xref: /linux/fs/libfs.c (revision 3a36281a17199737b468befb826d4a23eb774445)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *	fs/libfs.c
4   *	Library for filesystems writers.
5   */
6  
7  #include <linux/blkdev.h>
8  #include <linux/export.h>
9  #include <linux/pagemap.h>
10  #include <linux/slab.h>
11  #include <linux/cred.h>
12  #include <linux/mount.h>
13  #include <linux/vfs.h>
14  #include <linux/quotaops.h>
15  #include <linux/mutex.h>
16  #include <linux/namei.h>
17  #include <linux/exportfs.h>
18  #include <linux/writeback.h>
19  #include <linux/buffer_head.h> /* sync_mapping_buffers */
20  #include <linux/fs_context.h>
21  #include <linux/pseudo_fs.h>
22  #include <linux/fsnotify.h>
23  #include <linux/unicode.h>
24  #include <linux/fscrypt.h>
25  
26  #include <linux/uaccess.h>
27  
28  #include "internal.h"
29  
30  int simple_getattr(const struct path *path, struct kstat *stat,
31  		   u32 request_mask, unsigned int query_flags)
32  {
33  	struct inode *inode = d_inode(path->dentry);
34  	generic_fillattr(inode, stat);
35  	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
36  	return 0;
37  }
38  EXPORT_SYMBOL(simple_getattr);
39  
40  int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
41  {
42  	buf->f_type = dentry->d_sb->s_magic;
43  	buf->f_bsize = PAGE_SIZE;
44  	buf->f_namelen = NAME_MAX;
45  	return 0;
46  }
47  EXPORT_SYMBOL(simple_statfs);
48  
49  /*
50   * Retaining negative dentries for an in-memory filesystem just wastes
51   * memory and lookup time: arrange for them to be deleted immediately.
52   */
53  int always_delete_dentry(const struct dentry *dentry)
54  {
55  	return 1;
56  }
57  EXPORT_SYMBOL(always_delete_dentry);
58  
59  const struct dentry_operations simple_dentry_operations = {
60  	.d_delete = always_delete_dentry,
61  };
62  EXPORT_SYMBOL(simple_dentry_operations);
63  
64  /*
65   * Lookup the data. This is trivial - if the dentry didn't already
66   * exist, we know it is negative.  Set d_op to delete negative dentries.
67   */
68  struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
69  {
70  	if (dentry->d_name.len > NAME_MAX)
71  		return ERR_PTR(-ENAMETOOLONG);
72  	if (!dentry->d_sb->s_d_op)
73  		d_set_d_op(dentry, &simple_dentry_operations);
74  	d_add(dentry, NULL);
75  	return NULL;
76  }
77  EXPORT_SYMBOL(simple_lookup);
78  
79  int dcache_dir_open(struct inode *inode, struct file *file)
80  {
81  	file->private_data = d_alloc_cursor(file->f_path.dentry);
82  
83  	return file->private_data ? 0 : -ENOMEM;
84  }
85  EXPORT_SYMBOL(dcache_dir_open);
86  
87  int dcache_dir_close(struct inode *inode, struct file *file)
88  {
89  	dput(file->private_data);
90  	return 0;
91  }
92  EXPORT_SYMBOL(dcache_dir_close);
93  
94  /* parent is locked at least shared */
95  /*
96   * Returns an element of siblings' list.
97   * We are looking for <count>th positive after <p>; if
98   * found, dentry is grabbed and returned to caller.
99   * If no such element exists, NULL is returned.
100   */
101  static struct dentry *scan_positives(struct dentry *cursor,
102  					struct list_head *p,
103  					loff_t count,
104  					struct dentry *last)
105  {
106  	struct dentry *dentry = cursor->d_parent, *found = NULL;
107  
108  	spin_lock(&dentry->d_lock);
109  	while ((p = p->next) != &dentry->d_subdirs) {
110  		struct dentry *d = list_entry(p, struct dentry, d_child);
111  		// we must at least skip cursors, to avoid livelocks
112  		if (d->d_flags & DCACHE_DENTRY_CURSOR)
113  			continue;
114  		if (simple_positive(d) && !--count) {
115  			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
116  			if (simple_positive(d))
117  				found = dget_dlock(d);
118  			spin_unlock(&d->d_lock);
119  			if (likely(found))
120  				break;
121  			count = 1;
122  		}
123  		if (need_resched()) {
124  			list_move(&cursor->d_child, p);
125  			p = &cursor->d_child;
126  			spin_unlock(&dentry->d_lock);
127  			cond_resched();
128  			spin_lock(&dentry->d_lock);
129  		}
130  	}
131  	spin_unlock(&dentry->d_lock);
132  	dput(last);
133  	return found;
134  }
135  
136  loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
137  {
138  	struct dentry *dentry = file->f_path.dentry;
139  	switch (whence) {
140  		case 1:
141  			offset += file->f_pos;
142  			fallthrough;
143  		case 0:
144  			if (offset >= 0)
145  				break;
146  			fallthrough;
147  		default:
148  			return -EINVAL;
149  	}
150  	if (offset != file->f_pos) {
151  		struct dentry *cursor = file->private_data;
152  		struct dentry *to = NULL;
153  
154  		inode_lock_shared(dentry->d_inode);
155  
156  		if (offset > 2)
157  			to = scan_positives(cursor, &dentry->d_subdirs,
158  					    offset - 2, NULL);
159  		spin_lock(&dentry->d_lock);
160  		if (to)
161  			list_move(&cursor->d_child, &to->d_child);
162  		else
163  			list_del_init(&cursor->d_child);
164  		spin_unlock(&dentry->d_lock);
165  		dput(to);
166  
167  		file->f_pos = offset;
168  
169  		inode_unlock_shared(dentry->d_inode);
170  	}
171  	return offset;
172  }
173  EXPORT_SYMBOL(dcache_dir_lseek);
174  
175  /* Relationship between i_mode and the DT_xxx types */
176  static inline unsigned char dt_type(struct inode *inode)
177  {
178  	return (inode->i_mode >> 12) & 15;
179  }
180  
181  /*
182   * Directory is locked and all positive dentries in it are safe, since
183   * for ramfs-type trees they can't go away without unlink() or rmdir(),
184   * both impossible due to the lock on directory.
185   */
186  
187  int dcache_readdir(struct file *file, struct dir_context *ctx)
188  {
189  	struct dentry *dentry = file->f_path.dentry;
190  	struct dentry *cursor = file->private_data;
191  	struct list_head *anchor = &dentry->d_subdirs;
192  	struct dentry *next = NULL;
193  	struct list_head *p;
194  
195  	if (!dir_emit_dots(file, ctx))
196  		return 0;
197  
198  	if (ctx->pos == 2)
199  		p = anchor;
200  	else if (!list_empty(&cursor->d_child))
201  		p = &cursor->d_child;
202  	else
203  		return 0;
204  
205  	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
206  		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
207  			      d_inode(next)->i_ino, dt_type(d_inode(next))))
208  			break;
209  		ctx->pos++;
210  		p = &next->d_child;
211  	}
212  	spin_lock(&dentry->d_lock);
213  	if (next)
214  		list_move_tail(&cursor->d_child, &next->d_child);
215  	else
216  		list_del_init(&cursor->d_child);
217  	spin_unlock(&dentry->d_lock);
218  	dput(next);
219  
220  	return 0;
221  }
222  EXPORT_SYMBOL(dcache_readdir);
223  
224  ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225  {
226  	return -EISDIR;
227  }
228  EXPORT_SYMBOL(generic_read_dir);
229  
230  const struct file_operations simple_dir_operations = {
231  	.open		= dcache_dir_open,
232  	.release	= dcache_dir_close,
233  	.llseek		= dcache_dir_lseek,
234  	.read		= generic_read_dir,
235  	.iterate_shared	= dcache_readdir,
236  	.fsync		= noop_fsync,
237  };
238  EXPORT_SYMBOL(simple_dir_operations);
239  
240  const struct inode_operations simple_dir_inode_operations = {
241  	.lookup		= simple_lookup,
242  };
243  EXPORT_SYMBOL(simple_dir_inode_operations);
244  
245  static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
246  {
247  	struct dentry *child = NULL;
248  	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
249  
250  	spin_lock(&parent->d_lock);
251  	while ((p = p->next) != &parent->d_subdirs) {
252  		struct dentry *d = container_of(p, struct dentry, d_child);
253  		if (simple_positive(d)) {
254  			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
255  			if (simple_positive(d))
256  				child = dget_dlock(d);
257  			spin_unlock(&d->d_lock);
258  			if (likely(child))
259  				break;
260  		}
261  	}
262  	spin_unlock(&parent->d_lock);
263  	dput(prev);
264  	return child;
265  }
266  
267  void simple_recursive_removal(struct dentry *dentry,
268                                void (*callback)(struct dentry *))
269  {
270  	struct dentry *this = dget(dentry);
271  	while (true) {
272  		struct dentry *victim = NULL, *child;
273  		struct inode *inode = this->d_inode;
274  
275  		inode_lock(inode);
276  		if (d_is_dir(this))
277  			inode->i_flags |= S_DEAD;
278  		while ((child = find_next_child(this, victim)) == NULL) {
279  			// kill and ascend
280  			// update metadata while it's still locked
281  			inode->i_ctime = current_time(inode);
282  			clear_nlink(inode);
283  			inode_unlock(inode);
284  			victim = this;
285  			this = this->d_parent;
286  			inode = this->d_inode;
287  			inode_lock(inode);
288  			if (simple_positive(victim)) {
289  				d_invalidate(victim);	// avoid lost mounts
290  				if (d_is_dir(victim))
291  					fsnotify_rmdir(inode, victim);
292  				else
293  					fsnotify_unlink(inode, victim);
294  				if (callback)
295  					callback(victim);
296  				dput(victim);		// unpin it
297  			}
298  			if (victim == dentry) {
299  				inode->i_ctime = inode->i_mtime =
300  					current_time(inode);
301  				if (d_is_dir(dentry))
302  					drop_nlink(inode);
303  				inode_unlock(inode);
304  				dput(dentry);
305  				return;
306  			}
307  		}
308  		inode_unlock(inode);
309  		this = child;
310  	}
311  }
312  EXPORT_SYMBOL(simple_recursive_removal);
313  
314  static const struct super_operations simple_super_operations = {
315  	.statfs		= simple_statfs,
316  };
317  
318  static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
319  {
320  	struct pseudo_fs_context *ctx = fc->fs_private;
321  	struct inode *root;
322  
323  	s->s_maxbytes = MAX_LFS_FILESIZE;
324  	s->s_blocksize = PAGE_SIZE;
325  	s->s_blocksize_bits = PAGE_SHIFT;
326  	s->s_magic = ctx->magic;
327  	s->s_op = ctx->ops ?: &simple_super_operations;
328  	s->s_xattr = ctx->xattr;
329  	s->s_time_gran = 1;
330  	root = new_inode(s);
331  	if (!root)
332  		return -ENOMEM;
333  
334  	/*
335  	 * since this is the first inode, make it number 1. New inodes created
336  	 * after this must take care not to collide with it (by passing
337  	 * max_reserved of 1 to iunique).
338  	 */
339  	root->i_ino = 1;
340  	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
341  	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
342  	s->s_root = d_make_root(root);
343  	if (!s->s_root)
344  		return -ENOMEM;
345  	s->s_d_op = ctx->dops;
346  	return 0;
347  }
348  
349  static int pseudo_fs_get_tree(struct fs_context *fc)
350  {
351  	return get_tree_nodev(fc, pseudo_fs_fill_super);
352  }
353  
354  static void pseudo_fs_free(struct fs_context *fc)
355  {
356  	kfree(fc->fs_private);
357  }
358  
359  static const struct fs_context_operations pseudo_fs_context_ops = {
360  	.free		= pseudo_fs_free,
361  	.get_tree	= pseudo_fs_get_tree,
362  };
363  
364  /*
365   * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
366   * will never be mountable)
367   */
368  struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
369  					unsigned long magic)
370  {
371  	struct pseudo_fs_context *ctx;
372  
373  	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
374  	if (likely(ctx)) {
375  		ctx->magic = magic;
376  		fc->fs_private = ctx;
377  		fc->ops = &pseudo_fs_context_ops;
378  		fc->sb_flags |= SB_NOUSER;
379  		fc->global = true;
380  	}
381  	return ctx;
382  }
383  EXPORT_SYMBOL(init_pseudo);
384  
385  int simple_open(struct inode *inode, struct file *file)
386  {
387  	if (inode->i_private)
388  		file->private_data = inode->i_private;
389  	return 0;
390  }
391  EXPORT_SYMBOL(simple_open);
392  
393  int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
394  {
395  	struct inode *inode = d_inode(old_dentry);
396  
397  	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
398  	inc_nlink(inode);
399  	ihold(inode);
400  	dget(dentry);
401  	d_instantiate(dentry, inode);
402  	return 0;
403  }
404  EXPORT_SYMBOL(simple_link);
405  
406  int simple_empty(struct dentry *dentry)
407  {
408  	struct dentry *child;
409  	int ret = 0;
410  
411  	spin_lock(&dentry->d_lock);
412  	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
413  		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
414  		if (simple_positive(child)) {
415  			spin_unlock(&child->d_lock);
416  			goto out;
417  		}
418  		spin_unlock(&child->d_lock);
419  	}
420  	ret = 1;
421  out:
422  	spin_unlock(&dentry->d_lock);
423  	return ret;
424  }
425  EXPORT_SYMBOL(simple_empty);
426  
427  int simple_unlink(struct inode *dir, struct dentry *dentry)
428  {
429  	struct inode *inode = d_inode(dentry);
430  
431  	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
432  	drop_nlink(inode);
433  	dput(dentry);
434  	return 0;
435  }
436  EXPORT_SYMBOL(simple_unlink);
437  
438  int simple_rmdir(struct inode *dir, struct dentry *dentry)
439  {
440  	if (!simple_empty(dentry))
441  		return -ENOTEMPTY;
442  
443  	drop_nlink(d_inode(dentry));
444  	simple_unlink(dir, dentry);
445  	drop_nlink(dir);
446  	return 0;
447  }
448  EXPORT_SYMBOL(simple_rmdir);
449  
450  int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
451  		  struct inode *new_dir, struct dentry *new_dentry,
452  		  unsigned int flags)
453  {
454  	struct inode *inode = d_inode(old_dentry);
455  	int they_are_dirs = d_is_dir(old_dentry);
456  
457  	if (flags & ~RENAME_NOREPLACE)
458  		return -EINVAL;
459  
460  	if (!simple_empty(new_dentry))
461  		return -ENOTEMPTY;
462  
463  	if (d_really_is_positive(new_dentry)) {
464  		simple_unlink(new_dir, new_dentry);
465  		if (they_are_dirs) {
466  			drop_nlink(d_inode(new_dentry));
467  			drop_nlink(old_dir);
468  		}
469  	} else if (they_are_dirs) {
470  		drop_nlink(old_dir);
471  		inc_nlink(new_dir);
472  	}
473  
474  	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
475  		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
476  
477  	return 0;
478  }
479  EXPORT_SYMBOL(simple_rename);
480  
481  /**
482   * simple_setattr - setattr for simple filesystem
483   * @dentry: dentry
484   * @iattr: iattr structure
485   *
486   * Returns 0 on success, -error on failure.
487   *
488   * simple_setattr is a simple ->setattr implementation without a proper
489   * implementation of size changes.
490   *
491   * It can either be used for in-memory filesystems or special files
492   * on simple regular filesystems.  Anything that needs to change on-disk
493   * or wire state on size changes needs its own setattr method.
494   */
495  int simple_setattr(struct dentry *dentry, struct iattr *iattr)
496  {
497  	struct inode *inode = d_inode(dentry);
498  	int error;
499  
500  	error = setattr_prepare(dentry, iattr);
501  	if (error)
502  		return error;
503  
504  	if (iattr->ia_valid & ATTR_SIZE)
505  		truncate_setsize(inode, iattr->ia_size);
506  	setattr_copy(inode, iattr);
507  	mark_inode_dirty(inode);
508  	return 0;
509  }
510  EXPORT_SYMBOL(simple_setattr);
511  
512  int simple_readpage(struct file *file, struct page *page)
513  {
514  	clear_highpage(page);
515  	flush_dcache_page(page);
516  	SetPageUptodate(page);
517  	unlock_page(page);
518  	return 0;
519  }
520  EXPORT_SYMBOL(simple_readpage);
521  
522  int simple_write_begin(struct file *file, struct address_space *mapping,
523  			loff_t pos, unsigned len, unsigned flags,
524  			struct page **pagep, void **fsdata)
525  {
526  	struct page *page;
527  	pgoff_t index;
528  
529  	index = pos >> PAGE_SHIFT;
530  
531  	page = grab_cache_page_write_begin(mapping, index, flags);
532  	if (!page)
533  		return -ENOMEM;
534  
535  	*pagep = page;
536  
537  	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
538  		unsigned from = pos & (PAGE_SIZE - 1);
539  
540  		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
541  	}
542  	return 0;
543  }
544  EXPORT_SYMBOL(simple_write_begin);
545  
546  /**
547   * simple_write_end - .write_end helper for non-block-device FSes
548   * @file: See .write_end of address_space_operations
549   * @mapping: 		"
550   * @pos: 		"
551   * @len: 		"
552   * @copied: 		"
553   * @page: 		"
554   * @fsdata: 		"
555   *
556   * simple_write_end does the minimum needed for updating a page after writing is
557   * done. It has the same API signature as the .write_end of
558   * address_space_operations vector. So it can just be set onto .write_end for
559   * FSes that don't need any other processing. i_mutex is assumed to be held.
560   * Block based filesystems should use generic_write_end().
561   * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
562   * is not called, so a filesystem that actually does store data in .write_inode
563   * should extend on what's done here with a call to mark_inode_dirty() in the
564   * case that i_size has changed.
565   *
566   * Use *ONLY* with simple_readpage()
567   */
568  int simple_write_end(struct file *file, struct address_space *mapping,
569  			loff_t pos, unsigned len, unsigned copied,
570  			struct page *page, void *fsdata)
571  {
572  	struct inode *inode = page->mapping->host;
573  	loff_t last_pos = pos + copied;
574  
575  	/* zero the stale part of the page if we did a short copy */
576  	if (!PageUptodate(page)) {
577  		if (copied < len) {
578  			unsigned from = pos & (PAGE_SIZE - 1);
579  
580  			zero_user(page, from + copied, len - copied);
581  		}
582  		SetPageUptodate(page);
583  	}
584  	/*
585  	 * No need to use i_size_read() here, the i_size
586  	 * cannot change under us because we hold the i_mutex.
587  	 */
588  	if (last_pos > inode->i_size)
589  		i_size_write(inode, last_pos);
590  
591  	set_page_dirty(page);
592  	unlock_page(page);
593  	put_page(page);
594  
595  	return copied;
596  }
597  EXPORT_SYMBOL(simple_write_end);
598  
599  /*
600   * the inodes created here are not hashed. If you use iunique to generate
601   * unique inode values later for this filesystem, then you must take care
602   * to pass it an appropriate max_reserved value to avoid collisions.
603   */
604  int simple_fill_super(struct super_block *s, unsigned long magic,
605  		      const struct tree_descr *files)
606  {
607  	struct inode *inode;
608  	struct dentry *root;
609  	struct dentry *dentry;
610  	int i;
611  
612  	s->s_blocksize = PAGE_SIZE;
613  	s->s_blocksize_bits = PAGE_SHIFT;
614  	s->s_magic = magic;
615  	s->s_op = &simple_super_operations;
616  	s->s_time_gran = 1;
617  
618  	inode = new_inode(s);
619  	if (!inode)
620  		return -ENOMEM;
621  	/*
622  	 * because the root inode is 1, the files array must not contain an
623  	 * entry at index 1
624  	 */
625  	inode->i_ino = 1;
626  	inode->i_mode = S_IFDIR | 0755;
627  	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
628  	inode->i_op = &simple_dir_inode_operations;
629  	inode->i_fop = &simple_dir_operations;
630  	set_nlink(inode, 2);
631  	root = d_make_root(inode);
632  	if (!root)
633  		return -ENOMEM;
634  	for (i = 0; !files->name || files->name[0]; i++, files++) {
635  		if (!files->name)
636  			continue;
637  
638  		/* warn if it tries to conflict with the root inode */
639  		if (unlikely(i == 1))
640  			printk(KERN_WARNING "%s: %s passed in a files array"
641  				"with an index of 1!\n", __func__,
642  				s->s_type->name);
643  
644  		dentry = d_alloc_name(root, files->name);
645  		if (!dentry)
646  			goto out;
647  		inode = new_inode(s);
648  		if (!inode) {
649  			dput(dentry);
650  			goto out;
651  		}
652  		inode->i_mode = S_IFREG | files->mode;
653  		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
654  		inode->i_fop = files->ops;
655  		inode->i_ino = i;
656  		d_add(dentry, inode);
657  	}
658  	s->s_root = root;
659  	return 0;
660  out:
661  	d_genocide(root);
662  	shrink_dcache_parent(root);
663  	dput(root);
664  	return -ENOMEM;
665  }
666  EXPORT_SYMBOL(simple_fill_super);
667  
668  static DEFINE_SPINLOCK(pin_fs_lock);
669  
670  int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
671  {
672  	struct vfsmount *mnt = NULL;
673  	spin_lock(&pin_fs_lock);
674  	if (unlikely(!*mount)) {
675  		spin_unlock(&pin_fs_lock);
676  		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
677  		if (IS_ERR(mnt))
678  			return PTR_ERR(mnt);
679  		spin_lock(&pin_fs_lock);
680  		if (!*mount)
681  			*mount = mnt;
682  	}
683  	mntget(*mount);
684  	++*count;
685  	spin_unlock(&pin_fs_lock);
686  	mntput(mnt);
687  	return 0;
688  }
689  EXPORT_SYMBOL(simple_pin_fs);
690  
691  void simple_release_fs(struct vfsmount **mount, int *count)
692  {
693  	struct vfsmount *mnt;
694  	spin_lock(&pin_fs_lock);
695  	mnt = *mount;
696  	if (!--*count)
697  		*mount = NULL;
698  	spin_unlock(&pin_fs_lock);
699  	mntput(mnt);
700  }
701  EXPORT_SYMBOL(simple_release_fs);
702  
703  /**
704   * simple_read_from_buffer - copy data from the buffer to user space
705   * @to: the user space buffer to read to
706   * @count: the maximum number of bytes to read
707   * @ppos: the current position in the buffer
708   * @from: the buffer to read from
709   * @available: the size of the buffer
710   *
711   * The simple_read_from_buffer() function reads up to @count bytes from the
712   * buffer @from at offset @ppos into the user space address starting at @to.
713   *
714   * On success, the number of bytes read is returned and the offset @ppos is
715   * advanced by this number, or negative value is returned on error.
716   **/
717  ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
718  				const void *from, size_t available)
719  {
720  	loff_t pos = *ppos;
721  	size_t ret;
722  
723  	if (pos < 0)
724  		return -EINVAL;
725  	if (pos >= available || !count)
726  		return 0;
727  	if (count > available - pos)
728  		count = available - pos;
729  	ret = copy_to_user(to, from + pos, count);
730  	if (ret == count)
731  		return -EFAULT;
732  	count -= ret;
733  	*ppos = pos + count;
734  	return count;
735  }
736  EXPORT_SYMBOL(simple_read_from_buffer);
737  
738  /**
739   * simple_write_to_buffer - copy data from user space to the buffer
740   * @to: the buffer to write to
741   * @available: the size of the buffer
742   * @ppos: the current position in the buffer
743   * @from: the user space buffer to read from
744   * @count: the maximum number of bytes to read
745   *
746   * The simple_write_to_buffer() function reads up to @count bytes from the user
747   * space address starting at @from into the buffer @to at offset @ppos.
748   *
749   * On success, the number of bytes written is returned and the offset @ppos is
750   * advanced by this number, or negative value is returned on error.
751   **/
752  ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
753  		const void __user *from, size_t count)
754  {
755  	loff_t pos = *ppos;
756  	size_t res;
757  
758  	if (pos < 0)
759  		return -EINVAL;
760  	if (pos >= available || !count)
761  		return 0;
762  	if (count > available - pos)
763  		count = available - pos;
764  	res = copy_from_user(to + pos, from, count);
765  	if (res == count)
766  		return -EFAULT;
767  	count -= res;
768  	*ppos = pos + count;
769  	return count;
770  }
771  EXPORT_SYMBOL(simple_write_to_buffer);
772  
773  /**
774   * memory_read_from_buffer - copy data from the buffer
775   * @to: the kernel space buffer to read to
776   * @count: the maximum number of bytes to read
777   * @ppos: the current position in the buffer
778   * @from: the buffer to read from
779   * @available: the size of the buffer
780   *
781   * The memory_read_from_buffer() function reads up to @count bytes from the
782   * buffer @from at offset @ppos into the kernel space address starting at @to.
783   *
784   * On success, the number of bytes read is returned and the offset @ppos is
785   * advanced by this number, or negative value is returned on error.
786   **/
787  ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
788  				const void *from, size_t available)
789  {
790  	loff_t pos = *ppos;
791  
792  	if (pos < 0)
793  		return -EINVAL;
794  	if (pos >= available)
795  		return 0;
796  	if (count > available - pos)
797  		count = available - pos;
798  	memcpy(to, from + pos, count);
799  	*ppos = pos + count;
800  
801  	return count;
802  }
803  EXPORT_SYMBOL(memory_read_from_buffer);
804  
805  /*
806   * Transaction based IO.
807   * The file expects a single write which triggers the transaction, and then
808   * possibly a read which collects the result - which is stored in a
809   * file-local buffer.
810   */
811  
812  void simple_transaction_set(struct file *file, size_t n)
813  {
814  	struct simple_transaction_argresp *ar = file->private_data;
815  
816  	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
817  
818  	/*
819  	 * The barrier ensures that ar->size will really remain zero until
820  	 * ar->data is ready for reading.
821  	 */
822  	smp_mb();
823  	ar->size = n;
824  }
825  EXPORT_SYMBOL(simple_transaction_set);
826  
827  char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
828  {
829  	struct simple_transaction_argresp *ar;
830  	static DEFINE_SPINLOCK(simple_transaction_lock);
831  
832  	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
833  		return ERR_PTR(-EFBIG);
834  
835  	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
836  	if (!ar)
837  		return ERR_PTR(-ENOMEM);
838  
839  	spin_lock(&simple_transaction_lock);
840  
841  	/* only one write allowed per open */
842  	if (file->private_data) {
843  		spin_unlock(&simple_transaction_lock);
844  		free_page((unsigned long)ar);
845  		return ERR_PTR(-EBUSY);
846  	}
847  
848  	file->private_data = ar;
849  
850  	spin_unlock(&simple_transaction_lock);
851  
852  	if (copy_from_user(ar->data, buf, size))
853  		return ERR_PTR(-EFAULT);
854  
855  	return ar->data;
856  }
857  EXPORT_SYMBOL(simple_transaction_get);
858  
859  ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
860  {
861  	struct simple_transaction_argresp *ar = file->private_data;
862  
863  	if (!ar)
864  		return 0;
865  	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
866  }
867  EXPORT_SYMBOL(simple_transaction_read);
868  
869  int simple_transaction_release(struct inode *inode, struct file *file)
870  {
871  	free_page((unsigned long)file->private_data);
872  	return 0;
873  }
874  EXPORT_SYMBOL(simple_transaction_release);
875  
876  /* Simple attribute files */
877  
878  struct simple_attr {
879  	int (*get)(void *, u64 *);
880  	int (*set)(void *, u64);
881  	char get_buf[24];	/* enough to store a u64 and "\n\0" */
882  	char set_buf[24];
883  	void *data;
884  	const char *fmt;	/* format for read operation */
885  	struct mutex mutex;	/* protects access to these buffers */
886  };
887  
888  /* simple_attr_open is called by an actual attribute open file operation
889   * to set the attribute specific access operations. */
890  int simple_attr_open(struct inode *inode, struct file *file,
891  		     int (*get)(void *, u64 *), int (*set)(void *, u64),
892  		     const char *fmt)
893  {
894  	struct simple_attr *attr;
895  
896  	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
897  	if (!attr)
898  		return -ENOMEM;
899  
900  	attr->get = get;
901  	attr->set = set;
902  	attr->data = inode->i_private;
903  	attr->fmt = fmt;
904  	mutex_init(&attr->mutex);
905  
906  	file->private_data = attr;
907  
908  	return nonseekable_open(inode, file);
909  }
910  EXPORT_SYMBOL_GPL(simple_attr_open);
911  
912  int simple_attr_release(struct inode *inode, struct file *file)
913  {
914  	kfree(file->private_data);
915  	return 0;
916  }
917  EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
918  
919  /* read from the buffer that is filled with the get function */
920  ssize_t simple_attr_read(struct file *file, char __user *buf,
921  			 size_t len, loff_t *ppos)
922  {
923  	struct simple_attr *attr;
924  	size_t size;
925  	ssize_t ret;
926  
927  	attr = file->private_data;
928  
929  	if (!attr->get)
930  		return -EACCES;
931  
932  	ret = mutex_lock_interruptible(&attr->mutex);
933  	if (ret)
934  		return ret;
935  
936  	if (*ppos && attr->get_buf[0]) {
937  		/* continued read */
938  		size = strlen(attr->get_buf);
939  	} else {
940  		/* first read */
941  		u64 val;
942  		ret = attr->get(attr->data, &val);
943  		if (ret)
944  			goto out;
945  
946  		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
947  				 attr->fmt, (unsigned long long)val);
948  	}
949  
950  	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
951  out:
952  	mutex_unlock(&attr->mutex);
953  	return ret;
954  }
955  EXPORT_SYMBOL_GPL(simple_attr_read);
956  
957  /* interpret the buffer as a number to call the set function with */
958  ssize_t simple_attr_write(struct file *file, const char __user *buf,
959  			  size_t len, loff_t *ppos)
960  {
961  	struct simple_attr *attr;
962  	unsigned long long val;
963  	size_t size;
964  	ssize_t ret;
965  
966  	attr = file->private_data;
967  	if (!attr->set)
968  		return -EACCES;
969  
970  	ret = mutex_lock_interruptible(&attr->mutex);
971  	if (ret)
972  		return ret;
973  
974  	ret = -EFAULT;
975  	size = min(sizeof(attr->set_buf) - 1, len);
976  	if (copy_from_user(attr->set_buf, buf, size))
977  		goto out;
978  
979  	attr->set_buf[size] = '\0';
980  	ret = kstrtoull(attr->set_buf, 0, &val);
981  	if (ret)
982  		goto out;
983  	ret = attr->set(attr->data, val);
984  	if (ret == 0)
985  		ret = len; /* on success, claim we got the whole input */
986  out:
987  	mutex_unlock(&attr->mutex);
988  	return ret;
989  }
990  EXPORT_SYMBOL_GPL(simple_attr_write);
991  
992  /**
993   * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
994   * @sb:		filesystem to do the file handle conversion on
995   * @fid:	file handle to convert
996   * @fh_len:	length of the file handle in bytes
997   * @fh_type:	type of file handle
998   * @get_inode:	filesystem callback to retrieve inode
999   *
1000   * This function decodes @fid as long as it has one of the well-known
1001   * Linux filehandle types and calls @get_inode on it to retrieve the
1002   * inode for the object specified in the file handle.
1003   */
1004  struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1005  		int fh_len, int fh_type, struct inode *(*get_inode)
1006  			(struct super_block *sb, u64 ino, u32 gen))
1007  {
1008  	struct inode *inode = NULL;
1009  
1010  	if (fh_len < 2)
1011  		return NULL;
1012  
1013  	switch (fh_type) {
1014  	case FILEID_INO32_GEN:
1015  	case FILEID_INO32_GEN_PARENT:
1016  		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1017  		break;
1018  	}
1019  
1020  	return d_obtain_alias(inode);
1021  }
1022  EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1023  
1024  /**
1025   * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1026   * @sb:		filesystem to do the file handle conversion on
1027   * @fid:	file handle to convert
1028   * @fh_len:	length of the file handle in bytes
1029   * @fh_type:	type of file handle
1030   * @get_inode:	filesystem callback to retrieve inode
1031   *
1032   * This function decodes @fid as long as it has one of the well-known
1033   * Linux filehandle types and calls @get_inode on it to retrieve the
1034   * inode for the _parent_ object specified in the file handle if it
1035   * is specified in the file handle, or NULL otherwise.
1036   */
1037  struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1038  		int fh_len, int fh_type, struct inode *(*get_inode)
1039  			(struct super_block *sb, u64 ino, u32 gen))
1040  {
1041  	struct inode *inode = NULL;
1042  
1043  	if (fh_len <= 2)
1044  		return NULL;
1045  
1046  	switch (fh_type) {
1047  	case FILEID_INO32_GEN_PARENT:
1048  		inode = get_inode(sb, fid->i32.parent_ino,
1049  				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1050  		break;
1051  	}
1052  
1053  	return d_obtain_alias(inode);
1054  }
1055  EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1056  
1057  /**
1058   * __generic_file_fsync - generic fsync implementation for simple filesystems
1059   *
1060   * @file:	file to synchronize
1061   * @start:	start offset in bytes
1062   * @end:	end offset in bytes (inclusive)
1063   * @datasync:	only synchronize essential metadata if true
1064   *
1065   * This is a generic implementation of the fsync method for simple
1066   * filesystems which track all non-inode metadata in the buffers list
1067   * hanging off the address_space structure.
1068   */
1069  int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1070  				 int datasync)
1071  {
1072  	struct inode *inode = file->f_mapping->host;
1073  	int err;
1074  	int ret;
1075  
1076  	err = file_write_and_wait_range(file, start, end);
1077  	if (err)
1078  		return err;
1079  
1080  	inode_lock(inode);
1081  	ret = sync_mapping_buffers(inode->i_mapping);
1082  	if (!(inode->i_state & I_DIRTY_ALL))
1083  		goto out;
1084  	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1085  		goto out;
1086  
1087  	err = sync_inode_metadata(inode, 1);
1088  	if (ret == 0)
1089  		ret = err;
1090  
1091  out:
1092  	inode_unlock(inode);
1093  	/* check and advance again to catch errors after syncing out buffers */
1094  	err = file_check_and_advance_wb_err(file);
1095  	if (ret == 0)
1096  		ret = err;
1097  	return ret;
1098  }
1099  EXPORT_SYMBOL(__generic_file_fsync);
1100  
1101  /**
1102   * generic_file_fsync - generic fsync implementation for simple filesystems
1103   *			with flush
1104   * @file:	file to synchronize
1105   * @start:	start offset in bytes
1106   * @end:	end offset in bytes (inclusive)
1107   * @datasync:	only synchronize essential metadata if true
1108   *
1109   */
1110  
1111  int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1112  		       int datasync)
1113  {
1114  	struct inode *inode = file->f_mapping->host;
1115  	int err;
1116  
1117  	err = __generic_file_fsync(file, start, end, datasync);
1118  	if (err)
1119  		return err;
1120  	return blkdev_issue_flush(inode->i_sb->s_bdev);
1121  }
1122  EXPORT_SYMBOL(generic_file_fsync);
1123  
1124  /**
1125   * generic_check_addressable - Check addressability of file system
1126   * @blocksize_bits:	log of file system block size
1127   * @num_blocks:		number of blocks in file system
1128   *
1129   * Determine whether a file system with @num_blocks blocks (and a
1130   * block size of 2**@blocksize_bits) is addressable by the sector_t
1131   * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1132   */
1133  int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1134  {
1135  	u64 last_fs_block = num_blocks - 1;
1136  	u64 last_fs_page =
1137  		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1138  
1139  	if (unlikely(num_blocks == 0))
1140  		return 0;
1141  
1142  	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1143  		return -EINVAL;
1144  
1145  	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1146  	    (last_fs_page > (pgoff_t)(~0ULL))) {
1147  		return -EFBIG;
1148  	}
1149  	return 0;
1150  }
1151  EXPORT_SYMBOL(generic_check_addressable);
1152  
1153  /*
1154   * No-op implementation of ->fsync for in-memory filesystems.
1155   */
1156  int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1157  {
1158  	return 0;
1159  }
1160  EXPORT_SYMBOL(noop_fsync);
1161  
1162  int noop_set_page_dirty(struct page *page)
1163  {
1164  	/*
1165  	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1166  	 * tracking in the page object, dax does all dirty tracking in
1167  	 * the inode address_space in response to mkwrite faults. In the
1168  	 * dax case we only need to worry about potentially dirty CPU
1169  	 * caches, not dirty page cache pages to write back.
1170  	 *
1171  	 * This callback is defined to prevent fallback to
1172  	 * __set_page_dirty_buffers() in set_page_dirty().
1173  	 */
1174  	return 0;
1175  }
1176  EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1177  
1178  void noop_invalidatepage(struct page *page, unsigned int offset,
1179  		unsigned int length)
1180  {
1181  	/*
1182  	 * There is no page cache to invalidate in the dax case, however
1183  	 * we need this callback defined to prevent falling back to
1184  	 * block_invalidatepage() in do_invalidatepage().
1185  	 */
1186  }
1187  EXPORT_SYMBOL_GPL(noop_invalidatepage);
1188  
1189  ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1190  {
1191  	/*
1192  	 * iomap based filesystems support direct I/O without need for
1193  	 * this callback. However, it still needs to be set in
1194  	 * inode->a_ops so that open/fcntl know that direct I/O is
1195  	 * generally supported.
1196  	 */
1197  	return -EINVAL;
1198  }
1199  EXPORT_SYMBOL_GPL(noop_direct_IO);
1200  
1201  /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1202  void kfree_link(void *p)
1203  {
1204  	kfree(p);
1205  }
1206  EXPORT_SYMBOL(kfree_link);
1207  
1208  /*
1209   * nop .set_page_dirty method so that people can use .page_mkwrite on
1210   * anon inodes.
1211   */
1212  static int anon_set_page_dirty(struct page *page)
1213  {
1214  	return 0;
1215  };
1216  
1217  struct inode *alloc_anon_inode(struct super_block *s)
1218  {
1219  	static const struct address_space_operations anon_aops = {
1220  		.set_page_dirty = anon_set_page_dirty,
1221  	};
1222  	struct inode *inode = new_inode_pseudo(s);
1223  
1224  	if (!inode)
1225  		return ERR_PTR(-ENOMEM);
1226  
1227  	inode->i_ino = get_next_ino();
1228  	inode->i_mapping->a_ops = &anon_aops;
1229  
1230  	/*
1231  	 * Mark the inode dirty from the very beginning,
1232  	 * that way it will never be moved to the dirty
1233  	 * list because mark_inode_dirty() will think
1234  	 * that it already _is_ on the dirty list.
1235  	 */
1236  	inode->i_state = I_DIRTY;
1237  	inode->i_mode = S_IRUSR | S_IWUSR;
1238  	inode->i_uid = current_fsuid();
1239  	inode->i_gid = current_fsgid();
1240  	inode->i_flags |= S_PRIVATE;
1241  	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1242  	return inode;
1243  }
1244  EXPORT_SYMBOL(alloc_anon_inode);
1245  
1246  /**
1247   * simple_nosetlease - generic helper for prohibiting leases
1248   * @filp: file pointer
1249   * @arg: type of lease to obtain
1250   * @flp: new lease supplied for insertion
1251   * @priv: private data for lm_setup operation
1252   *
1253   * Generic helper for filesystems that do not wish to allow leases to be set.
1254   * All arguments are ignored and it just returns -EINVAL.
1255   */
1256  int
1257  simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1258  		  void **priv)
1259  {
1260  	return -EINVAL;
1261  }
1262  EXPORT_SYMBOL(simple_nosetlease);
1263  
1264  /**
1265   * simple_get_link - generic helper to get the target of "fast" symlinks
1266   * @dentry: not used here
1267   * @inode: the symlink inode
1268   * @done: not used here
1269   *
1270   * Generic helper for filesystems to use for symlink inodes where a pointer to
1271   * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1272   * since as an optimization the path lookup code uses any non-NULL ->i_link
1273   * directly, without calling ->get_link().  But ->get_link() still must be set,
1274   * to mark the inode_operations as being for a symlink.
1275   *
1276   * Return: the symlink target
1277   */
1278  const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1279  			    struct delayed_call *done)
1280  {
1281  	return inode->i_link;
1282  }
1283  EXPORT_SYMBOL(simple_get_link);
1284  
1285  const struct inode_operations simple_symlink_inode_operations = {
1286  	.get_link = simple_get_link,
1287  };
1288  EXPORT_SYMBOL(simple_symlink_inode_operations);
1289  
1290  /*
1291   * Operations for a permanently empty directory.
1292   */
1293  static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1294  {
1295  	return ERR_PTR(-ENOENT);
1296  }
1297  
1298  static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1299  			     u32 request_mask, unsigned int query_flags)
1300  {
1301  	struct inode *inode = d_inode(path->dentry);
1302  	generic_fillattr(inode, stat);
1303  	return 0;
1304  }
1305  
1306  static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1307  {
1308  	return -EPERM;
1309  }
1310  
1311  static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1312  {
1313  	return -EOPNOTSUPP;
1314  }
1315  
1316  static const struct inode_operations empty_dir_inode_operations = {
1317  	.lookup		= empty_dir_lookup,
1318  	.permission	= generic_permission,
1319  	.setattr	= empty_dir_setattr,
1320  	.getattr	= empty_dir_getattr,
1321  	.listxattr	= empty_dir_listxattr,
1322  };
1323  
1324  static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1325  {
1326  	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1327  	return generic_file_llseek_size(file, offset, whence, 2, 2);
1328  }
1329  
1330  static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1331  {
1332  	dir_emit_dots(file, ctx);
1333  	return 0;
1334  }
1335  
1336  static const struct file_operations empty_dir_operations = {
1337  	.llseek		= empty_dir_llseek,
1338  	.read		= generic_read_dir,
1339  	.iterate_shared	= empty_dir_readdir,
1340  	.fsync		= noop_fsync,
1341  };
1342  
1343  
1344  void make_empty_dir_inode(struct inode *inode)
1345  {
1346  	set_nlink(inode, 2);
1347  	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1348  	inode->i_uid = GLOBAL_ROOT_UID;
1349  	inode->i_gid = GLOBAL_ROOT_GID;
1350  	inode->i_rdev = 0;
1351  	inode->i_size = 0;
1352  	inode->i_blkbits = PAGE_SHIFT;
1353  	inode->i_blocks = 0;
1354  
1355  	inode->i_op = &empty_dir_inode_operations;
1356  	inode->i_opflags &= ~IOP_XATTR;
1357  	inode->i_fop = &empty_dir_operations;
1358  }
1359  
1360  bool is_empty_dir_inode(struct inode *inode)
1361  {
1362  	return (inode->i_fop == &empty_dir_operations) &&
1363  		(inode->i_op == &empty_dir_inode_operations);
1364  }
1365  
1366  #ifdef CONFIG_UNICODE
1367  /*
1368   * Determine if the name of a dentry should be casefolded.
1369   *
1370   * Return: if names will need casefolding
1371   */
1372  static bool needs_casefold(const struct inode *dir)
1373  {
1374  	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1375  }
1376  
1377  /**
1378   * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1379   * @dentry:	dentry whose name we are checking against
1380   * @len:	len of name of dentry
1381   * @str:	str pointer to name of dentry
1382   * @name:	Name to compare against
1383   *
1384   * Return: 0 if names match, 1 if mismatch, or -ERRNO
1385   */
1386  static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1387  				const char *str, const struct qstr *name)
1388  {
1389  	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1390  	const struct inode *dir = READ_ONCE(parent->d_inode);
1391  	const struct super_block *sb = dentry->d_sb;
1392  	const struct unicode_map *um = sb->s_encoding;
1393  	struct qstr qstr = QSTR_INIT(str, len);
1394  	char strbuf[DNAME_INLINE_LEN];
1395  	int ret;
1396  
1397  	if (!dir || !needs_casefold(dir))
1398  		goto fallback;
1399  	/*
1400  	 * If the dentry name is stored in-line, then it may be concurrently
1401  	 * modified by a rename.  If this happens, the VFS will eventually retry
1402  	 * the lookup, so it doesn't matter what ->d_compare() returns.
1403  	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1404  	 * string.  Therefore, we have to copy the name into a temporary buffer.
1405  	 */
1406  	if (len <= DNAME_INLINE_LEN - 1) {
1407  		memcpy(strbuf, str, len);
1408  		strbuf[len] = 0;
1409  		qstr.name = strbuf;
1410  		/* prevent compiler from optimizing out the temporary buffer */
1411  		barrier();
1412  	}
1413  	ret = utf8_strncasecmp(um, name, &qstr);
1414  	if (ret >= 0)
1415  		return ret;
1416  
1417  	if (sb_has_strict_encoding(sb))
1418  		return -EINVAL;
1419  fallback:
1420  	if (len != name->len)
1421  		return 1;
1422  	return !!memcmp(str, name->name, len);
1423  }
1424  
1425  /**
1426   * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1427   * @dentry:	dentry of the parent directory
1428   * @str:	qstr of name whose hash we should fill in
1429   *
1430   * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1431   */
1432  static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1433  {
1434  	const struct inode *dir = READ_ONCE(dentry->d_inode);
1435  	struct super_block *sb = dentry->d_sb;
1436  	const struct unicode_map *um = sb->s_encoding;
1437  	int ret = 0;
1438  
1439  	if (!dir || !needs_casefold(dir))
1440  		return 0;
1441  
1442  	ret = utf8_casefold_hash(um, dentry, str);
1443  	if (ret < 0 && sb_has_strict_encoding(sb))
1444  		return -EINVAL;
1445  	return 0;
1446  }
1447  
1448  static const struct dentry_operations generic_ci_dentry_ops = {
1449  	.d_hash = generic_ci_d_hash,
1450  	.d_compare = generic_ci_d_compare,
1451  };
1452  #endif
1453  
1454  #ifdef CONFIG_FS_ENCRYPTION
1455  static const struct dentry_operations generic_encrypted_dentry_ops = {
1456  	.d_revalidate = fscrypt_d_revalidate,
1457  };
1458  #endif
1459  
1460  #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1461  static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1462  	.d_hash = generic_ci_d_hash,
1463  	.d_compare = generic_ci_d_compare,
1464  	.d_revalidate = fscrypt_d_revalidate,
1465  };
1466  #endif
1467  
1468  /**
1469   * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1470   * @dentry:	dentry to set ops on
1471   *
1472   * Casefolded directories need d_hash and d_compare set, so that the dentries
1473   * contained in them are handled case-insensitively.  Note that these operations
1474   * are needed on the parent directory rather than on the dentries in it, and
1475   * while the casefolding flag can be toggled on and off on an empty directory,
1476   * dentry_operations can't be changed later.  As a result, if the filesystem has
1477   * casefolding support enabled at all, we have to give all dentries the
1478   * casefolding operations even if their inode doesn't have the casefolding flag
1479   * currently (and thus the casefolding ops would be no-ops for now).
1480   *
1481   * Encryption works differently in that the only dentry operation it needs is
1482   * d_revalidate, which it only needs on dentries that have the no-key name flag.
1483   * The no-key flag can't be set "later", so we don't have to worry about that.
1484   *
1485   * Finally, to maximize compatibility with overlayfs (which isn't compatible
1486   * with certain dentry operations) and to avoid taking an unnecessary
1487   * performance hit, we use custom dentry_operations for each possible
1488   * combination rather than always installing all operations.
1489   */
1490  void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1491  {
1492  #ifdef CONFIG_FS_ENCRYPTION
1493  	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1494  #endif
1495  #ifdef CONFIG_UNICODE
1496  	bool needs_ci_ops = dentry->d_sb->s_encoding;
1497  #endif
1498  #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1499  	if (needs_encrypt_ops && needs_ci_ops) {
1500  		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1501  		return;
1502  	}
1503  #endif
1504  #ifdef CONFIG_FS_ENCRYPTION
1505  	if (needs_encrypt_ops) {
1506  		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1507  		return;
1508  	}
1509  #endif
1510  #ifdef CONFIG_UNICODE
1511  	if (needs_ci_ops) {
1512  		d_set_d_op(dentry, &generic_ci_dentry_ops);
1513  		return;
1514  	}
1515  #endif
1516  }
1517  EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1518