pos = pos + copied;
879 
880 	/* zero the stale part of the folio if we did a short copy */
881 	if (!folio_test_uptodate(folio)) {
882 		if (copied < len) {
883 			size_t from = offset_in_folio(folio, pos);
884 
885 			folio_zero_range(folio, from + copied, len - copied);
886 		}
887 		folio_mark_uptodate(folio);
888 	}
889 	/*
890 	 * No need to use i_size_read() here, the i_size
891 	 * cannot change under us because we hold the i_mutex.
892 	 */
893 	if (last_pos > inode->i_size)
894 		i_size_write(inode, last_pos);
895 
896 	folio_mark_dirty(folio);
897 	folio_unlock(folio);
898 	folio_put(folio);
899 
900 	return copied;
901 }
902 
903 /*
904  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
905  */
906 const struct address_space_operations ram_aops = {
907 	.read_folio	= simple_read_folio,
908 	.write_begin	= simple_write_begin,
909 	.write_end	= simple_write_end,
910 	.dirty_folio	= noop_dirty_folio,
911 };
912 EXPORT_SYMBOL(ram_aops);
913 
914 /*
915  * the inodes created here are not hashed. If you use iunique to generate
916  * unique inode values later for this filesystem, then you must take care
917  * to pass it an appropriate max_reserved value to avoid collisions.
918  */
919 int simple_fill_super(struct super_block *s, unsigned long magic,
920 		      const struct tree_descr *files)
921 {
922 	struct inode *inode;
923 	struct dentry *root;
924 	struct dentry *dentry;
925 	int i;
926 
927 	s->s_blocksize = PAGE_SIZE;
928 	s->s_blocksize_bits = PAGE_SHIFT;
929 	s->s_magic = magic;
930 	s->s_op = &simple_super_operations;
931 	s->s_time_gran = 1;
932 
933 	inode = new_inode(s);
934 	if (!inode)
935 		return -ENOMEM;
936 	/*
937 	 * because the root inode is 1, the files array must not contain an
938 	 * entry at index 1
939 	 */
940 	inode->i_ino = 1;
941 	inode->i_mode = S_IFDIR | 0755;
942 	simple_inode_init_ts(inode);
943 	inode->i_op = &simple_dir_inode_operations;
944 	inode->i_fop = &simple_dir_operations;
945 	set_nlink(inode, 2);
946 	root = d_make_root(inode);
947 	if (!root)
948 		return -ENOMEM;
949 	for (i = 0; !files->name || files->name[0]; i++, files++) {
950 		if (!files->name)
951 			continue;
952 
953 		/* warn if it tries to conflict with the root inode */
954 		if (unlikely(i == 1))
955 			printk(KERN_WARNING "%s: %s passed in a files array"
956 				"with an index of 1!\n", __func__,
957 				s->s_type->name);
958 
959 		dentry = d_alloc_name(root, files->name);
960 		if (!dentry)
961 			goto out;
962 		inode = new_inode(s);
963 		if (!inode) {
964 			dput(dentry);
965 			goto out;
966 		}
967 		inode->i_mode = S_IFREG | files->mode;
968 		simple_inode_init_ts(inode);
969 		inode->i_fop = files->ops;
970 		inode->i_ino = i;
971 		d_add(dentry, inode);
972 	}
973 	s->s_root = root;
974 	return 0;
975 out:
976 	d_genocide(root);
977 	shrink_dcache_parent(root);
978 	dput(root);
979 	return -ENOMEM;
980 }
981 EXPORT_SYMBOL(simple_fill_super);
982 
983 static DEFINE_SPINLOCK(pin_fs_lock);
984 
985 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
986 {
987 	struct vfsmount *mnt = NULL;
988 	spin_lock(&pin_fs_lock);
989 	if (unlikely(!*mount)) {
990 		spin_unlock(&pin_fs_lock);
991 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
992 		if (IS_ERR(mnt))
993 			return PTR_ERR(mnt);
994 		spin_lock(&pin_fs_lock);
995 		if (!*mount)
996 			*mount = mnt;
997 	}
998 	mntget(*mount);
999 	++*count;
1000 	spin_unlock(&pin_fs_lock);
1001 	mntput(mnt);
1002 	return 0;
1003 }
1004 EXPORT_SYMBOL(simple_pin_fs);
1005 
1006 void simple_release_fs(struct vfsmount **mount, int *count)
1007 {
1008 	struct vfsmount *mnt;
1009 	spin_lock(&pin_fs_lock);
1010 	mnt = *mount;
1011 	if (!--*count)
1012 		*mount = NULL;
1013 	spin_unlock(&pin_fs_lock);
1014 	mntput(mnt);
1015 }
1016 EXPORT_SYMBOL(simple_release_fs);
1017 
1018 /**
1019  * simple_read_from_buffer - copy data from the buffer to user space
1020  * @to: the user space buffer to read to
1021  * @count: the maximum number of bytes to read
1022  * @ppos: the current position in the buffer
1023  * @from: the buffer to read from
1024  * @available: the size of the buffer
1025  *
1026  * The simple_read_from_buffer() function reads up to @count bytes from the
1027  * buffer @from at offset @ppos into the user space address starting at @to.
1028  *
1029  * On success, the number of bytes read is returned and the offset @ppos is
1030  * advanced by this number, or negative value is returned on error.
1031  **/
1032 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1033 				const void *from, size_t available)
1034 {
1035 	loff_t pos = *ppos;
1036 	size_t ret;
1037 
1038 	if (pos < 0)
1039 		return -EINVAL;
1040 	if (pos >= available || !count)
1041 		return 0;
1042 	if (count > available - pos)
1043 		count = available - pos;
1044 	ret = copy_to_user(to, from + pos, count);
1045 	if (ret == count)
1046 		return -EFAULT;
1047 	count -= ret;
1048 	*ppos = pos + count;
1049 	return count;
1050 }
1051 EXPORT_SYMBOL(simple_read_from_buffer);
1052 
1053 /**
1054  * simple_write_to_buffer - copy data from user space to the buffer
1055  * @to: the buffer to write to
1056  * @available: the size of the buffer
1057  * @ppos: the current position in the buffer
1058  * @from: the user space buffer to read from
1059  * @count: the maximum number of bytes to read
1060  *
1061  * The simple_write_to_buffer() function reads up to @count bytes from the user
1062  * space address starting at @from into the buffer @to at offset @ppos.
1063  *
1064  * On success, the number of bytes written is returned and the offset @ppos is
1065  * advanced by this number, or negative value is returned on error.
1066  **/
1067 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1068 		const void __user *from, size_t count)
1069 {
1070 	loff_t pos = *ppos;
1071 	size_t res;
1072 
1073 	if (pos < 0)
1074 		return -EINVAL;
1075 	if (pos >= available || !count)
1076 		return 0;
1077 	if (count > available - pos)
1078 		count = available - pos;
1079 	res = copy_from_user(to + pos, from, count);
1080 	if (res == count)
1081 		return -EFAULT;
1082 	count -= res;
1083 	*ppos = pos + count;
1084 	return count;
1085 }
1086 EXPORT_SYMBOL(simple_write_to_buffer);
1087 
1088 /**
1089  * memory_read_from_buffer - copy data from the buffer
1090  * @to: the kernel space buffer to read to
1091  * @count: the maximum number of bytes to read
1092  * @ppos: the current position in the buffer
1093  * @from: the buffer to read from
1094  * @available: the size of the buffer
1095  *
1096  * The memory_read_from_buffer() function reads up to @count bytes from the
1097  * buffer @from at offset @ppos into the kernel space address starting at @to.
1098  *
1099  * On success, the number of bytes read is returned and the offset @ppos is
1100  * advanced by this number, or negative value is returned on error.
1101  **/
1102 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1103 				const void *from, size_t available)
1104 {
1105 	loff_t pos = *ppos;
1106 
1107 	if (pos < 0)
1108 		return -EINVAL;
1109 	if (pos >= available)
1110 		return 0;
1111 	if (count > available - pos)
1112 		count = available - pos;
1113 	memcpy(to, from + pos, count);
1114 	*ppos = pos + count;
1115 
1116 	return count;
1117 }
1118 EXPORT_SYMBOL(memory_read_from_buffer);
1119 
1120 /*
1121  * Transaction based IO.
1122  * The file expects a single write which triggers the transaction, and then
1123  * possibly a read which collects the result - which is stored in a
1124  * file-local buffer.
1125  */
1126 
1127 void simple_transaction_set(struct file *file, size_t n)
1128 {
1129 	struct simple_transaction_argresp *ar = file->private_data;
1130 
1131 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1132 
1133 	/*
1134 	 * The barrier ensures that ar->size will really remain zero until
1135 	 * ar->data is ready for reading.
1136 	 */
1137 	smp_mb();
1138 	ar->size = n;
1139 }
1140 EXPORT_SYMBOL(simple_transaction_set);
1141 
1142 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1143 {
1144 	struct simple_transaction_argresp *ar;
1145 	static DEFINE_SPINLOCK(simple_transaction_lock);
1146 
1147 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1148 		return ERR_PTR(-EFBIG);
1149 
1150 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1151 	if (!ar)
1152 		return ERR_PTR(-ENOMEM);
1153 
1154 	spin_lock(&simple_transaction_lock);
1155 
1156 	/* only one write allowed per open */
1157 	if (file->private_data) {
1158 		spin_unlock(&simple_transaction_lock);
1159 		free_page((unsigned long)ar);
1160 		return ERR_PTR(-EBUSY);
1161 	}
1162 
1163 	file->private_data = ar;
1164 
1165 	spin_unlock(&simple_transaction_lock);
1166 
1167 	if (copy_from_user(ar->data, buf, size))
1168 		return ERR_PTR(-EFAULT);
1169 
1170 	return ar->data;
1171 }
1172 EXPORT_SYMBOL(simple_transaction_get);
1173 
1174 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1175 {
1176 	struct simple_transaction_argresp *ar = file->private_data;
1177 
1178 	if (!ar)
1179 		return 0;
1180 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1181 }
1182 EXPORT_SYMBOL(simple_transaction_read);
1183 
1184 int simple_transaction_release(struct inode *inode, struct file *file)
1185 {
1186 	free_page((unsigned long)file->private_data);
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL(simple_transaction_release);
1190 
1191 /* Simple attribute files */
1192 
1193 struct simple_attr {
1194 	int (*get)(void *, u64 *);
1195 	int (*set)(void *, u64);
1196 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1197 	char set_buf[24];
1198 	void *data;
1199 	const char *fmt;	/* format for read operation */
1200 	struct mutex mutex;	/* protects access to these buffers */
1201 };
1202 
1203 /* simple_attr_open is called by an actual attribute open file operation
1204  * to set the attribute specific access operations. */
1205 int simple_attr_open(struct inode *inode, struct file *file,
1206 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1207 		     const char *fmt)
1208 {
1209 	struct simple_attr *attr;
1210 
1211 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1212 	if (!attr)
1213 		return -ENOMEM;
1214 
1215 	attr->get = get;
1216 	attr->set = set;
1217 	attr->data = inode->i_private;
1218 	attr->fmt = fmt;
1219 	mutex_init(&attr->mutex);
1220 
1221 	file->private_data = attr;
1222 
1223 	return nonseekable_open(inode, file);
1224 }
1225 EXPORT_SYMBOL_GPL(simple_attr_open);
1226 
1227 int simple_attr_release(struct inode *inode, struct file *file)
1228 {
1229 	kfree(file->private_data);
1230 	return 0;
1231 }
1232 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1233 
1234 /* read from the buffer that is filled with the get function */
1235 ssize_t simple_attr_read(struct file *file, char __user *buf,
1236 			 size_t len, loff_t *ppos)
1237 {
1238 	struct simple_attr *attr;
1239 	size_t size;
1240 	ssize_t ret;
1241 
1242 	attr = file->private_data;
1243 
1244 	if (!attr->get)
1245 		return -EACCES;
1246 
1247 	ret = mutex_lock_interruptible(&attr->mutex);
1248 	if (ret)
1249 		return ret;
1250 
1251 	if (*ppos && attr->get_buf[0]) {
1252 		/* continued read */
1253 		size = strlen(attr->get_buf);
1254 	} else {
1255 		/* first read */
1256 		u64 val;
1257 		ret = attr->get(attr->data, &val);
1258 		if (ret)
1259 			goto out;
1260 
1261 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1262 				 attr->fmt, (unsigned long long)val);
1263 	}
1264 
1265 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1266 out:
1267 	mutex_unlock(&attr->mutex);
1268 	return ret;
1269 }
1270 EXPORT_SYMBOL_GPL(simple_attr_read);
1271 
1272 /* interpret the buffer as a number to call the set function with */
1273 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1274 			  size_t len, loff_t *ppos, bool is_signed)
1275 {
1276 	struct simple_attr *attr;
1277 	unsigned long long val;
1278 	size_t size;
1279 	ssize_t ret;
1280 
1281 	attr = file->private_data;
1282 	if (!attr->set)
1283 		return -EACCES;
1284 
1285 	ret = mutex_lock_interruptible(&attr->mutex);
1286 	if (ret)
1287 		return ret;
1288 
1289 	ret = -EFAULT;
1290 	size = min(sizeof(attr->set_buf) - 1, len);
1291 	if (copy_from_user(attr->set_buf, buf, size))
1292 		goto out;
1293 
1294 	attr->set_buf[size] = '\0';
1295 	if (is_signed)
1296 		ret = kstrtoll(attr->set_buf, 0, &val);
1297 	else
1298 		ret = kstrtoull(attr->set_buf, 0, &val);
1299 	if (ret)
1300 		goto out;
1301 	ret = attr->set(attr->data, val);
1302 	if (ret == 0)
1303 		ret = len; /* on success, claim we got the whole input */
1304 out:
1305 	mutex_unlock(&attr->mutex);
1306 	return ret;
1307 }
1308 
1309 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1310 			  size_t len, loff_t *ppos)
1311 {
1312 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1313 }
1314 EXPORT_SYMBOL_GPL(simple_attr_write);
1315 
1316 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1317 			  size_t len, loff_t *ppos)
1318 {
1319 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1320 }
1321 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1322 
1323 /**
1324  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1325  * @inode:   the object to encode
1326  * @fh:      where to store the file handle fragment
1327  * @max_len: maximum length to store there (in 4 byte units)
1328  * @parent:  parent directory inode, if wanted
1329  *
1330  * This generic encode_fh function assumes that the 32 inode number
1331  * is suitable for locating an inode, and that the generation number
1332  * can be used to check that it is still valid.  It places them in the
1333  * filehandle fragment where export_decode_fh expects to find them.
1334  */
1335 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1336 			    struct inode *parent)
1337 {
1338 	struct fid *fid = (void *)fh;
1339 	int len = *max_len;
1340 	int type = FILEID_INO32_GEN;
1341 
1342 	if (parent && (len < 4)) {
1343 		*max_len = 4;
1344 		return FILEID_INVALID;
1345 	} else if (len < 2) {
1346 		*max_len = 2;
1347 		return FILEID_INVALID;
1348 	}
1349 
1350 	len = 2;
1351 	fid->i32.ino = inode->i_ino;
1352 	fid->i32.gen = inode->i_generation;
1353 	if (parent) {
1354 		fid->i32.parent_ino = parent->i_ino;
1355 		fid->i32.parent_gen = parent->i_generation;
1356 		len = 4;
1357 		type = FILEID_INO32_GEN_PARENT;
1358 	}
1359 	*max_len = len;
1360 	return type;
1361 }
1362 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1363 
1364 /**
1365  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1366  * @sb:		filesystem to do the file handle conversion on
1367  * @fid:	file handle to convert
1368  * @fh_len:	length of the file handle in bytes
1369  * @fh_type:	type of file handle
1370  * @get_inode:	filesystem callback to retrieve inode
1371  *
1372  * This function decodes @fid as long as it has one of the well-known
1373  * Linux filehandle types and calls @get_inode on it to retrieve the
1374  * inode for the object specified in the file handle.
1375  */
1376 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1377 		int fh_len, int fh_type, struct inode *(*get_inode)
1378 			(struct super_block *sb, u64 ino, u32 gen))
1379 {
1380 	struct inode *inode = NULL;
1381 
1382 	if (fh_len < 2)
1383 		return NULL;
1384 
1385 	switch (fh_type) {
1386 	case FILEID_INO32_GEN:
1387 	case FILEID_INO32_GEN_PARENT:
1388 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1389 		break;
1390 	}
1391 
1392 	return d_obtain_alias(inode);
1393 }
1394 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1395 
1396 /**
1397  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1398  * @sb:		filesystem to do the file handle conversion on
1399  * @fid:	file handle to convert
1400  * @fh_len:	length of the file handle in bytes
1401  * @fh_type:	type of file handle
1402  * @get_inode:	filesystem callback to retrieve inode
1403  *
1404  * This function decodes @fid as long as it has one of the well-known
1405  * Linux filehandle types and calls @get_inode on it to retrieve the
1406  * inode for the _parent_ object specified in the file handle if it
1407  * is specified in the file handle, or NULL otherwise.
1408  */
1409 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1410 		int fh_len, int fh_type, struct inode *(*get_inode)
1411 			(struct super_block *sb, u64 ino, u32 gen))
1412 {
1413 	struct inode *inode = NULL;
1414 
1415 	if (fh_len <= 2)
1416 		return NULL;
1417 
1418 	switch (fh_type) {
1419 	case FILEID_INO32_GEN_PARENT:
1420 		inode = get_inode(sb, fid->i32.parent_ino,
1421 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1422 		break;
1423 	}
1424 
1425 	return d_obtain_alias(inode);
1426 }
1427 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1428 
1429 /**
1430  * __generic_file_fsync - generic fsync implementation for simple filesystems
1431  *
1432  * @file:	file to synchronize
1433  * @start:	start offset in bytes
1434  * @end:	end offset in bytes (inclusive)
1435  * @datasync:	only synchronize essential metadata if true
1436  *
1437  * This is a generic implementation of the fsync method for simple
1438  * filesystems which track all non-inode metadata in the buffers list
1439  * hanging off the address_space structure.
1440  */
1441 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1442 				 int datasync)
1443 {
1444 	struct inode *inode = file->f_mapping->host;
1445 	int err;
1446 	int ret;
1447 
1448 	err = file_write_and_wait_range(file, start, end);
1449 	if (err)
1450 		return err;
1451 
1452 	inode_lock(inode);
1453 	ret = sync_mapping_buffers(inode->i_mapping);
1454 	if (!(inode->i_state & I_DIRTY_ALL))
1455 		goto out;
1456 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1457 		goto out;
1458 
1459 	err = sync_inode_metadata(inode, 1);
1460 	if (ret == 0)
1461 		ret = err;
1462 
1463 out:
1464 	inode_unlock(inode);
1465 	/* check and advance again to catch errors after syncing out buffers */
1466 	err = file_check_and_advance_wb_err(file);
1467 	if (ret == 0)
1468 		ret = err;
1469 	return ret;
1470 }
1471 EXPORT_SYMBOL(__generic_file_fsync);
1472 
1473 /**
1474  * generic_file_fsync - generic fsync implementation for simple filesystems
1475  *			with flush
1476  * @file:	file to synchronize
1477  * @start:	start offset in bytes
1478  * @end:	end offset in bytes (inclusive)
1479  * @datasync:	only synchronize essential metadata if true
1480  *
1481  */
1482 
1483 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1484 		       int datasync)
1485 {
1486 	struct inode *inode = file->f_mapping->host;
1487 	int err;
1488 
1489 	err = __generic_file_fsync(file, start, end, datasync);
1490 	if (err)
1491 		return err;
1492 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1493 }
1494 EXPORT_SYMBOL(generic_file_fsync);
1495 
1496 /**
1497  * generic_check_addressable - Check addressability of file system
1498  * @blocksize_bits:	log of file system block size
1499  * @num_blocks:		number of blocks in file system
1500  *
1501  * Determine whether a file system with @num_blocks blocks (and a
1502  * block size of 2**@blocksize_bits) is addressable by the sector_t
1503  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1504  */
1505 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1506 {
1507 	u64 last_fs_block = num_blocks - 1;
1508 	u64 last_fs_page =
1509 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1510 
1511 	if (unlikely(num_blocks == 0))
1512 		return 0;
1513 
1514 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1515 		return -EINVAL;
1516 
1517 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1518 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1519 		return -EFBIG;
1520 	}
1521 	return 0;
1522 }
1523 EXPORT_SYMBOL(generic_check_addressable);
1524 
1525 /*
1526  * No-op implementation of ->fsync for in-memory filesystems.
1527  */
1528 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1529 {
1530 	return 0;
1531 }
1532 EXPORT_SYMBOL(noop_fsync);
1533 
1534 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1535 {
1536 	/*
1537 	 * iomap based filesystems support direct I/O without need for
1538 	 * this callback. However, it still needs to be set in
1539 	 * inode->a_ops so that open/fcntl know that direct I/O is
1540 	 * generally supported.
1541 	 */
1542 	return -EINVAL;
1543 }
1544 EXPORT_SYMBOL_GPL(noop_direct_IO);
1545 
1546 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1547 void kfree_link(void *p)
1548 {
1549 	kfree(p);
1550 }
1551 EXPORT_SYMBOL(kfree_link);
1552 
1553 struct inode *alloc_anon_inode(struct super_block *s)
1554 {
1555 	static const struct address_space_operations anon_aops = {
1556 		.dirty_folio	= noop_dirty_folio,
1557 	};
1558 	struct inode *inode = new_inode_pseudo(s);
1559 
1560 	if (!inode)
1561 		return ERR_PTR(-ENOMEM);
1562 
1563 	inode->i_ino = get_next_ino();
1564 	inode->i_mapping->a_ops = &anon_aops;
1565 
1566 	/*
1567 	 * Mark the inode dirty from the very beginning,
1568 	 * that way it will never be moved to the dirty
1569 	 * list because mark_inode_dirty() will think
1570 	 * that it already _is_ on the dirty list.
1571 	 */
1572 	inode->i_state = I_DIRTY;
1573 	inode->i_mode = S_IRUSR | S_IWUSR;
1574 	inode->i_uid = current_fsuid();
1575 	inode->i_gid = current_fsgid();
1576 	inode->i_flags |= S_PRIVATE;
1577 	simple_inode_init_ts(inode);
1578 	return inode;
1579 }
1580 EXPORT_SYMBOL(alloc_anon_inode);
1581 
1582 /**
1583  * simple_nosetlease - generic helper for prohibiting leases
1584  * @filp: file pointer
1585  * @arg: type of lease to obtain
1586  * @flp: new lease supplied for insertion
1587  * @priv: private data for lm_setup operation
1588  *
1589  * Generic helper for filesystems that do not wish to allow leases to be set.
1590  * All arguments are ignored and it just returns -EINVAL.
1591  */
1592 int
1593 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1594 		  void **priv)
1595 {
1596 	return -EINVAL;
1597 }
1598 EXPORT_SYMBOL(simple_nosetlease);
1599 
1600 /**
1601  * simple_get_link - generic helper to get the target of "fast" symlinks
1602  * @dentry: not used here
1603  * @inode: the symlink inode
1604  * @done: not used here
1605  *
1606  * Generic helper for filesystems to use for symlink inodes where a pointer to
1607  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1608  * since as an optimization the path lookup code uses any non-NULL ->i_link
1609  * directly, without calling ->get_link().  But ->get_link() still must be set,
1610  * to mark the inode_operations as being for a symlink.
1611  *
1612  * Return: the symlink target
1613  */
1614 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1615 			    struct delayed_call *done)
1616 {
1617 	return inode->i_link;
1618 }
1619 EXPORT_SYMBOL(simple_get_link);
1620 
1621 const struct inode_operations simple_symlink_inode_operations = {
1622 	.get_link = simple_get_link,
1623 };
1624 EXPORT_SYMBOL(simple_symlink_inode_operations);
1625 
1626 /*
1627  * Operations for a permanently empty directory.
1628  */
1629 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1630 {
1631 	return ERR_PTR(-ENOENT);
1632 }
1633 
1634 static int empty_dir_getattr(struct mnt_idmap *idmap,
1635 			     const struct path *path, struct kstat *stat,
1636 			     u32 request_mask, unsigned int query_flags)
1637 {
1638 	struct inode *inode = d_inode(path->dentry);
1639 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1640 	return 0;
1641 }
1642 
1643 static int empty_dir_setattr(struct mnt_idmap *idmap,
1644 			     struct dentry *dentry, struct iattr *attr)
1645 {
1646 	return -EPERM;
1647 }
1648 
1649 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1650 {
1651 	return -EOPNOTSUPP;
1652 }
1653 
1654 static const struct inode_operations empty_dir_inode_operations = {
1655 	.lookup		= empty_dir_lookup,
1656 	.permission	= generic_permission,
1657 	.setattr	= empty_dir_setattr,
1658 	.getattr	= empty_dir_getattr,
1659 	.listxattr	= empty_dir_listxattr,
1660 };
1661 
1662 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1663 {
1664 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1665 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1666 }
1667 
1668 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1669 {
1670 	dir_emit_dots(file, ctx);
1671 	return 0;
1672 }
1673 
1674 static const struct file_operations empty_dir_operations = {
1675 	.llseek		= empty_dir_llseek,
1676 	.read		= generic_read_dir,
1677 	.iterate_shared	= empty_dir_readdir,
1678 	.fsync		= noop_fsync,
1679 };
1680 
1681 
1682 void make_empty_dir_inode(struct inode *inode)
1683 {
1684 	set_nlink(inode, 2);
1685 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1686 	inode->i_uid = GLOBAL_ROOT_UID;
1687 	inode->i_gid = GLOBAL_ROOT_GID;
1688 	inode->i_rdev = 0;
1689 	inode->i_size = 0;
1690 	inode->i_blkbits = PAGE_SHIFT;
1691 	inode->i_blocks = 0;
1692 
1693 	inode->i_op = &empty_dir_inode_operations;
1694 	inode->i_opflags &= ~IOP_XATTR;
1695 	inode->i_fop = &empty_dir_operations;
1696 }
1697 
1698 bool is_empty_dir_inode(struct inode *inode)
1699 {
1700 	return (inode->i_fop == &empty_dir_operations) &&
1701 		(inode->i_op == &empty_dir_inode_operations);
1702 }
1703 
1704 #if IS_ENABLED(CONFIG_UNICODE)
1705 /**
1706  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1707  * @dentry:	dentry whose name we are checking against
1708  * @len:	len of name of dentry
1709  * @str:	str pointer to name of dentry
1710  * @name:	Name to compare against
1711  *
1712  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1713  */
1714 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1715 				const char *str, const struct qstr *name)
1716 {
1717 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1718 	const struct inode *dir = READ_ONCE(parent->d_inode);
1719 	const struct super_block *sb = dentry->d_sb;
1720 	const struct unicode_map *um = sb->s_encoding;
1721 	struct qstr qstr = QSTR_INIT(str, len);
1722 	char strbuf[DNAME_INLINE_LEN];
1723 	int ret;
1724 
1725 	if (!dir || !IS_CASEFOLDED(dir))
1726 		goto fallback;
1727 	/*
1728 	 * If the dentry name is stored in-line, then it may be concurrently
1729 	 * modified by a rename.  If this happens, the VFS will eventually retry
1730 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1731 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1732 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1733 	 */
1734 	if (len <= DNAME_INLINE_LEN - 1) {
1735 		memcpy(strbuf, str, len);
1736 		strbuf[len] = 0;
1737 		qstr.name = strbuf;
1738 		/* prevent compiler from optimizing out the temporary buffer */
1739 		barrier();
1740 	}
1741 	ret = utf8_strncasecmp(um, name, &qstr);
1742 	if (ret >= 0)
1743 		return ret;
1744 
1745 	if (sb_has_strict_encoding(sb))
1746 		return -EINVAL;
1747 fallback:
1748 	if (len != name->len)
1749 		return 1;
1750 	return !!memcmp(str, name->name, len);
1751 }
1752 
1753 /**
1754  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1755  * @dentry:	dentry of the parent directory
1756  * @str:	qstr of name whose hash we should fill in
1757  *
1758  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1759  */
1760 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1761 {
1762 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1763 	struct super_block *sb = dentry->d_sb;
1764 	const struct unicode_map *um = sb->s_encoding;
1765 	int ret = 0;
1766 
1767 	if (!dir || !IS_CASEFOLDED(dir))
1768 		return 0;
1769 
1770 	ret = utf8_casefold_hash(um, dentry, str);
1771 	if (ret < 0 && sb_has_strict_encoding(sb))
1772 		return -EINVAL;
1773 	return 0;
1774 }
1775 
1776 static const struct dentry_operations generic_ci_dentry_ops = {
1777 	.d_hash = generic_ci_d_hash,
1778 	.d_compare = generic_ci_d_compare,
1779 };
1780 #endif
1781 
1782 #ifdef CONFIG_FS_ENCRYPTION
1783 static const struct dentry_operations generic_encrypted_dentry_ops = {
1784 	.d_revalidate = fscrypt_d_revalidate,
1785 };
1786 #endif
1787 
1788 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1789 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1790 	.d_hash = generic_ci_d_hash,
1791 	.d_compare = generic_ci_d_compare,
1792 	.d_revalidate = fscrypt_d_revalidate,
1793 };
1794 #endif
1795 
1796 /**
1797  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1798  * @dentry:	dentry to set ops on
1799  *
1800  * Casefolded directories need d_hash and d_compare set, so that the dentries
1801  * contained in them are handled case-insensitively.  Note that these operations
1802  * are needed on the parent directory rather than on the dentries in it, and
1803  * while the casefolding flag can be toggled on and off on an empty directory,
1804  * dentry_operations can't be changed later.  As a result, if the filesystem has
1805  * casefolding support enabled at all, we have to give all dentries the
1806  * casefolding operations even if their inode doesn't have the casefolding flag
1807  * currently (and thus the casefolding ops would be no-ops for now).
1808  *
1809  * Encryption works differently in that the only dentry operation it needs is
1810  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1811  * The no-key flag can't be set "later", so we don't have to worry about that.
1812  *
1813  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1814  * with certain dentry operations) and to avoid taking an unnecessary
1815  * performance hit, we use custom dentry_operations for each possible
1816  * combination rather than always installing all operations.
1817  */
1818 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1819 {
1820 #ifdef CONFIG_FS_ENCRYPTION
1821 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1822 #endif
1823 #if IS_ENABLED(CONFIG_UNICODE)
1824 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1825 #endif
1826 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1827 	if (needs_encrypt_ops && needs_ci_ops) {
1828 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1829 		return;
1830 	}
1831 #endif
1832 #ifdef CONFIG_FS_ENCRYPTION
1833 	if (needs_encrypt_ops) {
1834 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1835 		return;
1836 	}
1837 #endif
1838 #if IS_ENABLED(CONFIG_UNICODE)
1839 	if (needs_ci_ops) {
1840 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1841 		return;
1842 	}
1843 #endif
1844 }
1845 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1846 
1847 /**
1848  * inode_maybe_inc_iversion - increments i_version
1849  * @inode: inode with the i_version that should be updated
1850  * @force: increment the counter even if it's not necessary?
1851  *
1852  * Every time the inode is modified, the i_version field must be seen to have
1853  * changed by any observer.
1854  *
1855  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1856  * the value, and clear the queried flag.
1857  *
1858  * In the common case where neither is set, then we can return "false" without
1859  * updating i_version.
1860  *
1861  * If this function returns false, and no other metadata has changed, then we
1862  * can avoid logging the metadata.
1863  */
1864 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1865 {
1866 	u64 cur, new;
1867 
1868 	/*
1869 	 * The i_version field is not strictly ordered with any other inode
1870 	 * information, but the legacy inode_inc_iversion code used a spinlock
1871 	 * to serialize increments.
1872 	 *
1873 	 * Here, we add full memory barriers to ensure that any de-facto
1874 	 * ordering with other info is preserved.
1875 	 *
1876 	 * This barrier pairs with the barrier in inode_query_iversion()
1877 	 */
1878 	smp_mb();
1879 	cur = inode_peek_iversion_raw(inode);
1880 	do {
1881 		/* If flag is clear then we needn't do anything */
1882 		if (!force && !(cur & I_VERSION_QUERIED))
1883 			return false;
1884 
1885 		/* Since lowest bit is flag, add 2 to avoid it */
1886 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1887 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1888 	return true;
1889 }
1890 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1891 
1892 /**
1893  * inode_query_iversion - read i_version for later use
1894  * @inode: inode from which i_version should be read
1895  *
1896  * Read the inode i_version counter. This should be used by callers that wish
1897  * to store the returned i_version for later comparison. This will guarantee
1898  * that a later query of the i_version will result in a different value if
1899  * anything has changed.
1900  *
1901  * In this implementation, we fetch the current value, set the QUERIED flag and
1902  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1903  * that fails, we try again with the newly fetched value from the cmpxchg.
1904  */
1905 u64 inode_query_iversion(struct inode *inode)
1906 {
1907 	u64 cur, new;
1908 
1909 	cur = inode_peek_iversion_raw(inode);
1910 	do {
1911 		/* If flag is already set, then no need to swap */
1912 		if (cur & I_VERSION_QUERIED) {
1913 			/*
1914 			 * This barrier (and the implicit barrier in the
1915 			 * cmpxchg below) pairs with the barrier in
1916 			 * inode_maybe_inc_iversion().
1917 			 */
1918 			smp_mb();
1919 			break;
1920 		}
1921 
1922 		new = cur | I_VERSION_QUERIED;
1923 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1924 	return cur >> I_VERSION_QUERIED_SHIFT;
1925 }
1926 EXPORT_SYMBOL(inode_query_iversion);
1927 
1928 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1929 		ssize_t direct_written, ssize_t buffered_written)
1930 {
1931 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1932 	loff_t pos = iocb->ki_pos - buffered_written;
1933 	loff_t end = iocb->ki_pos - 1;
1934 	int err;
1935 
1936 	/*
1937 	 * If the buffered write fallback returned an error, we want to return
1938 	 * the number of bytes which were written by direct I/O, or the error
1939 	 * code if that was zero.
1940 	 *
1941 	 * Note that this differs from normal direct-io semantics, which will
1942 	 * return -EFOO even if some bytes were written.
1943 	 */
1944 	if (unlikely(buffered_written < 0)) {
1945 		if (direct_written)
1946 			return direct_written;
1947 		return buffered_written;
1948 	}
1949 
1950 	/*
1951 	 * We need to ensure that the page cache pages are written to disk and
1952 	 * invalidated to preserve the expected O_DIRECT semantics.
1953 	 */
1954 	err = filemap_write_and_wait_range(mapping, pos, end);
1955 	if (err < 0) {
1956 		/*
1957 		 * We don't know how much we wrote, so just return the number of
1958 		 * bytes which were direct-written
1959 		 */
1960 		iocb->ki_pos -= buffered_written;
1961 		if (direct_written)
1962 			return direct_written;
1963 		return err;
1964 	}
1965 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1966 	return direct_written + buffered_written;
1967 }
1968 EXPORT_SYMBOL_GPL(direct_write_fallback);
1969 
1970 /**
1971  * simple_inode_init_ts - initialize the timestamps for a new inode
1972  * @inode: inode to be initialized
1973  *
1974  * When a new inode is created, most filesystems set the timestamps to the
1975  * current time. Add a helper to do this.
1976  */
1977 struct timespec64 simple_inode_init_ts(struct inode *inode)
1978 {
1979 	struct timespec64 ts = inode_set_ctime_current(inode);
1980 
1981 	inode_set_atime_to_ts(inode, ts);
1982 	inode_set_mtime_to_ts(inode, ts);
1983 	return ts;
1984 }
1985 EXPORT_SYMBOL(simple_inode_init_ts);
1986