1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 #include <linux/pidfs.h> 27 28 #include <linux/uaccess.h> 29 30 #include "internal.h" 31 32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 33 struct kstat *stat, u32 request_mask, 34 unsigned int query_flags) 35 { 36 struct inode *inode = d_inode(path->dentry); 37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 39 return 0; 40 } 41 EXPORT_SYMBOL(simple_getattr); 42 43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 44 { 45 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 46 47 buf->f_fsid = u64_to_fsid(id); 48 buf->f_type = dentry->d_sb->s_magic; 49 buf->f_bsize = PAGE_SIZE; 50 buf->f_namelen = NAME_MAX; 51 return 0; 52 } 53 EXPORT_SYMBOL(simple_statfs); 54 55 /* 56 * Retaining negative dentries for an in-memory filesystem just wastes 57 * memory and lookup time: arrange for them to be deleted immediately. 58 */ 59 int always_delete_dentry(const struct dentry *dentry) 60 { 61 return 1; 62 } 63 EXPORT_SYMBOL(always_delete_dentry); 64 65 const struct dentry_operations simple_dentry_operations = { 66 .d_delete = always_delete_dentry, 67 }; 68 EXPORT_SYMBOL(simple_dentry_operations); 69 70 /* 71 * Lookup the data. This is trivial - if the dentry didn't already 72 * exist, we know it is negative. Set d_op to delete negative dentries. 73 */ 74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 75 { 76 if (dentry->d_name.len > NAME_MAX) 77 return ERR_PTR(-ENAMETOOLONG); 78 if (!dentry->d_sb->s_d_op) 79 d_set_d_op(dentry, &simple_dentry_operations); 80 d_add(dentry, NULL); 81 return NULL; 82 } 83 EXPORT_SYMBOL(simple_lookup); 84 85 int dcache_dir_open(struct inode *inode, struct file *file) 86 { 87 file->private_data = d_alloc_cursor(file->f_path.dentry); 88 89 return file->private_data ? 0 : -ENOMEM; 90 } 91 EXPORT_SYMBOL(dcache_dir_open); 92 93 int dcache_dir_close(struct inode *inode, struct file *file) 94 { 95 dput(file->private_data); 96 return 0; 97 } 98 EXPORT_SYMBOL(dcache_dir_close); 99 100 /* parent is locked at least shared */ 101 /* 102 * Returns an element of siblings' list. 103 * We are looking for <count>th positive after <p>; if 104 * found, dentry is grabbed and returned to caller. 105 * If no such element exists, NULL is returned. 106 */ 107 static struct dentry *scan_positives(struct dentry *cursor, 108 struct hlist_node **p, 109 loff_t count, 110 struct dentry *last) 111 { 112 struct dentry *dentry = cursor->d_parent, *found = NULL; 113 114 spin_lock(&dentry->d_lock); 115 while (*p) { 116 struct dentry *d = hlist_entry(*p, struct dentry, d_sib); 117 p = &d->d_sib.next; 118 // we must at least skip cursors, to avoid livelocks 119 if (d->d_flags & DCACHE_DENTRY_CURSOR) 120 continue; 121 if (simple_positive(d) && !--count) { 122 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 123 if (simple_positive(d)) 124 found = dget_dlock(d); 125 spin_unlock(&d->d_lock); 126 if (likely(found)) 127 break; 128 count = 1; 129 } 130 if (need_resched()) { 131 if (!hlist_unhashed(&cursor->d_sib)) 132 __hlist_del(&cursor->d_sib); 133 hlist_add_behind(&cursor->d_sib, &d->d_sib); 134 p = &cursor->d_sib.next; 135 spin_unlock(&dentry->d_lock); 136 cond_resched(); 137 spin_lock(&dentry->d_lock); 138 } 139 } 140 spin_unlock(&dentry->d_lock); 141 dput(last); 142 return found; 143 } 144 145 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 146 { 147 struct dentry *dentry = file->f_path.dentry; 148 switch (whence) { 149 case 1: 150 offset += file->f_pos; 151 fallthrough; 152 case 0: 153 if (offset >= 0) 154 break; 155 fallthrough; 156 default: 157 return -EINVAL; 158 } 159 if (offset != file->f_pos) { 160 struct dentry *cursor = file->private_data; 161 struct dentry *to = NULL; 162 163 inode_lock_shared(dentry->d_inode); 164 165 if (offset > 2) 166 to = scan_positives(cursor, &dentry->d_children.first, 167 offset - 2, NULL); 168 spin_lock(&dentry->d_lock); 169 hlist_del_init(&cursor->d_sib); 170 if (to) 171 hlist_add_behind(&cursor->d_sib, &to->d_sib); 172 spin_unlock(&dentry->d_lock); 173 dput(to); 174 175 file->f_pos = offset; 176 177 inode_unlock_shared(dentry->d_inode); 178 } 179 return offset; 180 } 181 EXPORT_SYMBOL(dcache_dir_lseek); 182 183 /* 184 * Directory is locked and all positive dentries in it are safe, since 185 * for ramfs-type trees they can't go away without unlink() or rmdir(), 186 * both impossible due to the lock on directory. 187 */ 188 189 int dcache_readdir(struct file *file, struct dir_context *ctx) 190 { 191 struct dentry *dentry = file->f_path.dentry; 192 struct dentry *cursor = file->private_data; 193 struct dentry *next = NULL; 194 struct hlist_node **p; 195 196 if (!dir_emit_dots(file, ctx)) 197 return 0; 198 199 if (ctx->pos == 2) 200 p = &dentry->d_children.first; 201 else 202 p = &cursor->d_sib.next; 203 204 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 205 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 206 d_inode(next)->i_ino, 207 fs_umode_to_dtype(d_inode(next)->i_mode))) 208 break; 209 ctx->pos++; 210 p = &next->d_sib.next; 211 } 212 spin_lock(&dentry->d_lock); 213 hlist_del_init(&cursor->d_sib); 214 if (next) 215 hlist_add_before(&cursor->d_sib, &next->d_sib); 216 spin_unlock(&dentry->d_lock); 217 dput(next); 218 219 return 0; 220 } 221 EXPORT_SYMBOL(dcache_readdir); 222 223 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 224 { 225 return -EISDIR; 226 } 227 EXPORT_SYMBOL(generic_read_dir); 228 229 const struct file_operations simple_dir_operations = { 230 .open = dcache_dir_open, 231 .release = dcache_dir_close, 232 .llseek = dcache_dir_lseek, 233 .read = generic_read_dir, 234 .iterate_shared = dcache_readdir, 235 .fsync = noop_fsync, 236 }; 237 EXPORT_SYMBOL(simple_dir_operations); 238 239 const struct inode_operations simple_dir_inode_operations = { 240 .lookup = simple_lookup, 241 }; 242 EXPORT_SYMBOL(simple_dir_inode_operations); 243 244 /* 0 is '.', 1 is '..', so always start with offset 2 or more */ 245 enum { 246 DIR_OFFSET_MIN = 2, 247 }; 248 249 static void offset_set(struct dentry *dentry, long offset) 250 { 251 dentry->d_fsdata = (void *)offset; 252 } 253 254 static long dentry2offset(struct dentry *dentry) 255 { 256 return (long)dentry->d_fsdata; 257 } 258 259 static struct lock_class_key simple_offset_lock_class; 260 261 /** 262 * simple_offset_init - initialize an offset_ctx 263 * @octx: directory offset map to be initialized 264 * 265 */ 266 void simple_offset_init(struct offset_ctx *octx) 267 { 268 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE); 269 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class); 270 octx->next_offset = DIR_OFFSET_MIN; 271 } 272 273 /** 274 * simple_offset_add - Add an entry to a directory's offset map 275 * @octx: directory offset ctx to be updated 276 * @dentry: new dentry being added 277 * 278 * Returns zero on success. @octx and the dentry's offset are updated. 279 * Otherwise, a negative errno value is returned. 280 */ 281 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 282 { 283 unsigned long offset; 284 int ret; 285 286 if (dentry2offset(dentry) != 0) 287 return -EBUSY; 288 289 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN, 290 LONG_MAX, &octx->next_offset, GFP_KERNEL); 291 if (ret < 0) 292 return ret; 293 294 offset_set(dentry, offset); 295 return 0; 296 } 297 298 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry, 299 long offset) 300 { 301 int ret; 302 303 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL); 304 if (ret) 305 return ret; 306 offset_set(dentry, offset); 307 return 0; 308 } 309 310 /** 311 * simple_offset_remove - Remove an entry to a directory's offset map 312 * @octx: directory offset ctx to be updated 313 * @dentry: dentry being removed 314 * 315 */ 316 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 317 { 318 long offset; 319 320 offset = dentry2offset(dentry); 321 if (offset == 0) 322 return; 323 324 mtree_erase(&octx->mt, offset); 325 offset_set(dentry, 0); 326 } 327 328 /** 329 * simple_offset_empty - Check if a dentry can be unlinked 330 * @dentry: dentry to be tested 331 * 332 * Returns 0 if @dentry is a non-empty directory; otherwise returns 1. 333 */ 334 int simple_offset_empty(struct dentry *dentry) 335 { 336 struct inode *inode = d_inode(dentry); 337 struct offset_ctx *octx; 338 struct dentry *child; 339 unsigned long index; 340 int ret = 1; 341 342 if (!inode || !S_ISDIR(inode->i_mode)) 343 return ret; 344 345 index = DIR_OFFSET_MIN; 346 octx = inode->i_op->get_offset_ctx(inode); 347 mt_for_each(&octx->mt, child, index, LONG_MAX) { 348 spin_lock(&child->d_lock); 349 if (simple_positive(child)) { 350 spin_unlock(&child->d_lock); 351 ret = 0; 352 break; 353 } 354 spin_unlock(&child->d_lock); 355 } 356 357 return ret; 358 } 359 360 /** 361 * simple_offset_rename - handle directory offsets for rename 362 * @old_dir: parent directory of source entry 363 * @old_dentry: dentry of source entry 364 * @new_dir: parent_directory of destination entry 365 * @new_dentry: dentry of destination 366 * 367 * Caller provides appropriate serialization. 368 * 369 * User space expects the directory offset value of the replaced 370 * (new) directory entry to be unchanged after a rename. 371 * 372 * Returns zero on success, a negative errno value on failure. 373 */ 374 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 375 struct inode *new_dir, struct dentry *new_dentry) 376 { 377 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 378 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 379 long new_offset = dentry2offset(new_dentry); 380 381 simple_offset_remove(old_ctx, old_dentry); 382 383 if (new_offset) { 384 offset_set(new_dentry, 0); 385 return simple_offset_replace(new_ctx, old_dentry, new_offset); 386 } 387 return simple_offset_add(new_ctx, old_dentry); 388 } 389 390 /** 391 * simple_offset_rename_exchange - exchange rename with directory offsets 392 * @old_dir: parent of dentry being moved 393 * @old_dentry: dentry being moved 394 * @new_dir: destination parent 395 * @new_dentry: destination dentry 396 * 397 * This API preserves the directory offset values. Caller provides 398 * appropriate serialization. 399 * 400 * Returns zero on success. Otherwise a negative errno is returned and the 401 * rename is rolled back. 402 */ 403 int simple_offset_rename_exchange(struct inode *old_dir, 404 struct dentry *old_dentry, 405 struct inode *new_dir, 406 struct dentry *new_dentry) 407 { 408 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 409 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 410 long old_index = dentry2offset(old_dentry); 411 long new_index = dentry2offset(new_dentry); 412 int ret; 413 414 simple_offset_remove(old_ctx, old_dentry); 415 simple_offset_remove(new_ctx, new_dentry); 416 417 ret = simple_offset_replace(new_ctx, old_dentry, new_index); 418 if (ret) 419 goto out_restore; 420 421 ret = simple_offset_replace(old_ctx, new_dentry, old_index); 422 if (ret) { 423 simple_offset_remove(new_ctx, old_dentry); 424 goto out_restore; 425 } 426 427 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 428 if (ret) { 429 simple_offset_remove(new_ctx, old_dentry); 430 simple_offset_remove(old_ctx, new_dentry); 431 goto out_restore; 432 } 433 return 0; 434 435 out_restore: 436 (void)simple_offset_replace(old_ctx, old_dentry, old_index); 437 (void)simple_offset_replace(new_ctx, new_dentry, new_index); 438 return ret; 439 } 440 441 /** 442 * simple_offset_destroy - Release offset map 443 * @octx: directory offset ctx that is about to be destroyed 444 * 445 * During fs teardown (eg. umount), a directory's offset map might still 446 * contain entries. xa_destroy() cleans out anything that remains. 447 */ 448 void simple_offset_destroy(struct offset_ctx *octx) 449 { 450 mtree_destroy(&octx->mt); 451 } 452 453 /** 454 * offset_dir_llseek - Advance the read position of a directory descriptor 455 * @file: an open directory whose position is to be updated 456 * @offset: a byte offset 457 * @whence: enumerator describing the starting position for this update 458 * 459 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 460 * 461 * Returns the updated read position if successful; otherwise a 462 * negative errno is returned and the read position remains unchanged. 463 */ 464 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 465 { 466 switch (whence) { 467 case SEEK_CUR: 468 offset += file->f_pos; 469 fallthrough; 470 case SEEK_SET: 471 if (offset >= 0) 472 break; 473 fallthrough; 474 default: 475 return -EINVAL; 476 } 477 478 /* In this case, ->private_data is protected by f_pos_lock */ 479 file->private_data = NULL; 480 return vfs_setpos(file, offset, LONG_MAX); 481 } 482 483 static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset) 484 { 485 MA_STATE(mas, &octx->mt, offset, offset); 486 struct dentry *child, *found = NULL; 487 488 rcu_read_lock(); 489 child = mas_find(&mas, LONG_MAX); 490 if (!child) 491 goto out; 492 spin_lock(&child->d_lock); 493 if (simple_positive(child)) 494 found = dget_dlock(child); 495 spin_unlock(&child->d_lock); 496 out: 497 rcu_read_unlock(); 498 return found; 499 } 500 501 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 502 { 503 struct inode *inode = d_inode(dentry); 504 long offset = dentry2offset(dentry); 505 506 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 507 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 508 } 509 510 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx) 511 { 512 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode); 513 struct dentry *dentry; 514 515 while (true) { 516 dentry = offset_find_next(octx, ctx->pos); 517 if (!dentry) 518 return ERR_PTR(-ENOENT); 519 520 if (!offset_dir_emit(ctx, dentry)) { 521 dput(dentry); 522 break; 523 } 524 525 ctx->pos = dentry2offset(dentry) + 1; 526 dput(dentry); 527 } 528 return NULL; 529 } 530 531 /** 532 * offset_readdir - Emit entries starting at offset @ctx->pos 533 * @file: an open directory to iterate over 534 * @ctx: directory iteration context 535 * 536 * Caller must hold @file's i_rwsem to prevent insertion or removal of 537 * entries during this call. 538 * 539 * On entry, @ctx->pos contains an offset that represents the first entry 540 * to be read from the directory. 541 * 542 * The operation continues until there are no more entries to read, or 543 * until the ctx->actor indicates there is no more space in the caller's 544 * output buffer. 545 * 546 * On return, @ctx->pos contains an offset that will read the next entry 547 * in this directory when offset_readdir() is called again with @ctx. 548 * 549 * Return values: 550 * %0 - Complete 551 */ 552 static int offset_readdir(struct file *file, struct dir_context *ctx) 553 { 554 struct dentry *dir = file->f_path.dentry; 555 556 lockdep_assert_held(&d_inode(dir)->i_rwsem); 557 558 if (!dir_emit_dots(file, ctx)) 559 return 0; 560 561 /* In this case, ->private_data is protected by f_pos_lock */ 562 if (ctx->pos == DIR_OFFSET_MIN) 563 file->private_data = NULL; 564 else if (file->private_data == ERR_PTR(-ENOENT)) 565 return 0; 566 file->private_data = offset_iterate_dir(d_inode(dir), ctx); 567 return 0; 568 } 569 570 const struct file_operations simple_offset_dir_operations = { 571 .llseek = offset_dir_llseek, 572 .iterate_shared = offset_readdir, 573 .read = generic_read_dir, 574 .fsync = noop_fsync, 575 }; 576 577 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 578 { 579 struct dentry *child = NULL, *d; 580 581 spin_lock(&parent->d_lock); 582 d = prev ? d_next_sibling(prev) : d_first_child(parent); 583 hlist_for_each_entry_from(d, d_sib) { 584 if (simple_positive(d)) { 585 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 586 if (simple_positive(d)) 587 child = dget_dlock(d); 588 spin_unlock(&d->d_lock); 589 if (likely(child)) 590 break; 591 } 592 } 593 spin_unlock(&parent->d_lock); 594 dput(prev); 595 return child; 596 } 597 598 void simple_recursive_removal(struct dentry *dentry, 599 void (*callback)(struct dentry *)) 600 { 601 struct dentry *this = dget(dentry); 602 while (true) { 603 struct dentry *victim = NULL, *child; 604 struct inode *inode = this->d_inode; 605 606 inode_lock(inode); 607 if (d_is_dir(this)) 608 inode->i_flags |= S_DEAD; 609 while ((child = find_next_child(this, victim)) == NULL) { 610 // kill and ascend 611 // update metadata while it's still locked 612 inode_set_ctime_current(inode); 613 clear_nlink(inode); 614 inode_unlock(inode); 615 victim = this; 616 this = this->d_parent; 617 inode = this->d_inode; 618 inode_lock(inode); 619 if (simple_positive(victim)) { 620 d_invalidate(victim); // avoid lost mounts 621 if (d_is_dir(victim)) 622 fsnotify_rmdir(inode, victim); 623 else 624 fsnotify_unlink(inode, victim); 625 if (callback) 626 callback(victim); 627 dput(victim); // unpin it 628 } 629 if (victim == dentry) { 630 inode_set_mtime_to_ts(inode, 631 inode_set_ctime_current(inode)); 632 if (d_is_dir(dentry)) 633 drop_nlink(inode); 634 inode_unlock(inode); 635 dput(dentry); 636 return; 637 } 638 } 639 inode_unlock(inode); 640 this = child; 641 } 642 } 643 EXPORT_SYMBOL(simple_recursive_removal); 644 645 static const struct super_operations simple_super_operations = { 646 .statfs = simple_statfs, 647 }; 648 649 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 650 { 651 struct pseudo_fs_context *ctx = fc->fs_private; 652 struct inode *root; 653 654 s->s_maxbytes = MAX_LFS_FILESIZE; 655 s->s_blocksize = PAGE_SIZE; 656 s->s_blocksize_bits = PAGE_SHIFT; 657 s->s_magic = ctx->magic; 658 s->s_op = ctx->ops ?: &simple_super_operations; 659 s->s_xattr = ctx->xattr; 660 s->s_time_gran = 1; 661 root = new_inode(s); 662 if (!root) 663 return -ENOMEM; 664 665 /* 666 * since this is the first inode, make it number 1. New inodes created 667 * after this must take care not to collide with it (by passing 668 * max_reserved of 1 to iunique). 669 */ 670 root->i_ino = 1; 671 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 672 simple_inode_init_ts(root); 673 s->s_root = d_make_root(root); 674 if (!s->s_root) 675 return -ENOMEM; 676 s->s_d_op = ctx->dops; 677 return 0; 678 } 679 680 static int pseudo_fs_get_tree(struct fs_context *fc) 681 { 682 return get_tree_nodev(fc, pseudo_fs_fill_super); 683 } 684 685 static void pseudo_fs_free(struct fs_context *fc) 686 { 687 kfree(fc->fs_private); 688 } 689 690 static const struct fs_context_operations pseudo_fs_context_ops = { 691 .free = pseudo_fs_free, 692 .get_tree = pseudo_fs_get_tree, 693 }; 694 695 /* 696 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 697 * will never be mountable) 698 */ 699 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 700 unsigned long magic) 701 { 702 struct pseudo_fs_context *ctx; 703 704 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 705 if (likely(ctx)) { 706 ctx->magic = magic; 707 fc->fs_private = ctx; 708 fc->ops = &pseudo_fs_context_ops; 709 fc->sb_flags |= SB_NOUSER; 710 fc->global = true; 711 } 712 return ctx; 713 } 714 EXPORT_SYMBOL(init_pseudo); 715 716 int simple_open(struct inode *inode, struct file *file) 717 { 718 if (inode->i_private) 719 file->private_data = inode->i_private; 720 return 0; 721 } 722 EXPORT_SYMBOL(simple_open); 723 724 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 725 { 726 struct inode *inode = d_inode(old_dentry); 727 728 inode_set_mtime_to_ts(dir, 729 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 730 inc_nlink(inode); 731 ihold(inode); 732 dget(dentry); 733 d_instantiate(dentry, inode); 734 return 0; 735 } 736 EXPORT_SYMBOL(simple_link); 737 738 int simple_empty(struct dentry *dentry) 739 { 740 struct dentry *child; 741 int ret = 0; 742 743 spin_lock(&dentry->d_lock); 744 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 745 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 746 if (simple_positive(child)) { 747 spin_unlock(&child->d_lock); 748 goto out; 749 } 750 spin_unlock(&child->d_lock); 751 } 752 ret = 1; 753 out: 754 spin_unlock(&dentry->d_lock); 755 return ret; 756 } 757 EXPORT_SYMBOL(simple_empty); 758 759 int simple_unlink(struct inode *dir, struct dentry *dentry) 760 { 761 struct inode *inode = d_inode(dentry); 762 763 inode_set_mtime_to_ts(dir, 764 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 765 drop_nlink(inode); 766 dput(dentry); 767 return 0; 768 } 769 EXPORT_SYMBOL(simple_unlink); 770 771 int simple_rmdir(struct inode *dir, struct dentry *dentry) 772 { 773 if (!simple_empty(dentry)) 774 return -ENOTEMPTY; 775 776 drop_nlink(d_inode(dentry)); 777 simple_unlink(dir, dentry); 778 drop_nlink(dir); 779 return 0; 780 } 781 EXPORT_SYMBOL(simple_rmdir); 782 783 /** 784 * simple_rename_timestamp - update the various inode timestamps for rename 785 * @old_dir: old parent directory 786 * @old_dentry: dentry that is being renamed 787 * @new_dir: new parent directory 788 * @new_dentry: target for rename 789 * 790 * POSIX mandates that the old and new parent directories have their ctime and 791 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 792 * their ctime updated. 793 */ 794 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 795 struct inode *new_dir, struct dentry *new_dentry) 796 { 797 struct inode *newino = d_inode(new_dentry); 798 799 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 800 if (new_dir != old_dir) 801 inode_set_mtime_to_ts(new_dir, 802 inode_set_ctime_current(new_dir)); 803 inode_set_ctime_current(d_inode(old_dentry)); 804 if (newino) 805 inode_set_ctime_current(newino); 806 } 807 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 808 809 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 810 struct inode *new_dir, struct dentry *new_dentry) 811 { 812 bool old_is_dir = d_is_dir(old_dentry); 813 bool new_is_dir = d_is_dir(new_dentry); 814 815 if (old_dir != new_dir && old_is_dir != new_is_dir) { 816 if (old_is_dir) { 817 drop_nlink(old_dir); 818 inc_nlink(new_dir); 819 } else { 820 drop_nlink(new_dir); 821 inc_nlink(old_dir); 822 } 823 } 824 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 825 return 0; 826 } 827 EXPORT_SYMBOL_GPL(simple_rename_exchange); 828 829 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 830 struct dentry *old_dentry, struct inode *new_dir, 831 struct dentry *new_dentry, unsigned int flags) 832 { 833 int they_are_dirs = d_is_dir(old_dentry); 834 835 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 836 return -EINVAL; 837 838 if (flags & RENAME_EXCHANGE) 839 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 840 841 if (!simple_empty(new_dentry)) 842 return -ENOTEMPTY; 843 844 if (d_really_is_positive(new_dentry)) { 845 simple_unlink(new_dir, new_dentry); 846 if (they_are_dirs) { 847 drop_nlink(d_inode(new_dentry)); 848 drop_nlink(old_dir); 849 } 850 } else if (they_are_dirs) { 851 drop_nlink(old_dir); 852 inc_nlink(new_dir); 853 } 854 855 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 856 return 0; 857 } 858 EXPORT_SYMBOL(simple_rename); 859 860 /** 861 * simple_setattr - setattr for simple filesystem 862 * @idmap: idmap of the target mount 863 * @dentry: dentry 864 * @iattr: iattr structure 865 * 866 * Returns 0 on success, -error on failure. 867 * 868 * simple_setattr is a simple ->setattr implementation without a proper 869 * implementation of size changes. 870 * 871 * It can either be used for in-memory filesystems or special files 872 * on simple regular filesystems. Anything that needs to change on-disk 873 * or wire state on size changes needs its own setattr method. 874 */ 875 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 876 struct iattr *iattr) 877 { 878 struct inode *inode = d_inode(dentry); 879 int error; 880 881 error = setattr_prepare(idmap, dentry, iattr); 882 if (error) 883 return error; 884 885 if (iattr->ia_valid & ATTR_SIZE) 886 truncate_setsize(inode, iattr->ia_size); 887 setattr_copy(idmap, inode, iattr); 888 mark_inode_dirty(inode); 889 return 0; 890 } 891 EXPORT_SYMBOL(simple_setattr); 892 893 static int simple_read_folio(struct file *file, struct folio *folio) 894 { 895 folio_zero_range(folio, 0, folio_size(folio)); 896 flush_dcache_folio(folio); 897 folio_mark_uptodate(folio); 898 folio_unlock(folio); 899 return 0; 900 } 901 902 int simple_write_begin(struct file *file, struct address_space *mapping, 903 loff_t pos, unsigned len, 904 struct page **pagep, void **fsdata) 905 { 906 struct folio *folio; 907 908 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 909 mapping_gfp_mask(mapping)); 910 if (IS_ERR(folio)) 911 return PTR_ERR(folio); 912 913 *pagep = &folio->page; 914 915 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 916 size_t from = offset_in_folio(folio, pos); 917 918 folio_zero_segments(folio, 0, from, 919 from + len, folio_size(folio)); 920 } 921 return 0; 922 } 923 EXPORT_SYMBOL(simple_write_begin); 924 925 /** 926 * simple_write_end - .write_end helper for non-block-device FSes 927 * @file: See .write_end of address_space_operations 928 * @mapping: " 929 * @pos: " 930 * @len: " 931 * @copied: " 932 * @page: " 933 * @fsdata: " 934 * 935 * simple_write_end does the minimum needed for updating a page after writing is 936 * done. It has the same API signature as the .write_end of 937 * address_space_operations vector. So it can just be set onto .write_end for 938 * FSes that don't need any other processing. i_mutex is assumed to be held. 939 * Block based filesystems should use generic_write_end(). 940 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 941 * is not called, so a filesystem that actually does store data in .write_inode 942 * should extend on what's done here with a call to mark_inode_dirty() in the 943 * case that i_size has changed. 944 * 945 * Use *ONLY* with simple_read_folio() 946 */ 947 static int simple_write_end(struct file *file, struct address_space *mapping, 948 loff_t pos, unsigned len, unsigned copied, 949 struct page *page, void *fsdata) 950 { 951 struct folio *folio = page_folio(page); 952 struct inode *inode = folio->mapping->host; 953 loff_t last_pos = pos + copied; 954 955 /* zero the stale part of the folio if we did a short copy */ 956 if (!folio_test_uptodate(folio)) { 957 if (copied < len) { 958 size_t from = offset_in_folio(folio, pos); 959 960 folio_zero_range(folio, from + copied, len - copied); 961 } 962 folio_mark_uptodate(folio); 963 } 964 /* 965 * No need to use i_size_read() here, the i_size 966 * cannot change under us because we hold the i_mutex. 967 */ 968 if (last_pos > inode->i_size) 969 i_size_write(inode, last_pos); 970 971 folio_mark_dirty(folio); 972 folio_unlock(folio); 973 folio_put(folio); 974 975 return copied; 976 } 977 978 /* 979 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 980 */ 981 const struct address_space_operations ram_aops = { 982 .read_folio = simple_read_folio, 983 .write_begin = simple_write_begin, 984 .write_end = simple_write_end, 985 .dirty_folio = noop_dirty_folio, 986 }; 987 EXPORT_SYMBOL(ram_aops); 988 989 /* 990 * the inodes created here are not hashed. If you use iunique to generate 991 * unique inode values later for this filesystem, then you must take care 992 * to pass it an appropriate max_reserved value to avoid collisions. 993 */ 994 int simple_fill_super(struct super_block *s, unsigned long magic, 995 const struct tree_descr *files) 996 { 997 struct inode *inode; 998 struct dentry *dentry; 999 int i; 1000 1001 s->s_blocksize = PAGE_SIZE; 1002 s->s_blocksize_bits = PAGE_SHIFT; 1003 s->s_magic = magic; 1004 s->s_op = &simple_super_operations; 1005 s->s_time_gran = 1; 1006 1007 inode = new_inode(s); 1008 if (!inode) 1009 return -ENOMEM; 1010 /* 1011 * because the root inode is 1, the files array must not contain an 1012 * entry at index 1 1013 */ 1014 inode->i_ino = 1; 1015 inode->i_mode = S_IFDIR | 0755; 1016 simple_inode_init_ts(inode); 1017 inode->i_op = &simple_dir_inode_operations; 1018 inode->i_fop = &simple_dir_operations; 1019 set_nlink(inode, 2); 1020 s->s_root = d_make_root(inode); 1021 if (!s->s_root) 1022 return -ENOMEM; 1023 for (i = 0; !files->name || files->name[0]; i++, files++) { 1024 if (!files->name) 1025 continue; 1026 1027 /* warn if it tries to conflict with the root inode */ 1028 if (unlikely(i == 1)) 1029 printk(KERN_WARNING "%s: %s passed in a files array" 1030 "with an index of 1!\n", __func__, 1031 s->s_type->name); 1032 1033 dentry = d_alloc_name(s->s_root, files->name); 1034 if (!dentry) 1035 return -ENOMEM; 1036 inode = new_inode(s); 1037 if (!inode) { 1038 dput(dentry); 1039 return -ENOMEM; 1040 } 1041 inode->i_mode = S_IFREG | files->mode; 1042 simple_inode_init_ts(inode); 1043 inode->i_fop = files->ops; 1044 inode->i_ino = i; 1045 d_add(dentry, inode); 1046 } 1047 return 0; 1048 } 1049 EXPORT_SYMBOL(simple_fill_super); 1050 1051 static DEFINE_SPINLOCK(pin_fs_lock); 1052 1053 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 1054 { 1055 struct vfsmount *mnt = NULL; 1056 spin_lock(&pin_fs_lock); 1057 if (unlikely(!*mount)) { 1058 spin_unlock(&pin_fs_lock); 1059 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 1060 if (IS_ERR(mnt)) 1061 return PTR_ERR(mnt); 1062 spin_lock(&pin_fs_lock); 1063 if (!*mount) 1064 *mount = mnt; 1065 } 1066 mntget(*mount); 1067 ++*count; 1068 spin_unlock(&pin_fs_lock); 1069 mntput(mnt); 1070 return 0; 1071 } 1072 EXPORT_SYMBOL(simple_pin_fs); 1073 1074 void simple_release_fs(struct vfsmount **mount, int *count) 1075 { 1076 struct vfsmount *mnt; 1077 spin_lock(&pin_fs_lock); 1078 mnt = *mount; 1079 if (!--*count) 1080 *mount = NULL; 1081 spin_unlock(&pin_fs_lock); 1082 mntput(mnt); 1083 } 1084 EXPORT_SYMBOL(simple_release_fs); 1085 1086 /** 1087 * simple_read_from_buffer - copy data from the buffer to user space 1088 * @to: the user space buffer to read to 1089 * @count: the maximum number of bytes to read 1090 * @ppos: the current position in the buffer 1091 * @from: the buffer to read from 1092 * @available: the size of the buffer 1093 * 1094 * The simple_read_from_buffer() function reads up to @count bytes from the 1095 * buffer @from at offset @ppos into the user space address starting at @to. 1096 * 1097 * On success, the number of bytes read is returned and the offset @ppos is 1098 * advanced by this number, or negative value is returned on error. 1099 **/ 1100 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1101 const void *from, size_t available) 1102 { 1103 loff_t pos = *ppos; 1104 size_t ret; 1105 1106 if (pos < 0) 1107 return -EINVAL; 1108 if (pos >= available || !count) 1109 return 0; 1110 if (count > available - pos) 1111 count = available - pos; 1112 ret = copy_to_user(to, from + pos, count); 1113 if (ret == count) 1114 return -EFAULT; 1115 count -= ret; 1116 *ppos = pos + count; 1117 return count; 1118 } 1119 EXPORT_SYMBOL(simple_read_from_buffer); 1120 1121 /** 1122 * simple_write_to_buffer - copy data from user space to the buffer 1123 * @to: the buffer to write to 1124 * @available: the size of the buffer 1125 * @ppos: the current position in the buffer 1126 * @from: the user space buffer to read from 1127 * @count: the maximum number of bytes to read 1128 * 1129 * The simple_write_to_buffer() function reads up to @count bytes from the user 1130 * space address starting at @from into the buffer @to at offset @ppos. 1131 * 1132 * On success, the number of bytes written is returned and the offset @ppos is 1133 * advanced by this number, or negative value is returned on error. 1134 **/ 1135 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1136 const void __user *from, size_t count) 1137 { 1138 loff_t pos = *ppos; 1139 size_t res; 1140 1141 if (pos < 0) 1142 return -EINVAL; 1143 if (pos >= available || !count) 1144 return 0; 1145 if (count > available - pos) 1146 count = available - pos; 1147 res = copy_from_user(to + pos, from, count); 1148 if (res == count) 1149 return -EFAULT; 1150 count -= res; 1151 *ppos = pos + count; 1152 return count; 1153 } 1154 EXPORT_SYMBOL(simple_write_to_buffer); 1155 1156 /** 1157 * memory_read_from_buffer - copy data from the buffer 1158 * @to: the kernel space buffer to read to 1159 * @count: the maximum number of bytes to read 1160 * @ppos: the current position in the buffer 1161 * @from: the buffer to read from 1162 * @available: the size of the buffer 1163 * 1164 * The memory_read_from_buffer() function reads up to @count bytes from the 1165 * buffer @from at offset @ppos into the kernel space address starting at @to. 1166 * 1167 * On success, the number of bytes read is returned and the offset @ppos is 1168 * advanced by this number, or negative value is returned on error. 1169 **/ 1170 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1171 const void *from, size_t available) 1172 { 1173 loff_t pos = *ppos; 1174 1175 if (pos < 0) 1176 return -EINVAL; 1177 if (pos >= available) 1178 return 0; 1179 if (count > available - pos) 1180 count = available - pos; 1181 memcpy(to, from + pos, count); 1182 *ppos = pos + count; 1183 1184 return count; 1185 } 1186 EXPORT_SYMBOL(memory_read_from_buffer); 1187 1188 /* 1189 * Transaction based IO. 1190 * The file expects a single write which triggers the transaction, and then 1191 * possibly a read which collects the result - which is stored in a 1192 * file-local buffer. 1193 */ 1194 1195 void simple_transaction_set(struct file *file, size_t n) 1196 { 1197 struct simple_transaction_argresp *ar = file->private_data; 1198 1199 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1200 1201 /* 1202 * The barrier ensures that ar->size will really remain zero until 1203 * ar->data is ready for reading. 1204 */ 1205 smp_mb(); 1206 ar->size = n; 1207 } 1208 EXPORT_SYMBOL(simple_transaction_set); 1209 1210 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1211 { 1212 struct simple_transaction_argresp *ar; 1213 static DEFINE_SPINLOCK(simple_transaction_lock); 1214 1215 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1216 return ERR_PTR(-EFBIG); 1217 1218 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1219 if (!ar) 1220 return ERR_PTR(-ENOMEM); 1221 1222 spin_lock(&simple_transaction_lock); 1223 1224 /* only one write allowed per open */ 1225 if (file->private_data) { 1226 spin_unlock(&simple_transaction_lock); 1227 free_page((unsigned long)ar); 1228 return ERR_PTR(-EBUSY); 1229 } 1230 1231 file->private_data = ar; 1232 1233 spin_unlock(&simple_transaction_lock); 1234 1235 if (copy_from_user(ar->data, buf, size)) 1236 return ERR_PTR(-EFAULT); 1237 1238 return ar->data; 1239 } 1240 EXPORT_SYMBOL(simple_transaction_get); 1241 1242 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1243 { 1244 struct simple_transaction_argresp *ar = file->private_data; 1245 1246 if (!ar) 1247 return 0; 1248 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1249 } 1250 EXPORT_SYMBOL(simple_transaction_read); 1251 1252 int simple_transaction_release(struct inode *inode, struct file *file) 1253 { 1254 free_page((unsigned long)file->private_data); 1255 return 0; 1256 } 1257 EXPORT_SYMBOL(simple_transaction_release); 1258 1259 /* Simple attribute files */ 1260 1261 struct simple_attr { 1262 int (*get)(void *, u64 *); 1263 int (*set)(void *, u64); 1264 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1265 char set_buf[24]; 1266 void *data; 1267 const char *fmt; /* format for read operation */ 1268 struct mutex mutex; /* protects access to these buffers */ 1269 }; 1270 1271 /* simple_attr_open is called by an actual attribute open file operation 1272 * to set the attribute specific access operations. */ 1273 int simple_attr_open(struct inode *inode, struct file *file, 1274 int (*get)(void *, u64 *), int (*set)(void *, u64), 1275 const char *fmt) 1276 { 1277 struct simple_attr *attr; 1278 1279 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1280 if (!attr) 1281 return -ENOMEM; 1282 1283 attr->get = get; 1284 attr->set = set; 1285 attr->data = inode->i_private; 1286 attr->fmt = fmt; 1287 mutex_init(&attr->mutex); 1288 1289 file->private_data = attr; 1290 1291 return nonseekable_open(inode, file); 1292 } 1293 EXPORT_SYMBOL_GPL(simple_attr_open); 1294 1295 int simple_attr_release(struct inode *inode, struct file *file) 1296 { 1297 kfree(file->private_data); 1298 return 0; 1299 } 1300 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1301 1302 /* read from the buffer that is filled with the get function */ 1303 ssize_t simple_attr_read(struct file *file, char __user *buf, 1304 size_t len, loff_t *ppos) 1305 { 1306 struct simple_attr *attr; 1307 size_t size; 1308 ssize_t ret; 1309 1310 attr = file->private_data; 1311 1312 if (!attr->get) 1313 return -EACCES; 1314 1315 ret = mutex_lock_interruptible(&attr->mutex); 1316 if (ret) 1317 return ret; 1318 1319 if (*ppos && attr->get_buf[0]) { 1320 /* continued read */ 1321 size = strlen(attr->get_buf); 1322 } else { 1323 /* first read */ 1324 u64 val; 1325 ret = attr->get(attr->data, &val); 1326 if (ret) 1327 goto out; 1328 1329 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1330 attr->fmt, (unsigned long long)val); 1331 } 1332 1333 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1334 out: 1335 mutex_unlock(&attr->mutex); 1336 return ret; 1337 } 1338 EXPORT_SYMBOL_GPL(simple_attr_read); 1339 1340 /* interpret the buffer as a number to call the set function with */ 1341 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1342 size_t len, loff_t *ppos, bool is_signed) 1343 { 1344 struct simple_attr *attr; 1345 unsigned long long val; 1346 size_t size; 1347 ssize_t ret; 1348 1349 attr = file->private_data; 1350 if (!attr->set) 1351 return -EACCES; 1352 1353 ret = mutex_lock_interruptible(&attr->mutex); 1354 if (ret) 1355 return ret; 1356 1357 ret = -EFAULT; 1358 size = min(sizeof(attr->set_buf) - 1, len); 1359 if (copy_from_user(attr->set_buf, buf, size)) 1360 goto out; 1361 1362 attr->set_buf[size] = '\0'; 1363 if (is_signed) 1364 ret = kstrtoll(attr->set_buf, 0, &val); 1365 else 1366 ret = kstrtoull(attr->set_buf, 0, &val); 1367 if (ret) 1368 goto out; 1369 ret = attr->set(attr->data, val); 1370 if (ret == 0) 1371 ret = len; /* on success, claim we got the whole input */ 1372 out: 1373 mutex_unlock(&attr->mutex); 1374 return ret; 1375 } 1376 1377 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1378 size_t len, loff_t *ppos) 1379 { 1380 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1381 } 1382 EXPORT_SYMBOL_GPL(simple_attr_write); 1383 1384 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1385 size_t len, loff_t *ppos) 1386 { 1387 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1388 } 1389 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1390 1391 /** 1392 * generic_encode_ino32_fh - generic export_operations->encode_fh function 1393 * @inode: the object to encode 1394 * @fh: where to store the file handle fragment 1395 * @max_len: maximum length to store there (in 4 byte units) 1396 * @parent: parent directory inode, if wanted 1397 * 1398 * This generic encode_fh function assumes that the 32 inode number 1399 * is suitable for locating an inode, and that the generation number 1400 * can be used to check that it is still valid. It places them in the 1401 * filehandle fragment where export_decode_fh expects to find them. 1402 */ 1403 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, 1404 struct inode *parent) 1405 { 1406 struct fid *fid = (void *)fh; 1407 int len = *max_len; 1408 int type = FILEID_INO32_GEN; 1409 1410 if (parent && (len < 4)) { 1411 *max_len = 4; 1412 return FILEID_INVALID; 1413 } else if (len < 2) { 1414 *max_len = 2; 1415 return FILEID_INVALID; 1416 } 1417 1418 len = 2; 1419 fid->i32.ino = inode->i_ino; 1420 fid->i32.gen = inode->i_generation; 1421 if (parent) { 1422 fid->i32.parent_ino = parent->i_ino; 1423 fid->i32.parent_gen = parent->i_generation; 1424 len = 4; 1425 type = FILEID_INO32_GEN_PARENT; 1426 } 1427 *max_len = len; 1428 return type; 1429 } 1430 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); 1431 1432 /** 1433 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1434 * @sb: filesystem to do the file handle conversion on 1435 * @fid: file handle to convert 1436 * @fh_len: length of the file handle in bytes 1437 * @fh_type: type of file handle 1438 * @get_inode: filesystem callback to retrieve inode 1439 * 1440 * This function decodes @fid as long as it has one of the well-known 1441 * Linux filehandle types and calls @get_inode on it to retrieve the 1442 * inode for the object specified in the file handle. 1443 */ 1444 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1445 int fh_len, int fh_type, struct inode *(*get_inode) 1446 (struct super_block *sb, u64 ino, u32 gen)) 1447 { 1448 struct inode *inode = NULL; 1449 1450 if (fh_len < 2) 1451 return NULL; 1452 1453 switch (fh_type) { 1454 case FILEID_INO32_GEN: 1455 case FILEID_INO32_GEN_PARENT: 1456 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1457 break; 1458 } 1459 1460 return d_obtain_alias(inode); 1461 } 1462 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1463 1464 /** 1465 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1466 * @sb: filesystem to do the file handle conversion on 1467 * @fid: file handle to convert 1468 * @fh_len: length of the file handle in bytes 1469 * @fh_type: type of file handle 1470 * @get_inode: filesystem callback to retrieve inode 1471 * 1472 * This function decodes @fid as long as it has one of the well-known 1473 * Linux filehandle types and calls @get_inode on it to retrieve the 1474 * inode for the _parent_ object specified in the file handle if it 1475 * is specified in the file handle, or NULL otherwise. 1476 */ 1477 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1478 int fh_len, int fh_type, struct inode *(*get_inode) 1479 (struct super_block *sb, u64 ino, u32 gen)) 1480 { 1481 struct inode *inode = NULL; 1482 1483 if (fh_len <= 2) 1484 return NULL; 1485 1486 switch (fh_type) { 1487 case FILEID_INO32_GEN_PARENT: 1488 inode = get_inode(sb, fid->i32.parent_ino, 1489 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1490 break; 1491 } 1492 1493 return d_obtain_alias(inode); 1494 } 1495 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1496 1497 /** 1498 * __generic_file_fsync - generic fsync implementation for simple filesystems 1499 * 1500 * @file: file to synchronize 1501 * @start: start offset in bytes 1502 * @end: end offset in bytes (inclusive) 1503 * @datasync: only synchronize essential metadata if true 1504 * 1505 * This is a generic implementation of the fsync method for simple 1506 * filesystems which track all non-inode metadata in the buffers list 1507 * hanging off the address_space structure. 1508 */ 1509 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1510 int datasync) 1511 { 1512 struct inode *inode = file->f_mapping->host; 1513 int err; 1514 int ret; 1515 1516 err = file_write_and_wait_range(file, start, end); 1517 if (err) 1518 return err; 1519 1520 inode_lock(inode); 1521 ret = sync_mapping_buffers(inode->i_mapping); 1522 if (!(inode->i_state & I_DIRTY_ALL)) 1523 goto out; 1524 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1525 goto out; 1526 1527 err = sync_inode_metadata(inode, 1); 1528 if (ret == 0) 1529 ret = err; 1530 1531 out: 1532 inode_unlock(inode); 1533 /* check and advance again to catch errors after syncing out buffers */ 1534 err = file_check_and_advance_wb_err(file); 1535 if (ret == 0) 1536 ret = err; 1537 return ret; 1538 } 1539 EXPORT_SYMBOL(__generic_file_fsync); 1540 1541 /** 1542 * generic_file_fsync - generic fsync implementation for simple filesystems 1543 * with flush 1544 * @file: file to synchronize 1545 * @start: start offset in bytes 1546 * @end: end offset in bytes (inclusive) 1547 * @datasync: only synchronize essential metadata if true 1548 * 1549 */ 1550 1551 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1552 int datasync) 1553 { 1554 struct inode *inode = file->f_mapping->host; 1555 int err; 1556 1557 err = __generic_file_fsync(file, start, end, datasync); 1558 if (err) 1559 return err; 1560 return blkdev_issue_flush(inode->i_sb->s_bdev); 1561 } 1562 EXPORT_SYMBOL(generic_file_fsync); 1563 1564 /** 1565 * generic_check_addressable - Check addressability of file system 1566 * @blocksize_bits: log of file system block size 1567 * @num_blocks: number of blocks in file system 1568 * 1569 * Determine whether a file system with @num_blocks blocks (and a 1570 * block size of 2**@blocksize_bits) is addressable by the sector_t 1571 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1572 */ 1573 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1574 { 1575 u64 last_fs_block = num_blocks - 1; 1576 u64 last_fs_page = 1577 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1578 1579 if (unlikely(num_blocks == 0)) 1580 return 0; 1581 1582 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1583 return -EINVAL; 1584 1585 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1586 (last_fs_page > (pgoff_t)(~0ULL))) { 1587 return -EFBIG; 1588 } 1589 return 0; 1590 } 1591 EXPORT_SYMBOL(generic_check_addressable); 1592 1593 /* 1594 * No-op implementation of ->fsync for in-memory filesystems. 1595 */ 1596 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1597 { 1598 return 0; 1599 } 1600 EXPORT_SYMBOL(noop_fsync); 1601 1602 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1603 { 1604 /* 1605 * iomap based filesystems support direct I/O without need for 1606 * this callback. However, it still needs to be set in 1607 * inode->a_ops so that open/fcntl know that direct I/O is 1608 * generally supported. 1609 */ 1610 return -EINVAL; 1611 } 1612 EXPORT_SYMBOL_GPL(noop_direct_IO); 1613 1614 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1615 void kfree_link(void *p) 1616 { 1617 kfree(p); 1618 } 1619 EXPORT_SYMBOL(kfree_link); 1620 1621 struct inode *alloc_anon_inode(struct super_block *s) 1622 { 1623 static const struct address_space_operations anon_aops = { 1624 .dirty_folio = noop_dirty_folio, 1625 }; 1626 struct inode *inode = new_inode_pseudo(s); 1627 1628 if (!inode) 1629 return ERR_PTR(-ENOMEM); 1630 1631 inode->i_ino = get_next_ino(); 1632 inode->i_mapping->a_ops = &anon_aops; 1633 1634 /* 1635 * Mark the inode dirty from the very beginning, 1636 * that way it will never be moved to the dirty 1637 * list because mark_inode_dirty() will think 1638 * that it already _is_ on the dirty list. 1639 */ 1640 inode->i_state = I_DIRTY; 1641 inode->i_mode = S_IRUSR | S_IWUSR; 1642 inode->i_uid = current_fsuid(); 1643 inode->i_gid = current_fsgid(); 1644 inode->i_flags |= S_PRIVATE; 1645 simple_inode_init_ts(inode); 1646 return inode; 1647 } 1648 EXPORT_SYMBOL(alloc_anon_inode); 1649 1650 /** 1651 * simple_nosetlease - generic helper for prohibiting leases 1652 * @filp: file pointer 1653 * @arg: type of lease to obtain 1654 * @flp: new lease supplied for insertion 1655 * @priv: private data for lm_setup operation 1656 * 1657 * Generic helper for filesystems that do not wish to allow leases to be set. 1658 * All arguments are ignored and it just returns -EINVAL. 1659 */ 1660 int 1661 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp, 1662 void **priv) 1663 { 1664 return -EINVAL; 1665 } 1666 EXPORT_SYMBOL(simple_nosetlease); 1667 1668 /** 1669 * simple_get_link - generic helper to get the target of "fast" symlinks 1670 * @dentry: not used here 1671 * @inode: the symlink inode 1672 * @done: not used here 1673 * 1674 * Generic helper for filesystems to use for symlink inodes where a pointer to 1675 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1676 * since as an optimization the path lookup code uses any non-NULL ->i_link 1677 * directly, without calling ->get_link(). But ->get_link() still must be set, 1678 * to mark the inode_operations as being for a symlink. 1679 * 1680 * Return: the symlink target 1681 */ 1682 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1683 struct delayed_call *done) 1684 { 1685 return inode->i_link; 1686 } 1687 EXPORT_SYMBOL(simple_get_link); 1688 1689 const struct inode_operations simple_symlink_inode_operations = { 1690 .get_link = simple_get_link, 1691 }; 1692 EXPORT_SYMBOL(simple_symlink_inode_operations); 1693 1694 /* 1695 * Operations for a permanently empty directory. 1696 */ 1697 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1698 { 1699 return ERR_PTR(-ENOENT); 1700 } 1701 1702 static int empty_dir_getattr(struct mnt_idmap *idmap, 1703 const struct path *path, struct kstat *stat, 1704 u32 request_mask, unsigned int query_flags) 1705 { 1706 struct inode *inode = d_inode(path->dentry); 1707 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1708 return 0; 1709 } 1710 1711 static int empty_dir_setattr(struct mnt_idmap *idmap, 1712 struct dentry *dentry, struct iattr *attr) 1713 { 1714 return -EPERM; 1715 } 1716 1717 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1718 { 1719 return -EOPNOTSUPP; 1720 } 1721 1722 static const struct inode_operations empty_dir_inode_operations = { 1723 .lookup = empty_dir_lookup, 1724 .permission = generic_permission, 1725 .setattr = empty_dir_setattr, 1726 .getattr = empty_dir_getattr, 1727 .listxattr = empty_dir_listxattr, 1728 }; 1729 1730 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1731 { 1732 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1733 return generic_file_llseek_size(file, offset, whence, 2, 2); 1734 } 1735 1736 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1737 { 1738 dir_emit_dots(file, ctx); 1739 return 0; 1740 } 1741 1742 static const struct file_operations empty_dir_operations = { 1743 .llseek = empty_dir_llseek, 1744 .read = generic_read_dir, 1745 .iterate_shared = empty_dir_readdir, 1746 .fsync = noop_fsync, 1747 }; 1748 1749 1750 void make_empty_dir_inode(struct inode *inode) 1751 { 1752 set_nlink(inode, 2); 1753 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1754 inode->i_uid = GLOBAL_ROOT_UID; 1755 inode->i_gid = GLOBAL_ROOT_GID; 1756 inode->i_rdev = 0; 1757 inode->i_size = 0; 1758 inode->i_blkbits = PAGE_SHIFT; 1759 inode->i_blocks = 0; 1760 1761 inode->i_op = &empty_dir_inode_operations; 1762 inode->i_opflags &= ~IOP_XATTR; 1763 inode->i_fop = &empty_dir_operations; 1764 } 1765 1766 bool is_empty_dir_inode(struct inode *inode) 1767 { 1768 return (inode->i_fop == &empty_dir_operations) && 1769 (inode->i_op == &empty_dir_inode_operations); 1770 } 1771 1772 #if IS_ENABLED(CONFIG_UNICODE) 1773 /** 1774 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1775 * @dentry: dentry whose name we are checking against 1776 * @len: len of name of dentry 1777 * @str: str pointer to name of dentry 1778 * @name: Name to compare against 1779 * 1780 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1781 */ 1782 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1783 const char *str, const struct qstr *name) 1784 { 1785 const struct dentry *parent; 1786 const struct inode *dir; 1787 char strbuf[DNAME_INLINE_LEN]; 1788 struct qstr qstr; 1789 1790 /* 1791 * Attempt a case-sensitive match first. It is cheaper and 1792 * should cover most lookups, including all the sane 1793 * applications that expect a case-sensitive filesystem. 1794 * 1795 * This comparison is safe under RCU because the caller 1796 * guarantees the consistency between str and len. See 1797 * __d_lookup_rcu_op_compare() for details. 1798 */ 1799 if (len == name->len && !memcmp(str, name->name, len)) 1800 return 0; 1801 1802 parent = READ_ONCE(dentry->d_parent); 1803 dir = READ_ONCE(parent->d_inode); 1804 if (!dir || !IS_CASEFOLDED(dir)) 1805 return 1; 1806 1807 /* 1808 * If the dentry name is stored in-line, then it may be concurrently 1809 * modified by a rename. If this happens, the VFS will eventually retry 1810 * the lookup, so it doesn't matter what ->d_compare() returns. 1811 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1812 * string. Therefore, we have to copy the name into a temporary buffer. 1813 */ 1814 if (len <= DNAME_INLINE_LEN - 1) { 1815 memcpy(strbuf, str, len); 1816 strbuf[len] = 0; 1817 str = strbuf; 1818 /* prevent compiler from optimizing out the temporary buffer */ 1819 barrier(); 1820 } 1821 qstr.len = len; 1822 qstr.name = str; 1823 1824 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr); 1825 } 1826 1827 /** 1828 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1829 * @dentry: dentry of the parent directory 1830 * @str: qstr of name whose hash we should fill in 1831 * 1832 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1833 */ 1834 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1835 { 1836 const struct inode *dir = READ_ONCE(dentry->d_inode); 1837 struct super_block *sb = dentry->d_sb; 1838 const struct unicode_map *um = sb->s_encoding; 1839 int ret; 1840 1841 if (!dir || !IS_CASEFOLDED(dir)) 1842 return 0; 1843 1844 ret = utf8_casefold_hash(um, dentry, str); 1845 if (ret < 0 && sb_has_strict_encoding(sb)) 1846 return -EINVAL; 1847 return 0; 1848 } 1849 1850 static const struct dentry_operations generic_ci_dentry_ops = { 1851 .d_hash = generic_ci_d_hash, 1852 .d_compare = generic_ci_d_compare, 1853 #ifdef CONFIG_FS_ENCRYPTION 1854 .d_revalidate = fscrypt_d_revalidate, 1855 #endif 1856 }; 1857 #endif 1858 1859 #ifdef CONFIG_FS_ENCRYPTION 1860 static const struct dentry_operations generic_encrypted_dentry_ops = { 1861 .d_revalidate = fscrypt_d_revalidate, 1862 }; 1863 #endif 1864 1865 /** 1866 * generic_set_sb_d_ops - helper for choosing the set of 1867 * filesystem-wide dentry operations for the enabled features 1868 * @sb: superblock to be configured 1869 * 1870 * Filesystems supporting casefolding and/or fscrypt can call this 1871 * helper at mount-time to configure sb->s_d_op to best set of dentry 1872 * operations required for the enabled features. The helper must be 1873 * called after these have been configured, but before the root dentry 1874 * is created. 1875 */ 1876 void generic_set_sb_d_ops(struct super_block *sb) 1877 { 1878 #if IS_ENABLED(CONFIG_UNICODE) 1879 if (sb->s_encoding) { 1880 sb->s_d_op = &generic_ci_dentry_ops; 1881 return; 1882 } 1883 #endif 1884 #ifdef CONFIG_FS_ENCRYPTION 1885 if (sb->s_cop) { 1886 sb->s_d_op = &generic_encrypted_dentry_ops; 1887 return; 1888 } 1889 #endif 1890 } 1891 EXPORT_SYMBOL(generic_set_sb_d_ops); 1892 1893 /** 1894 * inode_maybe_inc_iversion - increments i_version 1895 * @inode: inode with the i_version that should be updated 1896 * @force: increment the counter even if it's not necessary? 1897 * 1898 * Every time the inode is modified, the i_version field must be seen to have 1899 * changed by any observer. 1900 * 1901 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1902 * the value, and clear the queried flag. 1903 * 1904 * In the common case where neither is set, then we can return "false" without 1905 * updating i_version. 1906 * 1907 * If this function returns false, and no other metadata has changed, then we 1908 * can avoid logging the metadata. 1909 */ 1910 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1911 { 1912 u64 cur, new; 1913 1914 /* 1915 * The i_version field is not strictly ordered with any other inode 1916 * information, but the legacy inode_inc_iversion code used a spinlock 1917 * to serialize increments. 1918 * 1919 * Here, we add full memory barriers to ensure that any de-facto 1920 * ordering with other info is preserved. 1921 * 1922 * This barrier pairs with the barrier in inode_query_iversion() 1923 */ 1924 smp_mb(); 1925 cur = inode_peek_iversion_raw(inode); 1926 do { 1927 /* If flag is clear then we needn't do anything */ 1928 if (!force && !(cur & I_VERSION_QUERIED)) 1929 return false; 1930 1931 /* Since lowest bit is flag, add 2 to avoid it */ 1932 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 1933 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1934 return true; 1935 } 1936 EXPORT_SYMBOL(inode_maybe_inc_iversion); 1937 1938 /** 1939 * inode_query_iversion - read i_version for later use 1940 * @inode: inode from which i_version should be read 1941 * 1942 * Read the inode i_version counter. This should be used by callers that wish 1943 * to store the returned i_version for later comparison. This will guarantee 1944 * that a later query of the i_version will result in a different value if 1945 * anything has changed. 1946 * 1947 * In this implementation, we fetch the current value, set the QUERIED flag and 1948 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 1949 * that fails, we try again with the newly fetched value from the cmpxchg. 1950 */ 1951 u64 inode_query_iversion(struct inode *inode) 1952 { 1953 u64 cur, new; 1954 1955 cur = inode_peek_iversion_raw(inode); 1956 do { 1957 /* If flag is already set, then no need to swap */ 1958 if (cur & I_VERSION_QUERIED) { 1959 /* 1960 * This barrier (and the implicit barrier in the 1961 * cmpxchg below) pairs with the barrier in 1962 * inode_maybe_inc_iversion(). 1963 */ 1964 smp_mb(); 1965 break; 1966 } 1967 1968 new = cur | I_VERSION_QUERIED; 1969 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1970 return cur >> I_VERSION_QUERIED_SHIFT; 1971 } 1972 EXPORT_SYMBOL(inode_query_iversion); 1973 1974 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 1975 ssize_t direct_written, ssize_t buffered_written) 1976 { 1977 struct address_space *mapping = iocb->ki_filp->f_mapping; 1978 loff_t pos = iocb->ki_pos - buffered_written; 1979 loff_t end = iocb->ki_pos - 1; 1980 int err; 1981 1982 /* 1983 * If the buffered write fallback returned an error, we want to return 1984 * the number of bytes which were written by direct I/O, or the error 1985 * code if that was zero. 1986 * 1987 * Note that this differs from normal direct-io semantics, which will 1988 * return -EFOO even if some bytes were written. 1989 */ 1990 if (unlikely(buffered_written < 0)) { 1991 if (direct_written) 1992 return direct_written; 1993 return buffered_written; 1994 } 1995 1996 /* 1997 * We need to ensure that the page cache pages are written to disk and 1998 * invalidated to preserve the expected O_DIRECT semantics. 1999 */ 2000 err = filemap_write_and_wait_range(mapping, pos, end); 2001 if (err < 0) { 2002 /* 2003 * We don't know how much we wrote, so just return the number of 2004 * bytes which were direct-written 2005 */ 2006 iocb->ki_pos -= buffered_written; 2007 if (direct_written) 2008 return direct_written; 2009 return err; 2010 } 2011 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 2012 return direct_written + buffered_written; 2013 } 2014 EXPORT_SYMBOL_GPL(direct_write_fallback); 2015 2016 /** 2017 * simple_inode_init_ts - initialize the timestamps for a new inode 2018 * @inode: inode to be initialized 2019 * 2020 * When a new inode is created, most filesystems set the timestamps to the 2021 * current time. Add a helper to do this. 2022 */ 2023 struct timespec64 simple_inode_init_ts(struct inode *inode) 2024 { 2025 struct timespec64 ts = inode_set_ctime_current(inode); 2026 2027 inode_set_atime_to_ts(inode, ts); 2028 inode_set_mtime_to_ts(inode, ts); 2029 return ts; 2030 } 2031 EXPORT_SYMBOL(simple_inode_init_ts); 2032 2033 static inline struct dentry *get_stashed_dentry(struct dentry *stashed) 2034 { 2035 struct dentry *dentry; 2036 2037 guard(rcu)(); 2038 dentry = READ_ONCE(stashed); 2039 if (!dentry) 2040 return NULL; 2041 if (!lockref_get_not_dead(&dentry->d_lockref)) 2042 return NULL; 2043 return dentry; 2044 } 2045 2046 static struct dentry *prepare_anon_dentry(struct dentry **stashed, 2047 struct super_block *sb, 2048 void *data) 2049 { 2050 struct dentry *dentry; 2051 struct inode *inode; 2052 const struct stashed_operations *sops = sb->s_fs_info; 2053 int ret; 2054 2055 inode = new_inode_pseudo(sb); 2056 if (!inode) { 2057 sops->put_data(data); 2058 return ERR_PTR(-ENOMEM); 2059 } 2060 2061 inode->i_flags |= S_IMMUTABLE; 2062 inode->i_mode = S_IFREG; 2063 simple_inode_init_ts(inode); 2064 2065 ret = sops->init_inode(inode, data); 2066 if (ret < 0) { 2067 iput(inode); 2068 return ERR_PTR(ret); 2069 } 2070 2071 /* Notice when this is changed. */ 2072 WARN_ON_ONCE(!S_ISREG(inode->i_mode)); 2073 WARN_ON_ONCE(!IS_IMMUTABLE(inode)); 2074 2075 dentry = d_alloc_anon(sb); 2076 if (!dentry) { 2077 iput(inode); 2078 return ERR_PTR(-ENOMEM); 2079 } 2080 2081 /* Store address of location where dentry's supposed to be stashed. */ 2082 dentry->d_fsdata = stashed; 2083 2084 /* @data is now owned by the fs */ 2085 d_instantiate(dentry, inode); 2086 return dentry; 2087 } 2088 2089 static struct dentry *stash_dentry(struct dentry **stashed, 2090 struct dentry *dentry) 2091 { 2092 guard(rcu)(); 2093 for (;;) { 2094 struct dentry *old; 2095 2096 /* Assume any old dentry was cleared out. */ 2097 old = cmpxchg(stashed, NULL, dentry); 2098 if (likely(!old)) 2099 return dentry; 2100 2101 /* Check if somebody else installed a reusable dentry. */ 2102 if (lockref_get_not_dead(&old->d_lockref)) 2103 return old; 2104 2105 /* There's an old dead dentry there, try to take it over. */ 2106 if (likely(try_cmpxchg(stashed, &old, dentry))) 2107 return dentry; 2108 } 2109 } 2110 2111 /** 2112 * path_from_stashed - create path from stashed or new dentry 2113 * @stashed: where to retrieve or stash dentry 2114 * @mnt: mnt of the filesystems to use 2115 * @data: data to store in inode->i_private 2116 * @path: path to create 2117 * 2118 * The function tries to retrieve a stashed dentry from @stashed. If the dentry 2119 * is still valid then it will be reused. If the dentry isn't able the function 2120 * will allocate a new dentry and inode. It will then check again whether it 2121 * can reuse an existing dentry in case one has been added in the meantime or 2122 * update @stashed with the newly added dentry. 2123 * 2124 * Special-purpose helper for nsfs and pidfs. 2125 * 2126 * Return: On success zero and on failure a negative error is returned. 2127 */ 2128 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data, 2129 struct path *path) 2130 { 2131 struct dentry *dentry; 2132 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info; 2133 2134 /* See if dentry can be reused. */ 2135 path->dentry = get_stashed_dentry(*stashed); 2136 if (path->dentry) { 2137 sops->put_data(data); 2138 goto out_path; 2139 } 2140 2141 /* Allocate a new dentry. */ 2142 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data); 2143 if (IS_ERR(dentry)) 2144 return PTR_ERR(dentry); 2145 2146 /* Added a new dentry. @data is now owned by the filesystem. */ 2147 path->dentry = stash_dentry(stashed, dentry); 2148 if (path->dentry != dentry) 2149 dput(dentry); 2150 2151 out_path: 2152 WARN_ON_ONCE(path->dentry->d_fsdata != stashed); 2153 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data); 2154 path->mnt = mntget(mnt); 2155 return 0; 2156 } 2157 2158 void stashed_dentry_prune(struct dentry *dentry) 2159 { 2160 struct dentry **stashed = dentry->d_fsdata; 2161 struct inode *inode = d_inode(dentry); 2162 2163 if (WARN_ON_ONCE(!stashed)) 2164 return; 2165 2166 if (!inode) 2167 return; 2168 2169 /* 2170 * Only replace our own @dentry as someone else might've 2171 * already cleared out @dentry and stashed their own 2172 * dentry in there. 2173 */ 2174 cmpxchg(stashed, dentry, NULL); 2175 } 2176