xref: /linux/fs/libfs.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 #include "internal.h"
31 
32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 		   struct kstat *stat, u32 request_mask,
34 		   unsigned int query_flags)
35 {
36 	struct inode *inode = d_inode(path->dentry);
37 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 	return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42 
43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46 
47 	buf->f_fsid = u64_to_fsid(id);
48 	buf->f_type = dentry->d_sb->s_magic;
49 	buf->f_bsize = PAGE_SIZE;
50 	buf->f_namelen = NAME_MAX;
51 	return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54 
55 /*
56  * Retaining negative dentries for an in-memory filesystem just wastes
57  * memory and lookup time: arrange for them to be deleted immediately.
58  */
59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 	return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64 
65 const struct dentry_operations simple_dentry_operations = {
66 	.d_delete = always_delete_dentry,
67 };
68 EXPORT_SYMBOL(simple_dentry_operations);
69 
70 /*
71  * Lookup the data. This is trivial - if the dentry didn't already
72  * exist, we know it is negative.  Set d_op to delete negative dentries.
73  */
74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75 {
76 	if (dentry->d_name.len > NAME_MAX)
77 		return ERR_PTR(-ENAMETOOLONG);
78 	if (!dentry->d_sb->s_d_op)
79 		d_set_d_op(dentry, &simple_dentry_operations);
80 
81 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
82 		return NULL;
83 
84 	d_add(dentry, NULL);
85 	return NULL;
86 }
87 EXPORT_SYMBOL(simple_lookup);
88 
89 int dcache_dir_open(struct inode *inode, struct file *file)
90 {
91 	file->private_data = d_alloc_cursor(file->f_path.dentry);
92 
93 	return file->private_data ? 0 : -ENOMEM;
94 }
95 EXPORT_SYMBOL(dcache_dir_open);
96 
97 int dcache_dir_close(struct inode *inode, struct file *file)
98 {
99 	dput(file->private_data);
100 	return 0;
101 }
102 EXPORT_SYMBOL(dcache_dir_close);
103 
104 /* parent is locked at least shared */
105 /*
106  * Returns an element of siblings' list.
107  * We are looking for <count>th positive after <p>; if
108  * found, dentry is grabbed and returned to caller.
109  * If no such element exists, NULL is returned.
110  */
111 static struct dentry *scan_positives(struct dentry *cursor,
112 					struct hlist_node **p,
113 					loff_t count,
114 					struct dentry *last)
115 {
116 	struct dentry *dentry = cursor->d_parent, *found = NULL;
117 
118 	spin_lock(&dentry->d_lock);
119 	while (*p) {
120 		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
121 		p = &d->d_sib.next;
122 		// we must at least skip cursors, to avoid livelocks
123 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
124 			continue;
125 		if (simple_positive(d) && !--count) {
126 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
127 			if (simple_positive(d))
128 				found = dget_dlock(d);
129 			spin_unlock(&d->d_lock);
130 			if (likely(found))
131 				break;
132 			count = 1;
133 		}
134 		if (need_resched()) {
135 			if (!hlist_unhashed(&cursor->d_sib))
136 				__hlist_del(&cursor->d_sib);
137 			hlist_add_behind(&cursor->d_sib, &d->d_sib);
138 			p = &cursor->d_sib.next;
139 			spin_unlock(&dentry->d_lock);
140 			cond_resched();
141 			spin_lock(&dentry->d_lock);
142 		}
143 	}
144 	spin_unlock(&dentry->d_lock);
145 	dput(last);
146 	return found;
147 }
148 
149 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
150 {
151 	struct dentry *dentry = file->f_path.dentry;
152 	switch (whence) {
153 		case 1:
154 			offset += file->f_pos;
155 			fallthrough;
156 		case 0:
157 			if (offset >= 0)
158 				break;
159 			fallthrough;
160 		default:
161 			return -EINVAL;
162 	}
163 	if (offset != file->f_pos) {
164 		struct dentry *cursor = file->private_data;
165 		struct dentry *to = NULL;
166 
167 		inode_lock_shared(dentry->d_inode);
168 
169 		if (offset > 2)
170 			to = scan_positives(cursor, &dentry->d_children.first,
171 					    offset - 2, NULL);
172 		spin_lock(&dentry->d_lock);
173 		hlist_del_init(&cursor->d_sib);
174 		if (to)
175 			hlist_add_behind(&cursor->d_sib, &to->d_sib);
176 		spin_unlock(&dentry->d_lock);
177 		dput(to);
178 
179 		file->f_pos = offset;
180 
181 		inode_unlock_shared(dentry->d_inode);
182 	}
183 	return offset;
184 }
185 EXPORT_SYMBOL(dcache_dir_lseek);
186 
187 /*
188  * Directory is locked and all positive dentries in it are safe, since
189  * for ramfs-type trees they can't go away without unlink() or rmdir(),
190  * both impossible due to the lock on directory.
191  */
192 
193 int dcache_readdir(struct file *file, struct dir_context *ctx)
194 {
195 	struct dentry *dentry = file->f_path.dentry;
196 	struct dentry *cursor = file->private_data;
197 	struct dentry *next = NULL;
198 	struct hlist_node **p;
199 
200 	if (!dir_emit_dots(file, ctx))
201 		return 0;
202 
203 	if (ctx->pos == 2)
204 		p = &dentry->d_children.first;
205 	else
206 		p = &cursor->d_sib.next;
207 
208 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
209 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
210 			      d_inode(next)->i_ino,
211 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
212 			break;
213 		ctx->pos++;
214 		p = &next->d_sib.next;
215 	}
216 	spin_lock(&dentry->d_lock);
217 	hlist_del_init(&cursor->d_sib);
218 	if (next)
219 		hlist_add_before(&cursor->d_sib, &next->d_sib);
220 	spin_unlock(&dentry->d_lock);
221 	dput(next);
222 
223 	return 0;
224 }
225 EXPORT_SYMBOL(dcache_readdir);
226 
227 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
228 {
229 	return -EISDIR;
230 }
231 EXPORT_SYMBOL(generic_read_dir);
232 
233 const struct file_operations simple_dir_operations = {
234 	.open		= dcache_dir_open,
235 	.release	= dcache_dir_close,
236 	.llseek		= dcache_dir_lseek,
237 	.read		= generic_read_dir,
238 	.iterate_shared	= dcache_readdir,
239 	.fsync		= noop_fsync,
240 };
241 EXPORT_SYMBOL(simple_dir_operations);
242 
243 const struct inode_operations simple_dir_inode_operations = {
244 	.lookup		= simple_lookup,
245 };
246 EXPORT_SYMBOL(simple_dir_inode_operations);
247 
248 /* 0 is '.', 1 is '..', so always start with offset 2 or more */
249 enum {
250 	DIR_OFFSET_MIN	= 2,
251 };
252 
253 static void offset_set(struct dentry *dentry, long offset)
254 {
255 	dentry->d_fsdata = (void *)offset;
256 }
257 
258 static long dentry2offset(struct dentry *dentry)
259 {
260 	return (long)dentry->d_fsdata;
261 }
262 
263 static struct lock_class_key simple_offset_lock_class;
264 
265 /**
266  * simple_offset_init - initialize an offset_ctx
267  * @octx: directory offset map to be initialized
268  *
269  */
270 void simple_offset_init(struct offset_ctx *octx)
271 {
272 	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
273 	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
274 	octx->next_offset = DIR_OFFSET_MIN;
275 }
276 
277 /**
278  * simple_offset_add - Add an entry to a directory's offset map
279  * @octx: directory offset ctx to be updated
280  * @dentry: new dentry being added
281  *
282  * Returns zero on success. @octx and the dentry's offset are updated.
283  * Otherwise, a negative errno value is returned.
284  */
285 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
286 {
287 	unsigned long offset;
288 	int ret;
289 
290 	if (dentry2offset(dentry) != 0)
291 		return -EBUSY;
292 
293 	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
294 				 LONG_MAX, &octx->next_offset, GFP_KERNEL);
295 	if (ret < 0)
296 		return ret;
297 
298 	offset_set(dentry, offset);
299 	return 0;
300 }
301 
302 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
303 				 long offset)
304 {
305 	int ret;
306 
307 	ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
308 	if (ret)
309 		return ret;
310 	offset_set(dentry, offset);
311 	return 0;
312 }
313 
314 /**
315  * simple_offset_remove - Remove an entry to a directory's offset map
316  * @octx: directory offset ctx to be updated
317  * @dentry: dentry being removed
318  *
319  */
320 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
321 {
322 	long offset;
323 
324 	offset = dentry2offset(dentry);
325 	if (offset == 0)
326 		return;
327 
328 	mtree_erase(&octx->mt, offset);
329 	offset_set(dentry, 0);
330 }
331 
332 /**
333  * simple_offset_empty - Check if a dentry can be unlinked
334  * @dentry: dentry to be tested
335  *
336  * Returns 0 if @dentry is a non-empty directory; otherwise returns 1.
337  */
338 int simple_offset_empty(struct dentry *dentry)
339 {
340 	struct inode *inode = d_inode(dentry);
341 	struct offset_ctx *octx;
342 	struct dentry *child;
343 	unsigned long index;
344 	int ret = 1;
345 
346 	if (!inode || !S_ISDIR(inode->i_mode))
347 		return ret;
348 
349 	index = DIR_OFFSET_MIN;
350 	octx = inode->i_op->get_offset_ctx(inode);
351 	mt_for_each(&octx->mt, child, index, LONG_MAX) {
352 		spin_lock(&child->d_lock);
353 		if (simple_positive(child)) {
354 			spin_unlock(&child->d_lock);
355 			ret = 0;
356 			break;
357 		}
358 		spin_unlock(&child->d_lock);
359 	}
360 
361 	return ret;
362 }
363 
364 /**
365  * simple_offset_rename - handle directory offsets for rename
366  * @old_dir: parent directory of source entry
367  * @old_dentry: dentry of source entry
368  * @new_dir: parent_directory of destination entry
369  * @new_dentry: dentry of destination
370  *
371  * Caller provides appropriate serialization.
372  *
373  * User space expects the directory offset value of the replaced
374  * (new) directory entry to be unchanged after a rename.
375  *
376  * Returns zero on success, a negative errno value on failure.
377  */
378 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
379 			 struct inode *new_dir, struct dentry *new_dentry)
380 {
381 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
382 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
383 	long new_offset = dentry2offset(new_dentry);
384 
385 	simple_offset_remove(old_ctx, old_dentry);
386 
387 	if (new_offset) {
388 		offset_set(new_dentry, 0);
389 		return simple_offset_replace(new_ctx, old_dentry, new_offset);
390 	}
391 	return simple_offset_add(new_ctx, old_dentry);
392 }
393 
394 /**
395  * simple_offset_rename_exchange - exchange rename with directory offsets
396  * @old_dir: parent of dentry being moved
397  * @old_dentry: dentry being moved
398  * @new_dir: destination parent
399  * @new_dentry: destination dentry
400  *
401  * This API preserves the directory offset values. Caller provides
402  * appropriate serialization.
403  *
404  * Returns zero on success. Otherwise a negative errno is returned and the
405  * rename is rolled back.
406  */
407 int simple_offset_rename_exchange(struct inode *old_dir,
408 				  struct dentry *old_dentry,
409 				  struct inode *new_dir,
410 				  struct dentry *new_dentry)
411 {
412 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
413 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
414 	long old_index = dentry2offset(old_dentry);
415 	long new_index = dentry2offset(new_dentry);
416 	int ret;
417 
418 	simple_offset_remove(old_ctx, old_dentry);
419 	simple_offset_remove(new_ctx, new_dentry);
420 
421 	ret = simple_offset_replace(new_ctx, old_dentry, new_index);
422 	if (ret)
423 		goto out_restore;
424 
425 	ret = simple_offset_replace(old_ctx, new_dentry, old_index);
426 	if (ret) {
427 		simple_offset_remove(new_ctx, old_dentry);
428 		goto out_restore;
429 	}
430 
431 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
432 	if (ret) {
433 		simple_offset_remove(new_ctx, old_dentry);
434 		simple_offset_remove(old_ctx, new_dentry);
435 		goto out_restore;
436 	}
437 	return 0;
438 
439 out_restore:
440 	(void)simple_offset_replace(old_ctx, old_dentry, old_index);
441 	(void)simple_offset_replace(new_ctx, new_dentry, new_index);
442 	return ret;
443 }
444 
445 /**
446  * simple_offset_destroy - Release offset map
447  * @octx: directory offset ctx that is about to be destroyed
448  *
449  * During fs teardown (eg. umount), a directory's offset map might still
450  * contain entries. xa_destroy() cleans out anything that remains.
451  */
452 void simple_offset_destroy(struct offset_ctx *octx)
453 {
454 	mtree_destroy(&octx->mt);
455 }
456 
457 static int offset_dir_open(struct inode *inode, struct file *file)
458 {
459 	struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode);
460 
461 	file->private_data = (void *)ctx->next_offset;
462 	return 0;
463 }
464 
465 /**
466  * offset_dir_llseek - Advance the read position of a directory descriptor
467  * @file: an open directory whose position is to be updated
468  * @offset: a byte offset
469  * @whence: enumerator describing the starting position for this update
470  *
471  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
472  *
473  * Returns the updated read position if successful; otherwise a
474  * negative errno is returned and the read position remains unchanged.
475  */
476 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
477 {
478 	struct inode *inode = file->f_inode;
479 	struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode);
480 
481 	switch (whence) {
482 	case SEEK_CUR:
483 		offset += file->f_pos;
484 		fallthrough;
485 	case SEEK_SET:
486 		if (offset >= 0)
487 			break;
488 		fallthrough;
489 	default:
490 		return -EINVAL;
491 	}
492 
493 	/* In this case, ->private_data is protected by f_pos_lock */
494 	if (!offset)
495 		file->private_data = (void *)ctx->next_offset;
496 	return vfs_setpos(file, offset, LONG_MAX);
497 }
498 
499 static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset)
500 {
501 	MA_STATE(mas, &octx->mt, offset, offset);
502 	struct dentry *child, *found = NULL;
503 
504 	rcu_read_lock();
505 	child = mas_find(&mas, LONG_MAX);
506 	if (!child)
507 		goto out;
508 	spin_lock(&child->d_lock);
509 	if (simple_positive(child))
510 		found = dget_dlock(child);
511 	spin_unlock(&child->d_lock);
512 out:
513 	rcu_read_unlock();
514 	return found;
515 }
516 
517 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
518 {
519 	struct inode *inode = d_inode(dentry);
520 	long offset = dentry2offset(dentry);
521 
522 	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
523 			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
524 }
525 
526 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx, long last_index)
527 {
528 	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
529 	struct dentry *dentry;
530 
531 	while (true) {
532 		dentry = offset_find_next(octx, ctx->pos);
533 		if (!dentry)
534 			return;
535 
536 		if (dentry2offset(dentry) >= last_index) {
537 			dput(dentry);
538 			return;
539 		}
540 
541 		if (!offset_dir_emit(ctx, dentry)) {
542 			dput(dentry);
543 			return;
544 		}
545 
546 		ctx->pos = dentry2offset(dentry) + 1;
547 		dput(dentry);
548 	}
549 }
550 
551 /**
552  * offset_readdir - Emit entries starting at offset @ctx->pos
553  * @file: an open directory to iterate over
554  * @ctx: directory iteration context
555  *
556  * Caller must hold @file's i_rwsem to prevent insertion or removal of
557  * entries during this call.
558  *
559  * On entry, @ctx->pos contains an offset that represents the first entry
560  * to be read from the directory.
561  *
562  * The operation continues until there are no more entries to read, or
563  * until the ctx->actor indicates there is no more space in the caller's
564  * output buffer.
565  *
566  * On return, @ctx->pos contains an offset that will read the next entry
567  * in this directory when offset_readdir() is called again with @ctx.
568  *
569  * Return values:
570  *   %0 - Complete
571  */
572 static int offset_readdir(struct file *file, struct dir_context *ctx)
573 {
574 	struct dentry *dir = file->f_path.dentry;
575 	long last_index = (long)file->private_data;
576 
577 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
578 
579 	if (!dir_emit_dots(file, ctx))
580 		return 0;
581 
582 	offset_iterate_dir(d_inode(dir), ctx, last_index);
583 	return 0;
584 }
585 
586 const struct file_operations simple_offset_dir_operations = {
587 	.open		= offset_dir_open,
588 	.llseek		= offset_dir_llseek,
589 	.iterate_shared	= offset_readdir,
590 	.read		= generic_read_dir,
591 	.fsync		= noop_fsync,
592 };
593 
594 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
595 {
596 	struct dentry *child = NULL, *d;
597 
598 	spin_lock(&parent->d_lock);
599 	d = prev ? d_next_sibling(prev) : d_first_child(parent);
600 	hlist_for_each_entry_from(d, d_sib) {
601 		if (simple_positive(d)) {
602 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
603 			if (simple_positive(d))
604 				child = dget_dlock(d);
605 			spin_unlock(&d->d_lock);
606 			if (likely(child))
607 				break;
608 		}
609 	}
610 	spin_unlock(&parent->d_lock);
611 	dput(prev);
612 	return child;
613 }
614 
615 void simple_recursive_removal(struct dentry *dentry,
616                               void (*callback)(struct dentry *))
617 {
618 	struct dentry *this = dget(dentry);
619 	while (true) {
620 		struct dentry *victim = NULL, *child;
621 		struct inode *inode = this->d_inode;
622 
623 		inode_lock(inode);
624 		if (d_is_dir(this))
625 			inode->i_flags |= S_DEAD;
626 		while ((child = find_next_child(this, victim)) == NULL) {
627 			// kill and ascend
628 			// update metadata while it's still locked
629 			inode_set_ctime_current(inode);
630 			clear_nlink(inode);
631 			inode_unlock(inode);
632 			victim = this;
633 			this = this->d_parent;
634 			inode = this->d_inode;
635 			inode_lock(inode);
636 			if (simple_positive(victim)) {
637 				d_invalidate(victim);	// avoid lost mounts
638 				if (d_is_dir(victim))
639 					fsnotify_rmdir(inode, victim);
640 				else
641 					fsnotify_unlink(inode, victim);
642 				if (callback)
643 					callback(victim);
644 				dput(victim);		// unpin it
645 			}
646 			if (victim == dentry) {
647 				inode_set_mtime_to_ts(inode,
648 						      inode_set_ctime_current(inode));
649 				if (d_is_dir(dentry))
650 					drop_nlink(inode);
651 				inode_unlock(inode);
652 				dput(dentry);
653 				return;
654 			}
655 		}
656 		inode_unlock(inode);
657 		this = child;
658 	}
659 }
660 EXPORT_SYMBOL(simple_recursive_removal);
661 
662 static const struct super_operations simple_super_operations = {
663 	.statfs		= simple_statfs,
664 };
665 
666 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
667 {
668 	struct pseudo_fs_context *ctx = fc->fs_private;
669 	struct inode *root;
670 
671 	s->s_maxbytes = MAX_LFS_FILESIZE;
672 	s->s_blocksize = PAGE_SIZE;
673 	s->s_blocksize_bits = PAGE_SHIFT;
674 	s->s_magic = ctx->magic;
675 	s->s_op = ctx->ops ?: &simple_super_operations;
676 	s->s_xattr = ctx->xattr;
677 	s->s_time_gran = 1;
678 	root = new_inode(s);
679 	if (!root)
680 		return -ENOMEM;
681 
682 	/*
683 	 * since this is the first inode, make it number 1. New inodes created
684 	 * after this must take care not to collide with it (by passing
685 	 * max_reserved of 1 to iunique).
686 	 */
687 	root->i_ino = 1;
688 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
689 	simple_inode_init_ts(root);
690 	s->s_root = d_make_root(root);
691 	if (!s->s_root)
692 		return -ENOMEM;
693 	s->s_d_op = ctx->dops;
694 	return 0;
695 }
696 
697 static int pseudo_fs_get_tree(struct fs_context *fc)
698 {
699 	return get_tree_nodev(fc, pseudo_fs_fill_super);
700 }
701 
702 static void pseudo_fs_free(struct fs_context *fc)
703 {
704 	kfree(fc->fs_private);
705 }
706 
707 static const struct fs_context_operations pseudo_fs_context_ops = {
708 	.free		= pseudo_fs_free,
709 	.get_tree	= pseudo_fs_get_tree,
710 };
711 
712 /*
713  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
714  * will never be mountable)
715  */
716 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
717 					unsigned long magic)
718 {
719 	struct pseudo_fs_context *ctx;
720 
721 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
722 	if (likely(ctx)) {
723 		ctx->magic = magic;
724 		fc->fs_private = ctx;
725 		fc->ops = &pseudo_fs_context_ops;
726 		fc->sb_flags |= SB_NOUSER;
727 		fc->global = true;
728 	}
729 	return ctx;
730 }
731 EXPORT_SYMBOL(init_pseudo);
732 
733 int simple_open(struct inode *inode, struct file *file)
734 {
735 	if (inode->i_private)
736 		file->private_data = inode->i_private;
737 	return 0;
738 }
739 EXPORT_SYMBOL(simple_open);
740 
741 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
742 {
743 	struct inode *inode = d_inode(old_dentry);
744 
745 	inode_set_mtime_to_ts(dir,
746 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
747 	inc_nlink(inode);
748 	ihold(inode);
749 	dget(dentry);
750 	d_instantiate(dentry, inode);
751 	return 0;
752 }
753 EXPORT_SYMBOL(simple_link);
754 
755 int simple_empty(struct dentry *dentry)
756 {
757 	struct dentry *child;
758 	int ret = 0;
759 
760 	spin_lock(&dentry->d_lock);
761 	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
762 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
763 		if (simple_positive(child)) {
764 			spin_unlock(&child->d_lock);
765 			goto out;
766 		}
767 		spin_unlock(&child->d_lock);
768 	}
769 	ret = 1;
770 out:
771 	spin_unlock(&dentry->d_lock);
772 	return ret;
773 }
774 EXPORT_SYMBOL(simple_empty);
775 
776 int simple_unlink(struct inode *dir, struct dentry *dentry)
777 {
778 	struct inode *inode = d_inode(dentry);
779 
780 	inode_set_mtime_to_ts(dir,
781 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
782 	drop_nlink(inode);
783 	dput(dentry);
784 	return 0;
785 }
786 EXPORT_SYMBOL(simple_unlink);
787 
788 int simple_rmdir(struct inode *dir, struct dentry *dentry)
789 {
790 	if (!simple_empty(dentry))
791 		return -ENOTEMPTY;
792 
793 	drop_nlink(d_inode(dentry));
794 	simple_unlink(dir, dentry);
795 	drop_nlink(dir);
796 	return 0;
797 }
798 EXPORT_SYMBOL(simple_rmdir);
799 
800 /**
801  * simple_rename_timestamp - update the various inode timestamps for rename
802  * @old_dir: old parent directory
803  * @old_dentry: dentry that is being renamed
804  * @new_dir: new parent directory
805  * @new_dentry: target for rename
806  *
807  * POSIX mandates that the old and new parent directories have their ctime and
808  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
809  * their ctime updated.
810  */
811 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
812 			     struct inode *new_dir, struct dentry *new_dentry)
813 {
814 	struct inode *newino = d_inode(new_dentry);
815 
816 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
817 	if (new_dir != old_dir)
818 		inode_set_mtime_to_ts(new_dir,
819 				      inode_set_ctime_current(new_dir));
820 	inode_set_ctime_current(d_inode(old_dentry));
821 	if (newino)
822 		inode_set_ctime_current(newino);
823 }
824 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
825 
826 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
827 			   struct inode *new_dir, struct dentry *new_dentry)
828 {
829 	bool old_is_dir = d_is_dir(old_dentry);
830 	bool new_is_dir = d_is_dir(new_dentry);
831 
832 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
833 		if (old_is_dir) {
834 			drop_nlink(old_dir);
835 			inc_nlink(new_dir);
836 		} else {
837 			drop_nlink(new_dir);
838 			inc_nlink(old_dir);
839 		}
840 	}
841 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
842 	return 0;
843 }
844 EXPORT_SYMBOL_GPL(simple_rename_exchange);
845 
846 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
847 		  struct dentry *old_dentry, struct inode *new_dir,
848 		  struct dentry *new_dentry, unsigned int flags)
849 {
850 	int they_are_dirs = d_is_dir(old_dentry);
851 
852 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
853 		return -EINVAL;
854 
855 	if (flags & RENAME_EXCHANGE)
856 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
857 
858 	if (!simple_empty(new_dentry))
859 		return -ENOTEMPTY;
860 
861 	if (d_really_is_positive(new_dentry)) {
862 		simple_unlink(new_dir, new_dentry);
863 		if (they_are_dirs) {
864 			drop_nlink(d_inode(new_dentry));
865 			drop_nlink(old_dir);
866 		}
867 	} else if (they_are_dirs) {
868 		drop_nlink(old_dir);
869 		inc_nlink(new_dir);
870 	}
871 
872 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
873 	return 0;
874 }
875 EXPORT_SYMBOL(simple_rename);
876 
877 /**
878  * simple_setattr - setattr for simple filesystem
879  * @idmap: idmap of the target mount
880  * @dentry: dentry
881  * @iattr: iattr structure
882  *
883  * Returns 0 on success, -error on failure.
884  *
885  * simple_setattr is a simple ->setattr implementation without a proper
886  * implementation of size changes.
887  *
888  * It can either be used for in-memory filesystems or special files
889  * on simple regular filesystems.  Anything that needs to change on-disk
890  * or wire state on size changes needs its own setattr method.
891  */
892 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
893 		   struct iattr *iattr)
894 {
895 	struct inode *inode = d_inode(dentry);
896 	int error;
897 
898 	error = setattr_prepare(idmap, dentry, iattr);
899 	if (error)
900 		return error;
901 
902 	if (iattr->ia_valid & ATTR_SIZE)
903 		truncate_setsize(inode, iattr->ia_size);
904 	setattr_copy(idmap, inode, iattr);
905 	mark_inode_dirty(inode);
906 	return 0;
907 }
908 EXPORT_SYMBOL(simple_setattr);
909 
910 static int simple_read_folio(struct file *file, struct folio *folio)
911 {
912 	folio_zero_range(folio, 0, folio_size(folio));
913 	flush_dcache_folio(folio);
914 	folio_mark_uptodate(folio);
915 	folio_unlock(folio);
916 	return 0;
917 }
918 
919 int simple_write_begin(struct file *file, struct address_space *mapping,
920 			loff_t pos, unsigned len,
921 			struct folio **foliop, void **fsdata)
922 {
923 	struct folio *folio;
924 
925 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
926 			mapping_gfp_mask(mapping));
927 	if (IS_ERR(folio))
928 		return PTR_ERR(folio);
929 
930 	*foliop = folio;
931 
932 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
933 		size_t from = offset_in_folio(folio, pos);
934 
935 		folio_zero_segments(folio, 0, from,
936 				from + len, folio_size(folio));
937 	}
938 	return 0;
939 }
940 EXPORT_SYMBOL(simple_write_begin);
941 
942 /**
943  * simple_write_end - .write_end helper for non-block-device FSes
944  * @file: See .write_end of address_space_operations
945  * @mapping: 		"
946  * @pos: 		"
947  * @len: 		"
948  * @copied: 		"
949  * @folio: 		"
950  * @fsdata: 		"
951  *
952  * simple_write_end does the minimum needed for updating a folio after
953  * writing is done. It has the same API signature as the .write_end of
954  * address_space_operations vector. So it can just be set onto .write_end for
955  * FSes that don't need any other processing. i_mutex is assumed to be held.
956  * Block based filesystems should use generic_write_end().
957  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
958  * is not called, so a filesystem that actually does store data in .write_inode
959  * should extend on what's done here with a call to mark_inode_dirty() in the
960  * case that i_size has changed.
961  *
962  * Use *ONLY* with simple_read_folio()
963  */
964 static int simple_write_end(struct file *file, struct address_space *mapping,
965 			loff_t pos, unsigned len, unsigned copied,
966 			struct folio *folio, void *fsdata)
967 {
968 	struct inode *inode = folio->mapping->host;
969 	loff_t last_pos = pos + copied;
970 
971 	/* zero the stale part of the folio if we did a short copy */
972 	if (!folio_test_uptodate(folio)) {
973 		if (copied < len) {
974 			size_t from = offset_in_folio(folio, pos);
975 
976 			folio_zero_range(folio, from + copied, len - copied);
977 		}
978 		folio_mark_uptodate(folio);
979 	}
980 	/*
981 	 * No need to use i_size_read() here, the i_size
982 	 * cannot change under us because we hold the i_mutex.
983 	 */
984 	if (last_pos > inode->i_size)
985 		i_size_write(inode, last_pos);
986 
987 	folio_mark_dirty(folio);
988 	folio_unlock(folio);
989 	folio_put(folio);
990 
991 	return copied;
992 }
993 
994 /*
995  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
996  */
997 const struct address_space_operations ram_aops = {
998 	.read_folio	= simple_read_folio,
999 	.write_begin	= simple_write_begin,
1000 	.write_end	= simple_write_end,
1001 	.dirty_folio	= noop_dirty_folio,
1002 };
1003 EXPORT_SYMBOL(ram_aops);
1004 
1005 /*
1006  * the inodes created here are not hashed. If you use iunique to generate
1007  * unique inode values later for this filesystem, then you must take care
1008  * to pass it an appropriate max_reserved value to avoid collisions.
1009  */
1010 int simple_fill_super(struct super_block *s, unsigned long magic,
1011 		      const struct tree_descr *files)
1012 {
1013 	struct inode *inode;
1014 	struct dentry *dentry;
1015 	int i;
1016 
1017 	s->s_blocksize = PAGE_SIZE;
1018 	s->s_blocksize_bits = PAGE_SHIFT;
1019 	s->s_magic = magic;
1020 	s->s_op = &simple_super_operations;
1021 	s->s_time_gran = 1;
1022 
1023 	inode = new_inode(s);
1024 	if (!inode)
1025 		return -ENOMEM;
1026 	/*
1027 	 * because the root inode is 1, the files array must not contain an
1028 	 * entry at index 1
1029 	 */
1030 	inode->i_ino = 1;
1031 	inode->i_mode = S_IFDIR | 0755;
1032 	simple_inode_init_ts(inode);
1033 	inode->i_op = &simple_dir_inode_operations;
1034 	inode->i_fop = &simple_dir_operations;
1035 	set_nlink(inode, 2);
1036 	s->s_root = d_make_root(inode);
1037 	if (!s->s_root)
1038 		return -ENOMEM;
1039 	for (i = 0; !files->name || files->name[0]; i++, files++) {
1040 		if (!files->name)
1041 			continue;
1042 
1043 		/* warn if it tries to conflict with the root inode */
1044 		if (unlikely(i == 1))
1045 			printk(KERN_WARNING "%s: %s passed in a files array"
1046 				"with an index of 1!\n", __func__,
1047 				s->s_type->name);
1048 
1049 		dentry = d_alloc_name(s->s_root, files->name);
1050 		if (!dentry)
1051 			return -ENOMEM;
1052 		inode = new_inode(s);
1053 		if (!inode) {
1054 			dput(dentry);
1055 			return -ENOMEM;
1056 		}
1057 		inode->i_mode = S_IFREG | files->mode;
1058 		simple_inode_init_ts(inode);
1059 		inode->i_fop = files->ops;
1060 		inode->i_ino = i;
1061 		d_add(dentry, inode);
1062 	}
1063 	return 0;
1064 }
1065 EXPORT_SYMBOL(simple_fill_super);
1066 
1067 static DEFINE_SPINLOCK(pin_fs_lock);
1068 
1069 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1070 {
1071 	struct vfsmount *mnt = NULL;
1072 	spin_lock(&pin_fs_lock);
1073 	if (unlikely(!*mount)) {
1074 		spin_unlock(&pin_fs_lock);
1075 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1076 		if (IS_ERR(mnt))
1077 			return PTR_ERR(mnt);
1078 		spin_lock(&pin_fs_lock);
1079 		if (!*mount)
1080 			*mount = mnt;
1081 	}
1082 	mntget(*mount);
1083 	++*count;
1084 	spin_unlock(&pin_fs_lock);
1085 	mntput(mnt);
1086 	return 0;
1087 }
1088 EXPORT_SYMBOL(simple_pin_fs);
1089 
1090 void simple_release_fs(struct vfsmount **mount, int *count)
1091 {
1092 	struct vfsmount *mnt;
1093 	spin_lock(&pin_fs_lock);
1094 	mnt = *mount;
1095 	if (!--*count)
1096 		*mount = NULL;
1097 	spin_unlock(&pin_fs_lock);
1098 	mntput(mnt);
1099 }
1100 EXPORT_SYMBOL(simple_release_fs);
1101 
1102 /**
1103  * simple_read_from_buffer - copy data from the buffer to user space
1104  * @to: the user space buffer to read to
1105  * @count: the maximum number of bytes to read
1106  * @ppos: the current position in the buffer
1107  * @from: the buffer to read from
1108  * @available: the size of the buffer
1109  *
1110  * The simple_read_from_buffer() function reads up to @count bytes from the
1111  * buffer @from at offset @ppos into the user space address starting at @to.
1112  *
1113  * On success, the number of bytes read is returned and the offset @ppos is
1114  * advanced by this number, or negative value is returned on error.
1115  **/
1116 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1117 				const void *from, size_t available)
1118 {
1119 	loff_t pos = *ppos;
1120 	size_t ret;
1121 
1122 	if (pos < 0)
1123 		return -EINVAL;
1124 	if (pos >= available || !count)
1125 		return 0;
1126 	if (count > available - pos)
1127 		count = available - pos;
1128 	ret = copy_to_user(to, from + pos, count);
1129 	if (ret == count)
1130 		return -EFAULT;
1131 	count -= ret;
1132 	*ppos = pos + count;
1133 	return count;
1134 }
1135 EXPORT_SYMBOL(simple_read_from_buffer);
1136 
1137 /**
1138  * simple_write_to_buffer - copy data from user space to the buffer
1139  * @to: the buffer to write to
1140  * @available: the size of the buffer
1141  * @ppos: the current position in the buffer
1142  * @from: the user space buffer to read from
1143  * @count: the maximum number of bytes to read
1144  *
1145  * The simple_write_to_buffer() function reads up to @count bytes from the user
1146  * space address starting at @from into the buffer @to at offset @ppos.
1147  *
1148  * On success, the number of bytes written is returned and the offset @ppos is
1149  * advanced by this number, or negative value is returned on error.
1150  **/
1151 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1152 		const void __user *from, size_t count)
1153 {
1154 	loff_t pos = *ppos;
1155 	size_t res;
1156 
1157 	if (pos < 0)
1158 		return -EINVAL;
1159 	if (pos >= available || !count)
1160 		return 0;
1161 	if (count > available - pos)
1162 		count = available - pos;
1163 	res = copy_from_user(to + pos, from, count);
1164 	if (res == count)
1165 		return -EFAULT;
1166 	count -= res;
1167 	*ppos = pos + count;
1168 	return count;
1169 }
1170 EXPORT_SYMBOL(simple_write_to_buffer);
1171 
1172 /**
1173  * memory_read_from_buffer - copy data from the buffer
1174  * @to: the kernel space buffer to read to
1175  * @count: the maximum number of bytes to read
1176  * @ppos: the current position in the buffer
1177  * @from: the buffer to read from
1178  * @available: the size of the buffer
1179  *
1180  * The memory_read_from_buffer() function reads up to @count bytes from the
1181  * buffer @from at offset @ppos into the kernel space address starting at @to.
1182  *
1183  * On success, the number of bytes read is returned and the offset @ppos is
1184  * advanced by this number, or negative value is returned on error.
1185  **/
1186 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1187 				const void *from, size_t available)
1188 {
1189 	loff_t pos = *ppos;
1190 
1191 	if (pos < 0)
1192 		return -EINVAL;
1193 	if (pos >= available)
1194 		return 0;
1195 	if (count > available - pos)
1196 		count = available - pos;
1197 	memcpy(to, from + pos, count);
1198 	*ppos = pos + count;
1199 
1200 	return count;
1201 }
1202 EXPORT_SYMBOL(memory_read_from_buffer);
1203 
1204 /*
1205  * Transaction based IO.
1206  * The file expects a single write which triggers the transaction, and then
1207  * possibly a read which collects the result - which is stored in a
1208  * file-local buffer.
1209  */
1210 
1211 void simple_transaction_set(struct file *file, size_t n)
1212 {
1213 	struct simple_transaction_argresp *ar = file->private_data;
1214 
1215 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1216 
1217 	/*
1218 	 * The barrier ensures that ar->size will really remain zero until
1219 	 * ar->data is ready for reading.
1220 	 */
1221 	smp_mb();
1222 	ar->size = n;
1223 }
1224 EXPORT_SYMBOL(simple_transaction_set);
1225 
1226 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1227 {
1228 	struct simple_transaction_argresp *ar;
1229 	static DEFINE_SPINLOCK(simple_transaction_lock);
1230 
1231 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1232 		return ERR_PTR(-EFBIG);
1233 
1234 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1235 	if (!ar)
1236 		return ERR_PTR(-ENOMEM);
1237 
1238 	spin_lock(&simple_transaction_lock);
1239 
1240 	/* only one write allowed per open */
1241 	if (file->private_data) {
1242 		spin_unlock(&simple_transaction_lock);
1243 		free_page((unsigned long)ar);
1244 		return ERR_PTR(-EBUSY);
1245 	}
1246 
1247 	file->private_data = ar;
1248 
1249 	spin_unlock(&simple_transaction_lock);
1250 
1251 	if (copy_from_user(ar->data, buf, size))
1252 		return ERR_PTR(-EFAULT);
1253 
1254 	return ar->data;
1255 }
1256 EXPORT_SYMBOL(simple_transaction_get);
1257 
1258 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1259 {
1260 	struct simple_transaction_argresp *ar = file->private_data;
1261 
1262 	if (!ar)
1263 		return 0;
1264 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1265 }
1266 EXPORT_SYMBOL(simple_transaction_read);
1267 
1268 int simple_transaction_release(struct inode *inode, struct file *file)
1269 {
1270 	free_page((unsigned long)file->private_data);
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL(simple_transaction_release);
1274 
1275 /* Simple attribute files */
1276 
1277 struct simple_attr {
1278 	int (*get)(void *, u64 *);
1279 	int (*set)(void *, u64);
1280 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1281 	char set_buf[24];
1282 	void *data;
1283 	const char *fmt;	/* format for read operation */
1284 	struct mutex mutex;	/* protects access to these buffers */
1285 };
1286 
1287 /* simple_attr_open is called by an actual attribute open file operation
1288  * to set the attribute specific access operations. */
1289 int simple_attr_open(struct inode *inode, struct file *file,
1290 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1291 		     const char *fmt)
1292 {
1293 	struct simple_attr *attr;
1294 
1295 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1296 	if (!attr)
1297 		return -ENOMEM;
1298 
1299 	attr->get = get;
1300 	attr->set = set;
1301 	attr->data = inode->i_private;
1302 	attr->fmt = fmt;
1303 	mutex_init(&attr->mutex);
1304 
1305 	file->private_data = attr;
1306 
1307 	return nonseekable_open(inode, file);
1308 }
1309 EXPORT_SYMBOL_GPL(simple_attr_open);
1310 
1311 int simple_attr_release(struct inode *inode, struct file *file)
1312 {
1313 	kfree(file->private_data);
1314 	return 0;
1315 }
1316 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1317 
1318 /* read from the buffer that is filled with the get function */
1319 ssize_t simple_attr_read(struct file *file, char __user *buf,
1320 			 size_t len, loff_t *ppos)
1321 {
1322 	struct simple_attr *attr;
1323 	size_t size;
1324 	ssize_t ret;
1325 
1326 	attr = file->private_data;
1327 
1328 	if (!attr->get)
1329 		return -EACCES;
1330 
1331 	ret = mutex_lock_interruptible(&attr->mutex);
1332 	if (ret)
1333 		return ret;
1334 
1335 	if (*ppos && attr->get_buf[0]) {
1336 		/* continued read */
1337 		size = strlen(attr->get_buf);
1338 	} else {
1339 		/* first read */
1340 		u64 val;
1341 		ret = attr->get(attr->data, &val);
1342 		if (ret)
1343 			goto out;
1344 
1345 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1346 				 attr->fmt, (unsigned long long)val);
1347 	}
1348 
1349 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1350 out:
1351 	mutex_unlock(&attr->mutex);
1352 	return ret;
1353 }
1354 EXPORT_SYMBOL_GPL(simple_attr_read);
1355 
1356 /* interpret the buffer as a number to call the set function with */
1357 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1358 			  size_t len, loff_t *ppos, bool is_signed)
1359 {
1360 	struct simple_attr *attr;
1361 	unsigned long long val;
1362 	size_t size;
1363 	ssize_t ret;
1364 
1365 	attr = file->private_data;
1366 	if (!attr->set)
1367 		return -EACCES;
1368 
1369 	ret = mutex_lock_interruptible(&attr->mutex);
1370 	if (ret)
1371 		return ret;
1372 
1373 	ret = -EFAULT;
1374 	size = min(sizeof(attr->set_buf) - 1, len);
1375 	if (copy_from_user(attr->set_buf, buf, size))
1376 		goto out;
1377 
1378 	attr->set_buf[size] = '\0';
1379 	if (is_signed)
1380 		ret = kstrtoll(attr->set_buf, 0, &val);
1381 	else
1382 		ret = kstrtoull(attr->set_buf, 0, &val);
1383 	if (ret)
1384 		goto out;
1385 	ret = attr->set(attr->data, val);
1386 	if (ret == 0)
1387 		ret = len; /* on success, claim we got the whole input */
1388 out:
1389 	mutex_unlock(&attr->mutex);
1390 	return ret;
1391 }
1392 
1393 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1394 			  size_t len, loff_t *ppos)
1395 {
1396 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1397 }
1398 EXPORT_SYMBOL_GPL(simple_attr_write);
1399 
1400 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1401 			  size_t len, loff_t *ppos)
1402 {
1403 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1404 }
1405 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1406 
1407 /**
1408  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1409  * @inode:   the object to encode
1410  * @fh:      where to store the file handle fragment
1411  * @max_len: maximum length to store there (in 4 byte units)
1412  * @parent:  parent directory inode, if wanted
1413  *
1414  * This generic encode_fh function assumes that the 32 inode number
1415  * is suitable for locating an inode, and that the generation number
1416  * can be used to check that it is still valid.  It places them in the
1417  * filehandle fragment where export_decode_fh expects to find them.
1418  */
1419 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1420 			    struct inode *parent)
1421 {
1422 	struct fid *fid = (void *)fh;
1423 	int len = *max_len;
1424 	int type = FILEID_INO32_GEN;
1425 
1426 	if (parent && (len < 4)) {
1427 		*max_len = 4;
1428 		return FILEID_INVALID;
1429 	} else if (len < 2) {
1430 		*max_len = 2;
1431 		return FILEID_INVALID;
1432 	}
1433 
1434 	len = 2;
1435 	fid->i32.ino = inode->i_ino;
1436 	fid->i32.gen = inode->i_generation;
1437 	if (parent) {
1438 		fid->i32.parent_ino = parent->i_ino;
1439 		fid->i32.parent_gen = parent->i_generation;
1440 		len = 4;
1441 		type = FILEID_INO32_GEN_PARENT;
1442 	}
1443 	*max_len = len;
1444 	return type;
1445 }
1446 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1447 
1448 /**
1449  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1450  * @sb:		filesystem to do the file handle conversion on
1451  * @fid:	file handle to convert
1452  * @fh_len:	length of the file handle in bytes
1453  * @fh_type:	type of file handle
1454  * @get_inode:	filesystem callback to retrieve inode
1455  *
1456  * This function decodes @fid as long as it has one of the well-known
1457  * Linux filehandle types and calls @get_inode on it to retrieve the
1458  * inode for the object specified in the file handle.
1459  */
1460 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1461 		int fh_len, int fh_type, struct inode *(*get_inode)
1462 			(struct super_block *sb, u64 ino, u32 gen))
1463 {
1464 	struct inode *inode = NULL;
1465 
1466 	if (fh_len < 2)
1467 		return NULL;
1468 
1469 	switch (fh_type) {
1470 	case FILEID_INO32_GEN:
1471 	case FILEID_INO32_GEN_PARENT:
1472 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1473 		break;
1474 	}
1475 
1476 	return d_obtain_alias(inode);
1477 }
1478 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1479 
1480 /**
1481  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1482  * @sb:		filesystem to do the file handle conversion on
1483  * @fid:	file handle to convert
1484  * @fh_len:	length of the file handle in bytes
1485  * @fh_type:	type of file handle
1486  * @get_inode:	filesystem callback to retrieve inode
1487  *
1488  * This function decodes @fid as long as it has one of the well-known
1489  * Linux filehandle types and calls @get_inode on it to retrieve the
1490  * inode for the _parent_ object specified in the file handle if it
1491  * is specified in the file handle, or NULL otherwise.
1492  */
1493 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1494 		int fh_len, int fh_type, struct inode *(*get_inode)
1495 			(struct super_block *sb, u64 ino, u32 gen))
1496 {
1497 	struct inode *inode = NULL;
1498 
1499 	if (fh_len <= 2)
1500 		return NULL;
1501 
1502 	switch (fh_type) {
1503 	case FILEID_INO32_GEN_PARENT:
1504 		inode = get_inode(sb, fid->i32.parent_ino,
1505 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1506 		break;
1507 	}
1508 
1509 	return d_obtain_alias(inode);
1510 }
1511 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1512 
1513 /**
1514  * __generic_file_fsync - generic fsync implementation for simple filesystems
1515  *
1516  * @file:	file to synchronize
1517  * @start:	start offset in bytes
1518  * @end:	end offset in bytes (inclusive)
1519  * @datasync:	only synchronize essential metadata if true
1520  *
1521  * This is a generic implementation of the fsync method for simple
1522  * filesystems which track all non-inode metadata in the buffers list
1523  * hanging off the address_space structure.
1524  */
1525 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1526 				 int datasync)
1527 {
1528 	struct inode *inode = file->f_mapping->host;
1529 	int err;
1530 	int ret;
1531 
1532 	err = file_write_and_wait_range(file, start, end);
1533 	if (err)
1534 		return err;
1535 
1536 	inode_lock(inode);
1537 	ret = sync_mapping_buffers(inode->i_mapping);
1538 	if (!(inode->i_state & I_DIRTY_ALL))
1539 		goto out;
1540 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1541 		goto out;
1542 
1543 	err = sync_inode_metadata(inode, 1);
1544 	if (ret == 0)
1545 		ret = err;
1546 
1547 out:
1548 	inode_unlock(inode);
1549 	/* check and advance again to catch errors after syncing out buffers */
1550 	err = file_check_and_advance_wb_err(file);
1551 	if (ret == 0)
1552 		ret = err;
1553 	return ret;
1554 }
1555 EXPORT_SYMBOL(__generic_file_fsync);
1556 
1557 /**
1558  * generic_file_fsync - generic fsync implementation for simple filesystems
1559  *			with flush
1560  * @file:	file to synchronize
1561  * @start:	start offset in bytes
1562  * @end:	end offset in bytes (inclusive)
1563  * @datasync:	only synchronize essential metadata if true
1564  *
1565  */
1566 
1567 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1568 		       int datasync)
1569 {
1570 	struct inode *inode = file->f_mapping->host;
1571 	int err;
1572 
1573 	err = __generic_file_fsync(file, start, end, datasync);
1574 	if (err)
1575 		return err;
1576 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1577 }
1578 EXPORT_SYMBOL(generic_file_fsync);
1579 
1580 /**
1581  * generic_check_addressable - Check addressability of file system
1582  * @blocksize_bits:	log of file system block size
1583  * @num_blocks:		number of blocks in file system
1584  *
1585  * Determine whether a file system with @num_blocks blocks (and a
1586  * block size of 2**@blocksize_bits) is addressable by the sector_t
1587  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1588  */
1589 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1590 {
1591 	u64 last_fs_block = num_blocks - 1;
1592 	u64 last_fs_page =
1593 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1594 
1595 	if (unlikely(num_blocks == 0))
1596 		return 0;
1597 
1598 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1599 		return -EINVAL;
1600 
1601 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1602 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1603 		return -EFBIG;
1604 	}
1605 	return 0;
1606 }
1607 EXPORT_SYMBOL(generic_check_addressable);
1608 
1609 /*
1610  * No-op implementation of ->fsync for in-memory filesystems.
1611  */
1612 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1613 {
1614 	return 0;
1615 }
1616 EXPORT_SYMBOL(noop_fsync);
1617 
1618 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1619 {
1620 	/*
1621 	 * iomap based filesystems support direct I/O without need for
1622 	 * this callback. However, it still needs to be set in
1623 	 * inode->a_ops so that open/fcntl know that direct I/O is
1624 	 * generally supported.
1625 	 */
1626 	return -EINVAL;
1627 }
1628 EXPORT_SYMBOL_GPL(noop_direct_IO);
1629 
1630 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1631 void kfree_link(void *p)
1632 {
1633 	kfree(p);
1634 }
1635 EXPORT_SYMBOL(kfree_link);
1636 
1637 struct inode *alloc_anon_inode(struct super_block *s)
1638 {
1639 	static const struct address_space_operations anon_aops = {
1640 		.dirty_folio	= noop_dirty_folio,
1641 	};
1642 	struct inode *inode = new_inode_pseudo(s);
1643 
1644 	if (!inode)
1645 		return ERR_PTR(-ENOMEM);
1646 
1647 	inode->i_ino = get_next_ino();
1648 	inode->i_mapping->a_ops = &anon_aops;
1649 
1650 	/*
1651 	 * Mark the inode dirty from the very beginning,
1652 	 * that way it will never be moved to the dirty
1653 	 * list because mark_inode_dirty() will think
1654 	 * that it already _is_ on the dirty list.
1655 	 */
1656 	inode->i_state = I_DIRTY;
1657 	inode->i_mode = S_IRUSR | S_IWUSR;
1658 	inode->i_uid = current_fsuid();
1659 	inode->i_gid = current_fsgid();
1660 	inode->i_flags |= S_PRIVATE;
1661 	simple_inode_init_ts(inode);
1662 	return inode;
1663 }
1664 EXPORT_SYMBOL(alloc_anon_inode);
1665 
1666 /**
1667  * simple_nosetlease - generic helper for prohibiting leases
1668  * @filp: file pointer
1669  * @arg: type of lease to obtain
1670  * @flp: new lease supplied for insertion
1671  * @priv: private data for lm_setup operation
1672  *
1673  * Generic helper for filesystems that do not wish to allow leases to be set.
1674  * All arguments are ignored and it just returns -EINVAL.
1675  */
1676 int
1677 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1678 		  void **priv)
1679 {
1680 	return -EINVAL;
1681 }
1682 EXPORT_SYMBOL(simple_nosetlease);
1683 
1684 /**
1685  * simple_get_link - generic helper to get the target of "fast" symlinks
1686  * @dentry: not used here
1687  * @inode: the symlink inode
1688  * @done: not used here
1689  *
1690  * Generic helper for filesystems to use for symlink inodes where a pointer to
1691  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1692  * since as an optimization the path lookup code uses any non-NULL ->i_link
1693  * directly, without calling ->get_link().  But ->get_link() still must be set,
1694  * to mark the inode_operations as being for a symlink.
1695  *
1696  * Return: the symlink target
1697  */
1698 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1699 			    struct delayed_call *done)
1700 {
1701 	return inode->i_link;
1702 }
1703 EXPORT_SYMBOL(simple_get_link);
1704 
1705 const struct inode_operations simple_symlink_inode_operations = {
1706 	.get_link = simple_get_link,
1707 };
1708 EXPORT_SYMBOL(simple_symlink_inode_operations);
1709 
1710 /*
1711  * Operations for a permanently empty directory.
1712  */
1713 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1714 {
1715 	return ERR_PTR(-ENOENT);
1716 }
1717 
1718 static int empty_dir_setattr(struct mnt_idmap *idmap,
1719 			     struct dentry *dentry, struct iattr *attr)
1720 {
1721 	return -EPERM;
1722 }
1723 
1724 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1725 {
1726 	return -EOPNOTSUPP;
1727 }
1728 
1729 static const struct inode_operations empty_dir_inode_operations = {
1730 	.lookup		= empty_dir_lookup,
1731 	.setattr	= empty_dir_setattr,
1732 	.listxattr	= empty_dir_listxattr,
1733 };
1734 
1735 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1736 {
1737 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1738 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1739 }
1740 
1741 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1742 {
1743 	dir_emit_dots(file, ctx);
1744 	return 0;
1745 }
1746 
1747 static const struct file_operations empty_dir_operations = {
1748 	.llseek		= empty_dir_llseek,
1749 	.read		= generic_read_dir,
1750 	.iterate_shared	= empty_dir_readdir,
1751 	.fsync		= noop_fsync,
1752 };
1753 
1754 
1755 void make_empty_dir_inode(struct inode *inode)
1756 {
1757 	set_nlink(inode, 2);
1758 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1759 	inode->i_uid = GLOBAL_ROOT_UID;
1760 	inode->i_gid = GLOBAL_ROOT_GID;
1761 	inode->i_rdev = 0;
1762 	inode->i_size = 0;
1763 	inode->i_blkbits = PAGE_SHIFT;
1764 	inode->i_blocks = 0;
1765 
1766 	inode->i_op = &empty_dir_inode_operations;
1767 	inode->i_opflags &= ~IOP_XATTR;
1768 	inode->i_fop = &empty_dir_operations;
1769 }
1770 
1771 bool is_empty_dir_inode(struct inode *inode)
1772 {
1773 	return (inode->i_fop == &empty_dir_operations) &&
1774 		(inode->i_op == &empty_dir_inode_operations);
1775 }
1776 
1777 #if IS_ENABLED(CONFIG_UNICODE)
1778 /**
1779  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1780  * @dentry:	dentry whose name we are checking against
1781  * @len:	len of name of dentry
1782  * @str:	str pointer to name of dentry
1783  * @name:	Name to compare against
1784  *
1785  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1786  */
1787 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1788 			 const char *str, const struct qstr *name)
1789 {
1790 	const struct dentry *parent;
1791 	const struct inode *dir;
1792 	char strbuf[DNAME_INLINE_LEN];
1793 	struct qstr qstr;
1794 
1795 	/*
1796 	 * Attempt a case-sensitive match first. It is cheaper and
1797 	 * should cover most lookups, including all the sane
1798 	 * applications that expect a case-sensitive filesystem.
1799 	 *
1800 	 * This comparison is safe under RCU because the caller
1801 	 * guarantees the consistency between str and len. See
1802 	 * __d_lookup_rcu_op_compare() for details.
1803 	 */
1804 	if (len == name->len && !memcmp(str, name->name, len))
1805 		return 0;
1806 
1807 	parent = READ_ONCE(dentry->d_parent);
1808 	dir = READ_ONCE(parent->d_inode);
1809 	if (!dir || !IS_CASEFOLDED(dir))
1810 		return 1;
1811 
1812 	/*
1813 	 * If the dentry name is stored in-line, then it may be concurrently
1814 	 * modified by a rename.  If this happens, the VFS will eventually retry
1815 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1816 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1817 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1818 	 */
1819 	if (len <= DNAME_INLINE_LEN - 1) {
1820 		memcpy(strbuf, str, len);
1821 		strbuf[len] = 0;
1822 		str = strbuf;
1823 		/* prevent compiler from optimizing out the temporary buffer */
1824 		barrier();
1825 	}
1826 	qstr.len = len;
1827 	qstr.name = str;
1828 
1829 	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1830 }
1831 EXPORT_SYMBOL(generic_ci_d_compare);
1832 
1833 /**
1834  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1835  * @dentry:	dentry of the parent directory
1836  * @str:	qstr of name whose hash we should fill in
1837  *
1838  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1839  */
1840 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1841 {
1842 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1843 	struct super_block *sb = dentry->d_sb;
1844 	const struct unicode_map *um = sb->s_encoding;
1845 	int ret;
1846 
1847 	if (!dir || !IS_CASEFOLDED(dir))
1848 		return 0;
1849 
1850 	ret = utf8_casefold_hash(um, dentry, str);
1851 	if (ret < 0 && sb_has_strict_encoding(sb))
1852 		return -EINVAL;
1853 	return 0;
1854 }
1855 EXPORT_SYMBOL(generic_ci_d_hash);
1856 
1857 static const struct dentry_operations generic_ci_dentry_ops = {
1858 	.d_hash = generic_ci_d_hash,
1859 	.d_compare = generic_ci_d_compare,
1860 #ifdef CONFIG_FS_ENCRYPTION
1861 	.d_revalidate = fscrypt_d_revalidate,
1862 #endif
1863 };
1864 
1865 /**
1866  * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1867  * This is a filesystem helper for comparison with directory entries.
1868  * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1869  *
1870  * @parent: Inode of the parent of the dirent under comparison
1871  * @name: name under lookup.
1872  * @folded_name: Optional pre-folded name under lookup
1873  * @de_name: Dirent name.
1874  * @de_name_len: dirent name length.
1875  *
1876  * Test whether a case-insensitive directory entry matches the filename
1877  * being searched.  If @folded_name is provided, it is used instead of
1878  * recalculating the casefold of @name.
1879  *
1880  * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1881  * < 0 on error.
1882  */
1883 int generic_ci_match(const struct inode *parent,
1884 		     const struct qstr *name,
1885 		     const struct qstr *folded_name,
1886 		     const u8 *de_name, u32 de_name_len)
1887 {
1888 	const struct super_block *sb = parent->i_sb;
1889 	const struct unicode_map *um = sb->s_encoding;
1890 	struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1891 	struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1892 	int res = 0;
1893 
1894 	if (IS_ENCRYPTED(parent)) {
1895 		const struct fscrypt_str encrypted_name =
1896 			FSTR_INIT((u8 *) de_name, de_name_len);
1897 
1898 		if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1899 			return -EINVAL;
1900 
1901 		decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1902 		if (!decrypted_name.name)
1903 			return -ENOMEM;
1904 		res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1905 						&decrypted_name);
1906 		if (res < 0) {
1907 			kfree(decrypted_name.name);
1908 			return res;
1909 		}
1910 		dirent.name = decrypted_name.name;
1911 		dirent.len = decrypted_name.len;
1912 	}
1913 
1914 	/*
1915 	 * Attempt a case-sensitive match first. It is cheaper and
1916 	 * should cover most lookups, including all the sane
1917 	 * applications that expect a case-sensitive filesystem.
1918 	 */
1919 
1920 	if (dirent.len == name->len &&
1921 	    !memcmp(name->name, dirent.name, dirent.len))
1922 		goto out;
1923 
1924 	if (folded_name->name)
1925 		res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1926 	else
1927 		res = utf8_strncasecmp(um, name, &dirent);
1928 
1929 out:
1930 	kfree(decrypted_name.name);
1931 	if (res < 0 && sb_has_strict_encoding(sb)) {
1932 		pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1933 		return 0;
1934 	}
1935 	return !res;
1936 }
1937 EXPORT_SYMBOL(generic_ci_match);
1938 #endif
1939 
1940 #ifdef CONFIG_FS_ENCRYPTION
1941 static const struct dentry_operations generic_encrypted_dentry_ops = {
1942 	.d_revalidate = fscrypt_d_revalidate,
1943 };
1944 #endif
1945 
1946 /**
1947  * generic_set_sb_d_ops - helper for choosing the set of
1948  * filesystem-wide dentry operations for the enabled features
1949  * @sb: superblock to be configured
1950  *
1951  * Filesystems supporting casefolding and/or fscrypt can call this
1952  * helper at mount-time to configure sb->s_d_op to best set of dentry
1953  * operations required for the enabled features. The helper must be
1954  * called after these have been configured, but before the root dentry
1955  * is created.
1956  */
1957 void generic_set_sb_d_ops(struct super_block *sb)
1958 {
1959 #if IS_ENABLED(CONFIG_UNICODE)
1960 	if (sb->s_encoding) {
1961 		sb->s_d_op = &generic_ci_dentry_ops;
1962 		return;
1963 	}
1964 #endif
1965 #ifdef CONFIG_FS_ENCRYPTION
1966 	if (sb->s_cop) {
1967 		sb->s_d_op = &generic_encrypted_dentry_ops;
1968 		return;
1969 	}
1970 #endif
1971 }
1972 EXPORT_SYMBOL(generic_set_sb_d_ops);
1973 
1974 /**
1975  * inode_maybe_inc_iversion - increments i_version
1976  * @inode: inode with the i_version that should be updated
1977  * @force: increment the counter even if it's not necessary?
1978  *
1979  * Every time the inode is modified, the i_version field must be seen to have
1980  * changed by any observer.
1981  *
1982  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1983  * the value, and clear the queried flag.
1984  *
1985  * In the common case where neither is set, then we can return "false" without
1986  * updating i_version.
1987  *
1988  * If this function returns false, and no other metadata has changed, then we
1989  * can avoid logging the metadata.
1990  */
1991 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1992 {
1993 	u64 cur, new;
1994 
1995 	/*
1996 	 * The i_version field is not strictly ordered with any other inode
1997 	 * information, but the legacy inode_inc_iversion code used a spinlock
1998 	 * to serialize increments.
1999 	 *
2000 	 * We add a full memory barrier to ensure that any de facto ordering
2001 	 * with other state is preserved (either implicitly coming from cmpxchg
2002 	 * or explicitly from smp_mb if we don't know upfront if we will execute
2003 	 * the former).
2004 	 *
2005 	 * These barriers pair with inode_query_iversion().
2006 	 */
2007 	cur = inode_peek_iversion_raw(inode);
2008 	if (!force && !(cur & I_VERSION_QUERIED)) {
2009 		smp_mb();
2010 		cur = inode_peek_iversion_raw(inode);
2011 	}
2012 
2013 	do {
2014 		/* If flag is clear then we needn't do anything */
2015 		if (!force && !(cur & I_VERSION_QUERIED))
2016 			return false;
2017 
2018 		/* Since lowest bit is flag, add 2 to avoid it */
2019 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2020 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2021 	return true;
2022 }
2023 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2024 
2025 /**
2026  * inode_query_iversion - read i_version for later use
2027  * @inode: inode from which i_version should be read
2028  *
2029  * Read the inode i_version counter. This should be used by callers that wish
2030  * to store the returned i_version for later comparison. This will guarantee
2031  * that a later query of the i_version will result in a different value if
2032  * anything has changed.
2033  *
2034  * In this implementation, we fetch the current value, set the QUERIED flag and
2035  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2036  * that fails, we try again with the newly fetched value from the cmpxchg.
2037  */
2038 u64 inode_query_iversion(struct inode *inode)
2039 {
2040 	u64 cur, new;
2041 	bool fenced = false;
2042 
2043 	/*
2044 	 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2045 	 * inode_maybe_inc_iversion(), see that routine for more details.
2046 	 */
2047 	cur = inode_peek_iversion_raw(inode);
2048 	do {
2049 		/* If flag is already set, then no need to swap */
2050 		if (cur & I_VERSION_QUERIED) {
2051 			if (!fenced)
2052 				smp_mb();
2053 			break;
2054 		}
2055 
2056 		fenced = true;
2057 		new = cur | I_VERSION_QUERIED;
2058 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2059 	return cur >> I_VERSION_QUERIED_SHIFT;
2060 }
2061 EXPORT_SYMBOL(inode_query_iversion);
2062 
2063 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2064 		ssize_t direct_written, ssize_t buffered_written)
2065 {
2066 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2067 	loff_t pos = iocb->ki_pos - buffered_written;
2068 	loff_t end = iocb->ki_pos - 1;
2069 	int err;
2070 
2071 	/*
2072 	 * If the buffered write fallback returned an error, we want to return
2073 	 * the number of bytes which were written by direct I/O, or the error
2074 	 * code if that was zero.
2075 	 *
2076 	 * Note that this differs from normal direct-io semantics, which will
2077 	 * return -EFOO even if some bytes were written.
2078 	 */
2079 	if (unlikely(buffered_written < 0)) {
2080 		if (direct_written)
2081 			return direct_written;
2082 		return buffered_written;
2083 	}
2084 
2085 	/*
2086 	 * We need to ensure that the page cache pages are written to disk and
2087 	 * invalidated to preserve the expected O_DIRECT semantics.
2088 	 */
2089 	err = filemap_write_and_wait_range(mapping, pos, end);
2090 	if (err < 0) {
2091 		/*
2092 		 * We don't know how much we wrote, so just return the number of
2093 		 * bytes which were direct-written
2094 		 */
2095 		iocb->ki_pos -= buffered_written;
2096 		if (direct_written)
2097 			return direct_written;
2098 		return err;
2099 	}
2100 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2101 	return direct_written + buffered_written;
2102 }
2103 EXPORT_SYMBOL_GPL(direct_write_fallback);
2104 
2105 /**
2106  * simple_inode_init_ts - initialize the timestamps for a new inode
2107  * @inode: inode to be initialized
2108  *
2109  * When a new inode is created, most filesystems set the timestamps to the
2110  * current time. Add a helper to do this.
2111  */
2112 struct timespec64 simple_inode_init_ts(struct inode *inode)
2113 {
2114 	struct timespec64 ts = inode_set_ctime_current(inode);
2115 
2116 	inode_set_atime_to_ts(inode, ts);
2117 	inode_set_mtime_to_ts(inode, ts);
2118 	return ts;
2119 }
2120 EXPORT_SYMBOL(simple_inode_init_ts);
2121 
2122 static inline struct dentry *get_stashed_dentry(struct dentry **stashed)
2123 {
2124 	struct dentry *dentry;
2125 
2126 	guard(rcu)();
2127 	dentry = rcu_dereference(*stashed);
2128 	if (!dentry)
2129 		return NULL;
2130 	if (!lockref_get_not_dead(&dentry->d_lockref))
2131 		return NULL;
2132 	return dentry;
2133 }
2134 
2135 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2136 					  struct super_block *sb,
2137 					  void *data)
2138 {
2139 	struct dentry *dentry;
2140 	struct inode *inode;
2141 	const struct stashed_operations *sops = sb->s_fs_info;
2142 	int ret;
2143 
2144 	inode = new_inode_pseudo(sb);
2145 	if (!inode) {
2146 		sops->put_data(data);
2147 		return ERR_PTR(-ENOMEM);
2148 	}
2149 
2150 	inode->i_flags |= S_IMMUTABLE;
2151 	inode->i_mode = S_IFREG;
2152 	simple_inode_init_ts(inode);
2153 
2154 	ret = sops->init_inode(inode, data);
2155 	if (ret < 0) {
2156 		iput(inode);
2157 		return ERR_PTR(ret);
2158 	}
2159 
2160 	/* Notice when this is changed. */
2161 	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2162 	WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2163 
2164 	dentry = d_alloc_anon(sb);
2165 	if (!dentry) {
2166 		iput(inode);
2167 		return ERR_PTR(-ENOMEM);
2168 	}
2169 
2170 	/* Store address of location where dentry's supposed to be stashed. */
2171 	dentry->d_fsdata = stashed;
2172 
2173 	/* @data is now owned by the fs */
2174 	d_instantiate(dentry, inode);
2175 	return dentry;
2176 }
2177 
2178 static struct dentry *stash_dentry(struct dentry **stashed,
2179 				   struct dentry *dentry)
2180 {
2181 	guard(rcu)();
2182 	for (;;) {
2183 		struct dentry *old;
2184 
2185 		/* Assume any old dentry was cleared out. */
2186 		old = cmpxchg(stashed, NULL, dentry);
2187 		if (likely(!old))
2188 			return dentry;
2189 
2190 		/* Check if somebody else installed a reusable dentry. */
2191 		if (lockref_get_not_dead(&old->d_lockref))
2192 			return old;
2193 
2194 		/* There's an old dead dentry there, try to take it over. */
2195 		if (likely(try_cmpxchg(stashed, &old, dentry)))
2196 			return dentry;
2197 	}
2198 }
2199 
2200 /**
2201  * path_from_stashed - create path from stashed or new dentry
2202  * @stashed:    where to retrieve or stash dentry
2203  * @mnt:        mnt of the filesystems to use
2204  * @data:       data to store in inode->i_private
2205  * @path:       path to create
2206  *
2207  * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2208  * is still valid then it will be reused. If the dentry isn't able the function
2209  * will allocate a new dentry and inode. It will then check again whether it
2210  * can reuse an existing dentry in case one has been added in the meantime or
2211  * update @stashed with the newly added dentry.
2212  *
2213  * Special-purpose helper for nsfs and pidfs.
2214  *
2215  * Return: On success zero and on failure a negative error is returned.
2216  */
2217 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2218 		      struct path *path)
2219 {
2220 	struct dentry *dentry;
2221 	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2222 
2223 	/* See if dentry can be reused. */
2224 	path->dentry = get_stashed_dentry(stashed);
2225 	if (path->dentry) {
2226 		sops->put_data(data);
2227 		goto out_path;
2228 	}
2229 
2230 	/* Allocate a new dentry. */
2231 	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2232 	if (IS_ERR(dentry))
2233 		return PTR_ERR(dentry);
2234 
2235 	/* Added a new dentry. @data is now owned by the filesystem. */
2236 	path->dentry = stash_dentry(stashed, dentry);
2237 	if (path->dentry != dentry)
2238 		dput(dentry);
2239 
2240 out_path:
2241 	WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2242 	WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2243 	path->mnt = mntget(mnt);
2244 	return 0;
2245 }
2246 
2247 void stashed_dentry_prune(struct dentry *dentry)
2248 {
2249 	struct dentry **stashed = dentry->d_fsdata;
2250 	struct inode *inode = d_inode(dentry);
2251 
2252 	if (WARN_ON_ONCE(!stashed))
2253 		return;
2254 
2255 	if (!inode)
2256 		return;
2257 
2258 	/*
2259 	 * Only replace our own @dentry as someone else might've
2260 	 * already cleared out @dentry and stashed their own
2261 	 * dentry in there.
2262 	 */
2263 	cmpxchg(stashed, dentry, NULL);
2264 }
2265