xref: /linux/fs/libfs.c (revision 2e3f65ccfe6b0778b261ad69c9603ae85f210334)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *	fs/libfs.c
4   *	Library for filesystems writers.
5   */
6  
7  #include <linux/blkdev.h>
8  #include <linux/export.h>
9  #include <linux/pagemap.h>
10  #include <linux/slab.h>
11  #include <linux/cred.h>
12  #include <linux/mount.h>
13  #include <linux/vfs.h>
14  #include <linux/quotaops.h>
15  #include <linux/mutex.h>
16  #include <linux/namei.h>
17  #include <linux/exportfs.h>
18  #include <linux/iversion.h>
19  #include <linux/writeback.h>
20  #include <linux/buffer_head.h> /* sync_mapping_buffers */
21  #include <linux/fs_context.h>
22  #include <linux/pseudo_fs.h>
23  #include <linux/fsnotify.h>
24  #include <linux/unicode.h>
25  #include <linux/fscrypt.h>
26  
27  #include <linux/uaccess.h>
28  
29  #include "internal.h"
30  
31  int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32  		   struct kstat *stat, u32 request_mask,
33  		   unsigned int query_flags)
34  {
35  	struct inode *inode = d_inode(path->dentry);
36  	generic_fillattr(&nop_mnt_idmap, inode, stat);
37  	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38  	return 0;
39  }
40  EXPORT_SYMBOL(simple_getattr);
41  
42  int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43  {
44  	buf->f_type = dentry->d_sb->s_magic;
45  	buf->f_bsize = PAGE_SIZE;
46  	buf->f_namelen = NAME_MAX;
47  	return 0;
48  }
49  EXPORT_SYMBOL(simple_statfs);
50  
51  /*
52   * Retaining negative dentries for an in-memory filesystem just wastes
53   * memory and lookup time: arrange for them to be deleted immediately.
54   */
55  int always_delete_dentry(const struct dentry *dentry)
56  {
57  	return 1;
58  }
59  EXPORT_SYMBOL(always_delete_dentry);
60  
61  const struct dentry_operations simple_dentry_operations = {
62  	.d_delete = always_delete_dentry,
63  };
64  EXPORT_SYMBOL(simple_dentry_operations);
65  
66  /*
67   * Lookup the data. This is trivial - if the dentry didn't already
68   * exist, we know it is negative.  Set d_op to delete negative dentries.
69   */
70  struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71  {
72  	if (dentry->d_name.len > NAME_MAX)
73  		return ERR_PTR(-ENAMETOOLONG);
74  	if (!dentry->d_sb->s_d_op)
75  		d_set_d_op(dentry, &simple_dentry_operations);
76  	d_add(dentry, NULL);
77  	return NULL;
78  }
79  EXPORT_SYMBOL(simple_lookup);
80  
81  int dcache_dir_open(struct inode *inode, struct file *file)
82  {
83  	file->private_data = d_alloc_cursor(file->f_path.dentry);
84  
85  	return file->private_data ? 0 : -ENOMEM;
86  }
87  EXPORT_SYMBOL(dcache_dir_open);
88  
89  int dcache_dir_close(struct inode *inode, struct file *file)
90  {
91  	dput(file->private_data);
92  	return 0;
93  }
94  EXPORT_SYMBOL(dcache_dir_close);
95  
96  /* parent is locked at least shared */
97  /*
98   * Returns an element of siblings' list.
99   * We are looking for <count>th positive after <p>; if
100   * found, dentry is grabbed and returned to caller.
101   * If no such element exists, NULL is returned.
102   */
103  static struct dentry *scan_positives(struct dentry *cursor,
104  					struct list_head *p,
105  					loff_t count,
106  					struct dentry *last)
107  {
108  	struct dentry *dentry = cursor->d_parent, *found = NULL;
109  
110  	spin_lock(&dentry->d_lock);
111  	while ((p = p->next) != &dentry->d_subdirs) {
112  		struct dentry *d = list_entry(p, struct dentry, d_child);
113  		// we must at least skip cursors, to avoid livelocks
114  		if (d->d_flags & DCACHE_DENTRY_CURSOR)
115  			continue;
116  		if (simple_positive(d) && !--count) {
117  			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118  			if (simple_positive(d))
119  				found = dget_dlock(d);
120  			spin_unlock(&d->d_lock);
121  			if (likely(found))
122  				break;
123  			count = 1;
124  		}
125  		if (need_resched()) {
126  			list_move(&cursor->d_child, p);
127  			p = &cursor->d_child;
128  			spin_unlock(&dentry->d_lock);
129  			cond_resched();
130  			spin_lock(&dentry->d_lock);
131  		}
132  	}
133  	spin_unlock(&dentry->d_lock);
134  	dput(last);
135  	return found;
136  }
137  
138  loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139  {
140  	struct dentry *dentry = file->f_path.dentry;
141  	switch (whence) {
142  		case 1:
143  			offset += file->f_pos;
144  			fallthrough;
145  		case 0:
146  			if (offset >= 0)
147  				break;
148  			fallthrough;
149  		default:
150  			return -EINVAL;
151  	}
152  	if (offset != file->f_pos) {
153  		struct dentry *cursor = file->private_data;
154  		struct dentry *to = NULL;
155  
156  		inode_lock_shared(dentry->d_inode);
157  
158  		if (offset > 2)
159  			to = scan_positives(cursor, &dentry->d_subdirs,
160  					    offset - 2, NULL);
161  		spin_lock(&dentry->d_lock);
162  		if (to)
163  			list_move(&cursor->d_child, &to->d_child);
164  		else
165  			list_del_init(&cursor->d_child);
166  		spin_unlock(&dentry->d_lock);
167  		dput(to);
168  
169  		file->f_pos = offset;
170  
171  		inode_unlock_shared(dentry->d_inode);
172  	}
173  	return offset;
174  }
175  EXPORT_SYMBOL(dcache_dir_lseek);
176  
177  /*
178   * Directory is locked and all positive dentries in it are safe, since
179   * for ramfs-type trees they can't go away without unlink() or rmdir(),
180   * both impossible due to the lock on directory.
181   */
182  
183  int dcache_readdir(struct file *file, struct dir_context *ctx)
184  {
185  	struct dentry *dentry = file->f_path.dentry;
186  	struct dentry *cursor = file->private_data;
187  	struct list_head *anchor = &dentry->d_subdirs;
188  	struct dentry *next = NULL;
189  	struct list_head *p;
190  
191  	if (!dir_emit_dots(file, ctx))
192  		return 0;
193  
194  	if (ctx->pos == 2)
195  		p = anchor;
196  	else if (!list_empty(&cursor->d_child))
197  		p = &cursor->d_child;
198  	else
199  		return 0;
200  
201  	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202  		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203  			      d_inode(next)->i_ino,
204  			      fs_umode_to_dtype(d_inode(next)->i_mode)))
205  			break;
206  		ctx->pos++;
207  		p = &next->d_child;
208  	}
209  	spin_lock(&dentry->d_lock);
210  	if (next)
211  		list_move_tail(&cursor->d_child, &next->d_child);
212  	else
213  		list_del_init(&cursor->d_child);
214  	spin_unlock(&dentry->d_lock);
215  	dput(next);
216  
217  	return 0;
218  }
219  EXPORT_SYMBOL(dcache_readdir);
220  
221  ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222  {
223  	return -EISDIR;
224  }
225  EXPORT_SYMBOL(generic_read_dir);
226  
227  const struct file_operations simple_dir_operations = {
228  	.open		= dcache_dir_open,
229  	.release	= dcache_dir_close,
230  	.llseek		= dcache_dir_lseek,
231  	.read		= generic_read_dir,
232  	.iterate_shared	= dcache_readdir,
233  	.fsync		= noop_fsync,
234  };
235  EXPORT_SYMBOL(simple_dir_operations);
236  
237  const struct inode_operations simple_dir_inode_operations = {
238  	.lookup		= simple_lookup,
239  };
240  EXPORT_SYMBOL(simple_dir_inode_operations);
241  
242  static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
243  {
244  	struct dentry *child = NULL;
245  	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
246  
247  	spin_lock(&parent->d_lock);
248  	while ((p = p->next) != &parent->d_subdirs) {
249  		struct dentry *d = container_of(p, struct dentry, d_child);
250  		if (simple_positive(d)) {
251  			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
252  			if (simple_positive(d))
253  				child = dget_dlock(d);
254  			spin_unlock(&d->d_lock);
255  			if (likely(child))
256  				break;
257  		}
258  	}
259  	spin_unlock(&parent->d_lock);
260  	dput(prev);
261  	return child;
262  }
263  
264  void simple_recursive_removal(struct dentry *dentry,
265                                void (*callback)(struct dentry *))
266  {
267  	struct dentry *this = dget(dentry);
268  	while (true) {
269  		struct dentry *victim = NULL, *child;
270  		struct inode *inode = this->d_inode;
271  
272  		inode_lock(inode);
273  		if (d_is_dir(this))
274  			inode->i_flags |= S_DEAD;
275  		while ((child = find_next_child(this, victim)) == NULL) {
276  			// kill and ascend
277  			// update metadata while it's still locked
278  			inode->i_ctime = current_time(inode);
279  			clear_nlink(inode);
280  			inode_unlock(inode);
281  			victim = this;
282  			this = this->d_parent;
283  			inode = this->d_inode;
284  			inode_lock(inode);
285  			if (simple_positive(victim)) {
286  				d_invalidate(victim);	// avoid lost mounts
287  				if (d_is_dir(victim))
288  					fsnotify_rmdir(inode, victim);
289  				else
290  					fsnotify_unlink(inode, victim);
291  				if (callback)
292  					callback(victim);
293  				dput(victim);		// unpin it
294  			}
295  			if (victim == dentry) {
296  				inode->i_ctime = inode->i_mtime =
297  					current_time(inode);
298  				if (d_is_dir(dentry))
299  					drop_nlink(inode);
300  				inode_unlock(inode);
301  				dput(dentry);
302  				return;
303  			}
304  		}
305  		inode_unlock(inode);
306  		this = child;
307  	}
308  }
309  EXPORT_SYMBOL(simple_recursive_removal);
310  
311  static const struct super_operations simple_super_operations = {
312  	.statfs		= simple_statfs,
313  };
314  
315  static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
316  {
317  	struct pseudo_fs_context *ctx = fc->fs_private;
318  	struct inode *root;
319  
320  	s->s_maxbytes = MAX_LFS_FILESIZE;
321  	s->s_blocksize = PAGE_SIZE;
322  	s->s_blocksize_bits = PAGE_SHIFT;
323  	s->s_magic = ctx->magic;
324  	s->s_op = ctx->ops ?: &simple_super_operations;
325  	s->s_xattr = ctx->xattr;
326  	s->s_time_gran = 1;
327  	root = new_inode(s);
328  	if (!root)
329  		return -ENOMEM;
330  
331  	/*
332  	 * since this is the first inode, make it number 1. New inodes created
333  	 * after this must take care not to collide with it (by passing
334  	 * max_reserved of 1 to iunique).
335  	 */
336  	root->i_ino = 1;
337  	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
338  	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
339  	s->s_root = d_make_root(root);
340  	if (!s->s_root)
341  		return -ENOMEM;
342  	s->s_d_op = ctx->dops;
343  	return 0;
344  }
345  
346  static int pseudo_fs_get_tree(struct fs_context *fc)
347  {
348  	return get_tree_nodev(fc, pseudo_fs_fill_super);
349  }
350  
351  static void pseudo_fs_free(struct fs_context *fc)
352  {
353  	kfree(fc->fs_private);
354  }
355  
356  static const struct fs_context_operations pseudo_fs_context_ops = {
357  	.free		= pseudo_fs_free,
358  	.get_tree	= pseudo_fs_get_tree,
359  };
360  
361  /*
362   * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
363   * will never be mountable)
364   */
365  struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
366  					unsigned long magic)
367  {
368  	struct pseudo_fs_context *ctx;
369  
370  	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
371  	if (likely(ctx)) {
372  		ctx->magic = magic;
373  		fc->fs_private = ctx;
374  		fc->ops = &pseudo_fs_context_ops;
375  		fc->sb_flags |= SB_NOUSER;
376  		fc->global = true;
377  	}
378  	return ctx;
379  }
380  EXPORT_SYMBOL(init_pseudo);
381  
382  int simple_open(struct inode *inode, struct file *file)
383  {
384  	if (inode->i_private)
385  		file->private_data = inode->i_private;
386  	return 0;
387  }
388  EXPORT_SYMBOL(simple_open);
389  
390  int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
391  {
392  	struct inode *inode = d_inode(old_dentry);
393  
394  	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
395  	inc_nlink(inode);
396  	ihold(inode);
397  	dget(dentry);
398  	d_instantiate(dentry, inode);
399  	return 0;
400  }
401  EXPORT_SYMBOL(simple_link);
402  
403  int simple_empty(struct dentry *dentry)
404  {
405  	struct dentry *child;
406  	int ret = 0;
407  
408  	spin_lock(&dentry->d_lock);
409  	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
410  		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
411  		if (simple_positive(child)) {
412  			spin_unlock(&child->d_lock);
413  			goto out;
414  		}
415  		spin_unlock(&child->d_lock);
416  	}
417  	ret = 1;
418  out:
419  	spin_unlock(&dentry->d_lock);
420  	return ret;
421  }
422  EXPORT_SYMBOL(simple_empty);
423  
424  int simple_unlink(struct inode *dir, struct dentry *dentry)
425  {
426  	struct inode *inode = d_inode(dentry);
427  
428  	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
429  	drop_nlink(inode);
430  	dput(dentry);
431  	return 0;
432  }
433  EXPORT_SYMBOL(simple_unlink);
434  
435  int simple_rmdir(struct inode *dir, struct dentry *dentry)
436  {
437  	if (!simple_empty(dentry))
438  		return -ENOTEMPTY;
439  
440  	drop_nlink(d_inode(dentry));
441  	simple_unlink(dir, dentry);
442  	drop_nlink(dir);
443  	return 0;
444  }
445  EXPORT_SYMBOL(simple_rmdir);
446  
447  int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
448  			   struct inode *new_dir, struct dentry *new_dentry)
449  {
450  	bool old_is_dir = d_is_dir(old_dentry);
451  	bool new_is_dir = d_is_dir(new_dentry);
452  
453  	if (old_dir != new_dir && old_is_dir != new_is_dir) {
454  		if (old_is_dir) {
455  			drop_nlink(old_dir);
456  			inc_nlink(new_dir);
457  		} else {
458  			drop_nlink(new_dir);
459  			inc_nlink(old_dir);
460  		}
461  	}
462  	old_dir->i_ctime = old_dir->i_mtime =
463  	new_dir->i_ctime = new_dir->i_mtime =
464  	d_inode(old_dentry)->i_ctime =
465  	d_inode(new_dentry)->i_ctime = current_time(old_dir);
466  
467  	return 0;
468  }
469  EXPORT_SYMBOL_GPL(simple_rename_exchange);
470  
471  int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
472  		  struct dentry *old_dentry, struct inode *new_dir,
473  		  struct dentry *new_dentry, unsigned int flags)
474  {
475  	struct inode *inode = d_inode(old_dentry);
476  	int they_are_dirs = d_is_dir(old_dentry);
477  
478  	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
479  		return -EINVAL;
480  
481  	if (flags & RENAME_EXCHANGE)
482  		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
483  
484  	if (!simple_empty(new_dentry))
485  		return -ENOTEMPTY;
486  
487  	if (d_really_is_positive(new_dentry)) {
488  		simple_unlink(new_dir, new_dentry);
489  		if (they_are_dirs) {
490  			drop_nlink(d_inode(new_dentry));
491  			drop_nlink(old_dir);
492  		}
493  	} else if (they_are_dirs) {
494  		drop_nlink(old_dir);
495  		inc_nlink(new_dir);
496  	}
497  
498  	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
499  		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
500  
501  	return 0;
502  }
503  EXPORT_SYMBOL(simple_rename);
504  
505  /**
506   * simple_setattr - setattr for simple filesystem
507   * @idmap: idmap of the target mount
508   * @dentry: dentry
509   * @iattr: iattr structure
510   *
511   * Returns 0 on success, -error on failure.
512   *
513   * simple_setattr is a simple ->setattr implementation without a proper
514   * implementation of size changes.
515   *
516   * It can either be used for in-memory filesystems or special files
517   * on simple regular filesystems.  Anything that needs to change on-disk
518   * or wire state on size changes needs its own setattr method.
519   */
520  int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
521  		   struct iattr *iattr)
522  {
523  	struct inode *inode = d_inode(dentry);
524  	int error;
525  
526  	error = setattr_prepare(idmap, dentry, iattr);
527  	if (error)
528  		return error;
529  
530  	if (iattr->ia_valid & ATTR_SIZE)
531  		truncate_setsize(inode, iattr->ia_size);
532  	setattr_copy(idmap, inode, iattr);
533  	mark_inode_dirty(inode);
534  	return 0;
535  }
536  EXPORT_SYMBOL(simple_setattr);
537  
538  static int simple_read_folio(struct file *file, struct folio *folio)
539  {
540  	folio_zero_range(folio, 0, folio_size(folio));
541  	flush_dcache_folio(folio);
542  	folio_mark_uptodate(folio);
543  	folio_unlock(folio);
544  	return 0;
545  }
546  
547  int simple_write_begin(struct file *file, struct address_space *mapping,
548  			loff_t pos, unsigned len,
549  			struct page **pagep, void **fsdata)
550  {
551  	struct page *page;
552  	pgoff_t index;
553  
554  	index = pos >> PAGE_SHIFT;
555  
556  	page = grab_cache_page_write_begin(mapping, index);
557  	if (!page)
558  		return -ENOMEM;
559  
560  	*pagep = page;
561  
562  	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
563  		unsigned from = pos & (PAGE_SIZE - 1);
564  
565  		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
566  	}
567  	return 0;
568  }
569  EXPORT_SYMBOL(simple_write_begin);
570  
571  /**
572   * simple_write_end - .write_end helper for non-block-device FSes
573   * @file: See .write_end of address_space_operations
574   * @mapping: 		"
575   * @pos: 		"
576   * @len: 		"
577   * @copied: 		"
578   * @page: 		"
579   * @fsdata: 		"
580   *
581   * simple_write_end does the minimum needed for updating a page after writing is
582   * done. It has the same API signature as the .write_end of
583   * address_space_operations vector. So it can just be set onto .write_end for
584   * FSes that don't need any other processing. i_mutex is assumed to be held.
585   * Block based filesystems should use generic_write_end().
586   * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
587   * is not called, so a filesystem that actually does store data in .write_inode
588   * should extend on what's done here with a call to mark_inode_dirty() in the
589   * case that i_size has changed.
590   *
591   * Use *ONLY* with simple_read_folio()
592   */
593  static int simple_write_end(struct file *file, struct address_space *mapping,
594  			loff_t pos, unsigned len, unsigned copied,
595  			struct page *page, void *fsdata)
596  {
597  	struct inode *inode = page->mapping->host;
598  	loff_t last_pos = pos + copied;
599  
600  	/* zero the stale part of the page if we did a short copy */
601  	if (!PageUptodate(page)) {
602  		if (copied < len) {
603  			unsigned from = pos & (PAGE_SIZE - 1);
604  
605  			zero_user(page, from + copied, len - copied);
606  		}
607  		SetPageUptodate(page);
608  	}
609  	/*
610  	 * No need to use i_size_read() here, the i_size
611  	 * cannot change under us because we hold the i_mutex.
612  	 */
613  	if (last_pos > inode->i_size)
614  		i_size_write(inode, last_pos);
615  
616  	set_page_dirty(page);
617  	unlock_page(page);
618  	put_page(page);
619  
620  	return copied;
621  }
622  
623  /*
624   * Provides ramfs-style behavior: data in the pagecache, but no writeback.
625   */
626  const struct address_space_operations ram_aops = {
627  	.read_folio	= simple_read_folio,
628  	.write_begin	= simple_write_begin,
629  	.write_end	= simple_write_end,
630  	.dirty_folio	= noop_dirty_folio,
631  };
632  EXPORT_SYMBOL(ram_aops);
633  
634  /*
635   * the inodes created here are not hashed. If you use iunique to generate
636   * unique inode values later for this filesystem, then you must take care
637   * to pass it an appropriate max_reserved value to avoid collisions.
638   */
639  int simple_fill_super(struct super_block *s, unsigned long magic,
640  		      const struct tree_descr *files)
641  {
642  	struct inode *inode;
643  	struct dentry *root;
644  	struct dentry *dentry;
645  	int i;
646  
647  	s->s_blocksize = PAGE_SIZE;
648  	s->s_blocksize_bits = PAGE_SHIFT;
649  	s->s_magic = magic;
650  	s->s_op = &simple_super_operations;
651  	s->s_time_gran = 1;
652  
653  	inode = new_inode(s);
654  	if (!inode)
655  		return -ENOMEM;
656  	/*
657  	 * because the root inode is 1, the files array must not contain an
658  	 * entry at index 1
659  	 */
660  	inode->i_ino = 1;
661  	inode->i_mode = S_IFDIR | 0755;
662  	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
663  	inode->i_op = &simple_dir_inode_operations;
664  	inode->i_fop = &simple_dir_operations;
665  	set_nlink(inode, 2);
666  	root = d_make_root(inode);
667  	if (!root)
668  		return -ENOMEM;
669  	for (i = 0; !files->name || files->name[0]; i++, files++) {
670  		if (!files->name)
671  			continue;
672  
673  		/* warn if it tries to conflict with the root inode */
674  		if (unlikely(i == 1))
675  			printk(KERN_WARNING "%s: %s passed in a files array"
676  				"with an index of 1!\n", __func__,
677  				s->s_type->name);
678  
679  		dentry = d_alloc_name(root, files->name);
680  		if (!dentry)
681  			goto out;
682  		inode = new_inode(s);
683  		if (!inode) {
684  			dput(dentry);
685  			goto out;
686  		}
687  		inode->i_mode = S_IFREG | files->mode;
688  		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
689  		inode->i_fop = files->ops;
690  		inode->i_ino = i;
691  		d_add(dentry, inode);
692  	}
693  	s->s_root = root;
694  	return 0;
695  out:
696  	d_genocide(root);
697  	shrink_dcache_parent(root);
698  	dput(root);
699  	return -ENOMEM;
700  }
701  EXPORT_SYMBOL(simple_fill_super);
702  
703  static DEFINE_SPINLOCK(pin_fs_lock);
704  
705  int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
706  {
707  	struct vfsmount *mnt = NULL;
708  	spin_lock(&pin_fs_lock);
709  	if (unlikely(!*mount)) {
710  		spin_unlock(&pin_fs_lock);
711  		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
712  		if (IS_ERR(mnt))
713  			return PTR_ERR(mnt);
714  		spin_lock(&pin_fs_lock);
715  		if (!*mount)
716  			*mount = mnt;
717  	}
718  	mntget(*mount);
719  	++*count;
720  	spin_unlock(&pin_fs_lock);
721  	mntput(mnt);
722  	return 0;
723  }
724  EXPORT_SYMBOL(simple_pin_fs);
725  
726  void simple_release_fs(struct vfsmount **mount, int *count)
727  {
728  	struct vfsmount *mnt;
729  	spin_lock(&pin_fs_lock);
730  	mnt = *mount;
731  	if (!--*count)
732  		*mount = NULL;
733  	spin_unlock(&pin_fs_lock);
734  	mntput(mnt);
735  }
736  EXPORT_SYMBOL(simple_release_fs);
737  
738  /**
739   * simple_read_from_buffer - copy data from the buffer to user space
740   * @to: the user space buffer to read to
741   * @count: the maximum number of bytes to read
742   * @ppos: the current position in the buffer
743   * @from: the buffer to read from
744   * @available: the size of the buffer
745   *
746   * The simple_read_from_buffer() function reads up to @count bytes from the
747   * buffer @from at offset @ppos into the user space address starting at @to.
748   *
749   * On success, the number of bytes read is returned and the offset @ppos is
750   * advanced by this number, or negative value is returned on error.
751   **/
752  ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
753  				const void *from, size_t available)
754  {
755  	loff_t pos = *ppos;
756  	size_t ret;
757  
758  	if (pos < 0)
759  		return -EINVAL;
760  	if (pos >= available || !count)
761  		return 0;
762  	if (count > available - pos)
763  		count = available - pos;
764  	ret = copy_to_user(to, from + pos, count);
765  	if (ret == count)
766  		return -EFAULT;
767  	count -= ret;
768  	*ppos = pos + count;
769  	return count;
770  }
771  EXPORT_SYMBOL(simple_read_from_buffer);
772  
773  /**
774   * simple_write_to_buffer - copy data from user space to the buffer
775   * @to: the buffer to write to
776   * @available: the size of the buffer
777   * @ppos: the current position in the buffer
778   * @from: the user space buffer to read from
779   * @count: the maximum number of bytes to read
780   *
781   * The simple_write_to_buffer() function reads up to @count bytes from the user
782   * space address starting at @from into the buffer @to at offset @ppos.
783   *
784   * On success, the number of bytes written is returned and the offset @ppos is
785   * advanced by this number, or negative value is returned on error.
786   **/
787  ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
788  		const void __user *from, size_t count)
789  {
790  	loff_t pos = *ppos;
791  	size_t res;
792  
793  	if (pos < 0)
794  		return -EINVAL;
795  	if (pos >= available || !count)
796  		return 0;
797  	if (count > available - pos)
798  		count = available - pos;
799  	res = copy_from_user(to + pos, from, count);
800  	if (res == count)
801  		return -EFAULT;
802  	count -= res;
803  	*ppos = pos + count;
804  	return count;
805  }
806  EXPORT_SYMBOL(simple_write_to_buffer);
807  
808  /**
809   * memory_read_from_buffer - copy data from the buffer
810   * @to: the kernel space buffer to read to
811   * @count: the maximum number of bytes to read
812   * @ppos: the current position in the buffer
813   * @from: the buffer to read from
814   * @available: the size of the buffer
815   *
816   * The memory_read_from_buffer() function reads up to @count bytes from the
817   * buffer @from at offset @ppos into the kernel space address starting at @to.
818   *
819   * On success, the number of bytes read is returned and the offset @ppos is
820   * advanced by this number, or negative value is returned on error.
821   **/
822  ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
823  				const void *from, size_t available)
824  {
825  	loff_t pos = *ppos;
826  
827  	if (pos < 0)
828  		return -EINVAL;
829  	if (pos >= available)
830  		return 0;
831  	if (count > available - pos)
832  		count = available - pos;
833  	memcpy(to, from + pos, count);
834  	*ppos = pos + count;
835  
836  	return count;
837  }
838  EXPORT_SYMBOL(memory_read_from_buffer);
839  
840  /*
841   * Transaction based IO.
842   * The file expects a single write which triggers the transaction, and then
843   * possibly a read which collects the result - which is stored in a
844   * file-local buffer.
845   */
846  
847  void simple_transaction_set(struct file *file, size_t n)
848  {
849  	struct simple_transaction_argresp *ar = file->private_data;
850  
851  	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
852  
853  	/*
854  	 * The barrier ensures that ar->size will really remain zero until
855  	 * ar->data is ready for reading.
856  	 */
857  	smp_mb();
858  	ar->size = n;
859  }
860  EXPORT_SYMBOL(simple_transaction_set);
861  
862  char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
863  {
864  	struct simple_transaction_argresp *ar;
865  	static DEFINE_SPINLOCK(simple_transaction_lock);
866  
867  	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
868  		return ERR_PTR(-EFBIG);
869  
870  	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
871  	if (!ar)
872  		return ERR_PTR(-ENOMEM);
873  
874  	spin_lock(&simple_transaction_lock);
875  
876  	/* only one write allowed per open */
877  	if (file->private_data) {
878  		spin_unlock(&simple_transaction_lock);
879  		free_page((unsigned long)ar);
880  		return ERR_PTR(-EBUSY);
881  	}
882  
883  	file->private_data = ar;
884  
885  	spin_unlock(&simple_transaction_lock);
886  
887  	if (copy_from_user(ar->data, buf, size))
888  		return ERR_PTR(-EFAULT);
889  
890  	return ar->data;
891  }
892  EXPORT_SYMBOL(simple_transaction_get);
893  
894  ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
895  {
896  	struct simple_transaction_argresp *ar = file->private_data;
897  
898  	if (!ar)
899  		return 0;
900  	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
901  }
902  EXPORT_SYMBOL(simple_transaction_read);
903  
904  int simple_transaction_release(struct inode *inode, struct file *file)
905  {
906  	free_page((unsigned long)file->private_data);
907  	return 0;
908  }
909  EXPORT_SYMBOL(simple_transaction_release);
910  
911  /* Simple attribute files */
912  
913  struct simple_attr {
914  	int (*get)(void *, u64 *);
915  	int (*set)(void *, u64);
916  	char get_buf[24];	/* enough to store a u64 and "\n\0" */
917  	char set_buf[24];
918  	void *data;
919  	const char *fmt;	/* format for read operation */
920  	struct mutex mutex;	/* protects access to these buffers */
921  };
922  
923  /* simple_attr_open is called by an actual attribute open file operation
924   * to set the attribute specific access operations. */
925  int simple_attr_open(struct inode *inode, struct file *file,
926  		     int (*get)(void *, u64 *), int (*set)(void *, u64),
927  		     const char *fmt)
928  {
929  	struct simple_attr *attr;
930  
931  	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
932  	if (!attr)
933  		return -ENOMEM;
934  
935  	attr->get = get;
936  	attr->set = set;
937  	attr->data = inode->i_private;
938  	attr->fmt = fmt;
939  	mutex_init(&attr->mutex);
940  
941  	file->private_data = attr;
942  
943  	return nonseekable_open(inode, file);
944  }
945  EXPORT_SYMBOL_GPL(simple_attr_open);
946  
947  int simple_attr_release(struct inode *inode, struct file *file)
948  {
949  	kfree(file->private_data);
950  	return 0;
951  }
952  EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
953  
954  /* read from the buffer that is filled with the get function */
955  ssize_t simple_attr_read(struct file *file, char __user *buf,
956  			 size_t len, loff_t *ppos)
957  {
958  	struct simple_attr *attr;
959  	size_t size;
960  	ssize_t ret;
961  
962  	attr = file->private_data;
963  
964  	if (!attr->get)
965  		return -EACCES;
966  
967  	ret = mutex_lock_interruptible(&attr->mutex);
968  	if (ret)
969  		return ret;
970  
971  	if (*ppos && attr->get_buf[0]) {
972  		/* continued read */
973  		size = strlen(attr->get_buf);
974  	} else {
975  		/* first read */
976  		u64 val;
977  		ret = attr->get(attr->data, &val);
978  		if (ret)
979  			goto out;
980  
981  		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
982  				 attr->fmt, (unsigned long long)val);
983  	}
984  
985  	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
986  out:
987  	mutex_unlock(&attr->mutex);
988  	return ret;
989  }
990  EXPORT_SYMBOL_GPL(simple_attr_read);
991  
992  /* interpret the buffer as a number to call the set function with */
993  static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
994  			  size_t len, loff_t *ppos, bool is_signed)
995  {
996  	struct simple_attr *attr;
997  	unsigned long long val;
998  	size_t size;
999  	ssize_t ret;
1000  
1001  	attr = file->private_data;
1002  	if (!attr->set)
1003  		return -EACCES;
1004  
1005  	ret = mutex_lock_interruptible(&attr->mutex);
1006  	if (ret)
1007  		return ret;
1008  
1009  	ret = -EFAULT;
1010  	size = min(sizeof(attr->set_buf) - 1, len);
1011  	if (copy_from_user(attr->set_buf, buf, size))
1012  		goto out;
1013  
1014  	attr->set_buf[size] = '\0';
1015  	if (is_signed)
1016  		ret = kstrtoll(attr->set_buf, 0, &val);
1017  	else
1018  		ret = kstrtoull(attr->set_buf, 0, &val);
1019  	if (ret)
1020  		goto out;
1021  	ret = attr->set(attr->data, val);
1022  	if (ret == 0)
1023  		ret = len; /* on success, claim we got the whole input */
1024  out:
1025  	mutex_unlock(&attr->mutex);
1026  	return ret;
1027  }
1028  
1029  ssize_t simple_attr_write(struct file *file, const char __user *buf,
1030  			  size_t len, loff_t *ppos)
1031  {
1032  	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1033  }
1034  EXPORT_SYMBOL_GPL(simple_attr_write);
1035  
1036  ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1037  			  size_t len, loff_t *ppos)
1038  {
1039  	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1040  }
1041  EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1042  
1043  /**
1044   * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1045   * @sb:		filesystem to do the file handle conversion on
1046   * @fid:	file handle to convert
1047   * @fh_len:	length of the file handle in bytes
1048   * @fh_type:	type of file handle
1049   * @get_inode:	filesystem callback to retrieve inode
1050   *
1051   * This function decodes @fid as long as it has one of the well-known
1052   * Linux filehandle types and calls @get_inode on it to retrieve the
1053   * inode for the object specified in the file handle.
1054   */
1055  struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1056  		int fh_len, int fh_type, struct inode *(*get_inode)
1057  			(struct super_block *sb, u64 ino, u32 gen))
1058  {
1059  	struct inode *inode = NULL;
1060  
1061  	if (fh_len < 2)
1062  		return NULL;
1063  
1064  	switch (fh_type) {
1065  	case FILEID_INO32_GEN:
1066  	case FILEID_INO32_GEN_PARENT:
1067  		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1068  		break;
1069  	}
1070  
1071  	return d_obtain_alias(inode);
1072  }
1073  EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1074  
1075  /**
1076   * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1077   * @sb:		filesystem to do the file handle conversion on
1078   * @fid:	file handle to convert
1079   * @fh_len:	length of the file handle in bytes
1080   * @fh_type:	type of file handle
1081   * @get_inode:	filesystem callback to retrieve inode
1082   *
1083   * This function decodes @fid as long as it has one of the well-known
1084   * Linux filehandle types and calls @get_inode on it to retrieve the
1085   * inode for the _parent_ object specified in the file handle if it
1086   * is specified in the file handle, or NULL otherwise.
1087   */
1088  struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1089  		int fh_len, int fh_type, struct inode *(*get_inode)
1090  			(struct super_block *sb, u64 ino, u32 gen))
1091  {
1092  	struct inode *inode = NULL;
1093  
1094  	if (fh_len <= 2)
1095  		return NULL;
1096  
1097  	switch (fh_type) {
1098  	case FILEID_INO32_GEN_PARENT:
1099  		inode = get_inode(sb, fid->i32.parent_ino,
1100  				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1101  		break;
1102  	}
1103  
1104  	return d_obtain_alias(inode);
1105  }
1106  EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1107  
1108  /**
1109   * __generic_file_fsync - generic fsync implementation for simple filesystems
1110   *
1111   * @file:	file to synchronize
1112   * @start:	start offset in bytes
1113   * @end:	end offset in bytes (inclusive)
1114   * @datasync:	only synchronize essential metadata if true
1115   *
1116   * This is a generic implementation of the fsync method for simple
1117   * filesystems which track all non-inode metadata in the buffers list
1118   * hanging off the address_space structure.
1119   */
1120  int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1121  				 int datasync)
1122  {
1123  	struct inode *inode = file->f_mapping->host;
1124  	int err;
1125  	int ret;
1126  
1127  	err = file_write_and_wait_range(file, start, end);
1128  	if (err)
1129  		return err;
1130  
1131  	inode_lock(inode);
1132  	ret = sync_mapping_buffers(inode->i_mapping);
1133  	if (!(inode->i_state & I_DIRTY_ALL))
1134  		goto out;
1135  	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1136  		goto out;
1137  
1138  	err = sync_inode_metadata(inode, 1);
1139  	if (ret == 0)
1140  		ret = err;
1141  
1142  out:
1143  	inode_unlock(inode);
1144  	/* check and advance again to catch errors after syncing out buffers */
1145  	err = file_check_and_advance_wb_err(file);
1146  	if (ret == 0)
1147  		ret = err;
1148  	return ret;
1149  }
1150  EXPORT_SYMBOL(__generic_file_fsync);
1151  
1152  /**
1153   * generic_file_fsync - generic fsync implementation for simple filesystems
1154   *			with flush
1155   * @file:	file to synchronize
1156   * @start:	start offset in bytes
1157   * @end:	end offset in bytes (inclusive)
1158   * @datasync:	only synchronize essential metadata if true
1159   *
1160   */
1161  
1162  int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1163  		       int datasync)
1164  {
1165  	struct inode *inode = file->f_mapping->host;
1166  	int err;
1167  
1168  	err = __generic_file_fsync(file, start, end, datasync);
1169  	if (err)
1170  		return err;
1171  	return blkdev_issue_flush(inode->i_sb->s_bdev);
1172  }
1173  EXPORT_SYMBOL(generic_file_fsync);
1174  
1175  /**
1176   * generic_check_addressable - Check addressability of file system
1177   * @blocksize_bits:	log of file system block size
1178   * @num_blocks:		number of blocks in file system
1179   *
1180   * Determine whether a file system with @num_blocks blocks (and a
1181   * block size of 2**@blocksize_bits) is addressable by the sector_t
1182   * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1183   */
1184  int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1185  {
1186  	u64 last_fs_block = num_blocks - 1;
1187  	u64 last_fs_page =
1188  		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1189  
1190  	if (unlikely(num_blocks == 0))
1191  		return 0;
1192  
1193  	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1194  		return -EINVAL;
1195  
1196  	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1197  	    (last_fs_page > (pgoff_t)(~0ULL))) {
1198  		return -EFBIG;
1199  	}
1200  	return 0;
1201  }
1202  EXPORT_SYMBOL(generic_check_addressable);
1203  
1204  /*
1205   * No-op implementation of ->fsync for in-memory filesystems.
1206   */
1207  int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1208  {
1209  	return 0;
1210  }
1211  EXPORT_SYMBOL(noop_fsync);
1212  
1213  ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1214  {
1215  	/*
1216  	 * iomap based filesystems support direct I/O without need for
1217  	 * this callback. However, it still needs to be set in
1218  	 * inode->a_ops so that open/fcntl know that direct I/O is
1219  	 * generally supported.
1220  	 */
1221  	return -EINVAL;
1222  }
1223  EXPORT_SYMBOL_GPL(noop_direct_IO);
1224  
1225  /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1226  void kfree_link(void *p)
1227  {
1228  	kfree(p);
1229  }
1230  EXPORT_SYMBOL(kfree_link);
1231  
1232  struct inode *alloc_anon_inode(struct super_block *s)
1233  {
1234  	static const struct address_space_operations anon_aops = {
1235  		.dirty_folio	= noop_dirty_folio,
1236  	};
1237  	struct inode *inode = new_inode_pseudo(s);
1238  
1239  	if (!inode)
1240  		return ERR_PTR(-ENOMEM);
1241  
1242  	inode->i_ino = get_next_ino();
1243  	inode->i_mapping->a_ops = &anon_aops;
1244  
1245  	/*
1246  	 * Mark the inode dirty from the very beginning,
1247  	 * that way it will never be moved to the dirty
1248  	 * list because mark_inode_dirty() will think
1249  	 * that it already _is_ on the dirty list.
1250  	 */
1251  	inode->i_state = I_DIRTY;
1252  	inode->i_mode = S_IRUSR | S_IWUSR;
1253  	inode->i_uid = current_fsuid();
1254  	inode->i_gid = current_fsgid();
1255  	inode->i_flags |= S_PRIVATE;
1256  	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1257  	return inode;
1258  }
1259  EXPORT_SYMBOL(alloc_anon_inode);
1260  
1261  /**
1262   * simple_nosetlease - generic helper for prohibiting leases
1263   * @filp: file pointer
1264   * @arg: type of lease to obtain
1265   * @flp: new lease supplied for insertion
1266   * @priv: private data for lm_setup operation
1267   *
1268   * Generic helper for filesystems that do not wish to allow leases to be set.
1269   * All arguments are ignored and it just returns -EINVAL.
1270   */
1271  int
1272  simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1273  		  void **priv)
1274  {
1275  	return -EINVAL;
1276  }
1277  EXPORT_SYMBOL(simple_nosetlease);
1278  
1279  /**
1280   * simple_get_link - generic helper to get the target of "fast" symlinks
1281   * @dentry: not used here
1282   * @inode: the symlink inode
1283   * @done: not used here
1284   *
1285   * Generic helper for filesystems to use for symlink inodes where a pointer to
1286   * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1287   * since as an optimization the path lookup code uses any non-NULL ->i_link
1288   * directly, without calling ->get_link().  But ->get_link() still must be set,
1289   * to mark the inode_operations as being for a symlink.
1290   *
1291   * Return: the symlink target
1292   */
1293  const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1294  			    struct delayed_call *done)
1295  {
1296  	return inode->i_link;
1297  }
1298  EXPORT_SYMBOL(simple_get_link);
1299  
1300  const struct inode_operations simple_symlink_inode_operations = {
1301  	.get_link = simple_get_link,
1302  };
1303  EXPORT_SYMBOL(simple_symlink_inode_operations);
1304  
1305  /*
1306   * Operations for a permanently empty directory.
1307   */
1308  static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1309  {
1310  	return ERR_PTR(-ENOENT);
1311  }
1312  
1313  static int empty_dir_getattr(struct mnt_idmap *idmap,
1314  			     const struct path *path, struct kstat *stat,
1315  			     u32 request_mask, unsigned int query_flags)
1316  {
1317  	struct inode *inode = d_inode(path->dentry);
1318  	generic_fillattr(&nop_mnt_idmap, inode, stat);
1319  	return 0;
1320  }
1321  
1322  static int empty_dir_setattr(struct mnt_idmap *idmap,
1323  			     struct dentry *dentry, struct iattr *attr)
1324  {
1325  	return -EPERM;
1326  }
1327  
1328  static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1329  {
1330  	return -EOPNOTSUPP;
1331  }
1332  
1333  static const struct inode_operations empty_dir_inode_operations = {
1334  	.lookup		= empty_dir_lookup,
1335  	.permission	= generic_permission,
1336  	.setattr	= empty_dir_setattr,
1337  	.getattr	= empty_dir_getattr,
1338  	.listxattr	= empty_dir_listxattr,
1339  };
1340  
1341  static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1342  {
1343  	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1344  	return generic_file_llseek_size(file, offset, whence, 2, 2);
1345  }
1346  
1347  static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1348  {
1349  	dir_emit_dots(file, ctx);
1350  	return 0;
1351  }
1352  
1353  static const struct file_operations empty_dir_operations = {
1354  	.llseek		= empty_dir_llseek,
1355  	.read		= generic_read_dir,
1356  	.iterate_shared	= empty_dir_readdir,
1357  	.fsync		= noop_fsync,
1358  };
1359  
1360  
1361  void make_empty_dir_inode(struct inode *inode)
1362  {
1363  	set_nlink(inode, 2);
1364  	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1365  	inode->i_uid = GLOBAL_ROOT_UID;
1366  	inode->i_gid = GLOBAL_ROOT_GID;
1367  	inode->i_rdev = 0;
1368  	inode->i_size = 0;
1369  	inode->i_blkbits = PAGE_SHIFT;
1370  	inode->i_blocks = 0;
1371  
1372  	inode->i_op = &empty_dir_inode_operations;
1373  	inode->i_opflags &= ~IOP_XATTR;
1374  	inode->i_fop = &empty_dir_operations;
1375  }
1376  
1377  bool is_empty_dir_inode(struct inode *inode)
1378  {
1379  	return (inode->i_fop == &empty_dir_operations) &&
1380  		(inode->i_op == &empty_dir_inode_operations);
1381  }
1382  
1383  #if IS_ENABLED(CONFIG_UNICODE)
1384  /*
1385   * Determine if the name of a dentry should be casefolded.
1386   *
1387   * Return: if names will need casefolding
1388   */
1389  static bool needs_casefold(const struct inode *dir)
1390  {
1391  	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1392  }
1393  
1394  /**
1395   * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1396   * @dentry:	dentry whose name we are checking against
1397   * @len:	len of name of dentry
1398   * @str:	str pointer to name of dentry
1399   * @name:	Name to compare against
1400   *
1401   * Return: 0 if names match, 1 if mismatch, or -ERRNO
1402   */
1403  static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1404  				const char *str, const struct qstr *name)
1405  {
1406  	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1407  	const struct inode *dir = READ_ONCE(parent->d_inode);
1408  	const struct super_block *sb = dentry->d_sb;
1409  	const struct unicode_map *um = sb->s_encoding;
1410  	struct qstr qstr = QSTR_INIT(str, len);
1411  	char strbuf[DNAME_INLINE_LEN];
1412  	int ret;
1413  
1414  	if (!dir || !needs_casefold(dir))
1415  		goto fallback;
1416  	/*
1417  	 * If the dentry name is stored in-line, then it may be concurrently
1418  	 * modified by a rename.  If this happens, the VFS will eventually retry
1419  	 * the lookup, so it doesn't matter what ->d_compare() returns.
1420  	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1421  	 * string.  Therefore, we have to copy the name into a temporary buffer.
1422  	 */
1423  	if (len <= DNAME_INLINE_LEN - 1) {
1424  		memcpy(strbuf, str, len);
1425  		strbuf[len] = 0;
1426  		qstr.name = strbuf;
1427  		/* prevent compiler from optimizing out the temporary buffer */
1428  		barrier();
1429  	}
1430  	ret = utf8_strncasecmp(um, name, &qstr);
1431  	if (ret >= 0)
1432  		return ret;
1433  
1434  	if (sb_has_strict_encoding(sb))
1435  		return -EINVAL;
1436  fallback:
1437  	if (len != name->len)
1438  		return 1;
1439  	return !!memcmp(str, name->name, len);
1440  }
1441  
1442  /**
1443   * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1444   * @dentry:	dentry of the parent directory
1445   * @str:	qstr of name whose hash we should fill in
1446   *
1447   * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1448   */
1449  static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1450  {
1451  	const struct inode *dir = READ_ONCE(dentry->d_inode);
1452  	struct super_block *sb = dentry->d_sb;
1453  	const struct unicode_map *um = sb->s_encoding;
1454  	int ret = 0;
1455  
1456  	if (!dir || !needs_casefold(dir))
1457  		return 0;
1458  
1459  	ret = utf8_casefold_hash(um, dentry, str);
1460  	if (ret < 0 && sb_has_strict_encoding(sb))
1461  		return -EINVAL;
1462  	return 0;
1463  }
1464  
1465  static const struct dentry_operations generic_ci_dentry_ops = {
1466  	.d_hash = generic_ci_d_hash,
1467  	.d_compare = generic_ci_d_compare,
1468  };
1469  #endif
1470  
1471  #ifdef CONFIG_FS_ENCRYPTION
1472  static const struct dentry_operations generic_encrypted_dentry_ops = {
1473  	.d_revalidate = fscrypt_d_revalidate,
1474  };
1475  #endif
1476  
1477  #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1478  static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1479  	.d_hash = generic_ci_d_hash,
1480  	.d_compare = generic_ci_d_compare,
1481  	.d_revalidate = fscrypt_d_revalidate,
1482  };
1483  #endif
1484  
1485  /**
1486   * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1487   * @dentry:	dentry to set ops on
1488   *
1489   * Casefolded directories need d_hash and d_compare set, so that the dentries
1490   * contained in them are handled case-insensitively.  Note that these operations
1491   * are needed on the parent directory rather than on the dentries in it, and
1492   * while the casefolding flag can be toggled on and off on an empty directory,
1493   * dentry_operations can't be changed later.  As a result, if the filesystem has
1494   * casefolding support enabled at all, we have to give all dentries the
1495   * casefolding operations even if their inode doesn't have the casefolding flag
1496   * currently (and thus the casefolding ops would be no-ops for now).
1497   *
1498   * Encryption works differently in that the only dentry operation it needs is
1499   * d_revalidate, which it only needs on dentries that have the no-key name flag.
1500   * The no-key flag can't be set "later", so we don't have to worry about that.
1501   *
1502   * Finally, to maximize compatibility with overlayfs (which isn't compatible
1503   * with certain dentry operations) and to avoid taking an unnecessary
1504   * performance hit, we use custom dentry_operations for each possible
1505   * combination rather than always installing all operations.
1506   */
1507  void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1508  {
1509  #ifdef CONFIG_FS_ENCRYPTION
1510  	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1511  #endif
1512  #if IS_ENABLED(CONFIG_UNICODE)
1513  	bool needs_ci_ops = dentry->d_sb->s_encoding;
1514  #endif
1515  #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1516  	if (needs_encrypt_ops && needs_ci_ops) {
1517  		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1518  		return;
1519  	}
1520  #endif
1521  #ifdef CONFIG_FS_ENCRYPTION
1522  	if (needs_encrypt_ops) {
1523  		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1524  		return;
1525  	}
1526  #endif
1527  #if IS_ENABLED(CONFIG_UNICODE)
1528  	if (needs_ci_ops) {
1529  		d_set_d_op(dentry, &generic_ci_dentry_ops);
1530  		return;
1531  	}
1532  #endif
1533  }
1534  EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1535  
1536  /**
1537   * inode_maybe_inc_iversion - increments i_version
1538   * @inode: inode with the i_version that should be updated
1539   * @force: increment the counter even if it's not necessary?
1540   *
1541   * Every time the inode is modified, the i_version field must be seen to have
1542   * changed by any observer.
1543   *
1544   * If "force" is set or the QUERIED flag is set, then ensure that we increment
1545   * the value, and clear the queried flag.
1546   *
1547   * In the common case where neither is set, then we can return "false" without
1548   * updating i_version.
1549   *
1550   * If this function returns false, and no other metadata has changed, then we
1551   * can avoid logging the metadata.
1552   */
1553  bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1554  {
1555  	u64 cur, new;
1556  
1557  	/*
1558  	 * The i_version field is not strictly ordered with any other inode
1559  	 * information, but the legacy inode_inc_iversion code used a spinlock
1560  	 * to serialize increments.
1561  	 *
1562  	 * Here, we add full memory barriers to ensure that any de-facto
1563  	 * ordering with other info is preserved.
1564  	 *
1565  	 * This barrier pairs with the barrier in inode_query_iversion()
1566  	 */
1567  	smp_mb();
1568  	cur = inode_peek_iversion_raw(inode);
1569  	do {
1570  		/* If flag is clear then we needn't do anything */
1571  		if (!force && !(cur & I_VERSION_QUERIED))
1572  			return false;
1573  
1574  		/* Since lowest bit is flag, add 2 to avoid it */
1575  		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1576  	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1577  	return true;
1578  }
1579  EXPORT_SYMBOL(inode_maybe_inc_iversion);
1580  
1581  /**
1582   * inode_query_iversion - read i_version for later use
1583   * @inode: inode from which i_version should be read
1584   *
1585   * Read the inode i_version counter. This should be used by callers that wish
1586   * to store the returned i_version for later comparison. This will guarantee
1587   * that a later query of the i_version will result in a different value if
1588   * anything has changed.
1589   *
1590   * In this implementation, we fetch the current value, set the QUERIED flag and
1591   * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1592   * that fails, we try again with the newly fetched value from the cmpxchg.
1593   */
1594  u64 inode_query_iversion(struct inode *inode)
1595  {
1596  	u64 cur, new;
1597  
1598  	cur = inode_peek_iversion_raw(inode);
1599  	do {
1600  		/* If flag is already set, then no need to swap */
1601  		if (cur & I_VERSION_QUERIED) {
1602  			/*
1603  			 * This barrier (and the implicit barrier in the
1604  			 * cmpxchg below) pairs with the barrier in
1605  			 * inode_maybe_inc_iversion().
1606  			 */
1607  			smp_mb();
1608  			break;
1609  		}
1610  
1611  		new = cur | I_VERSION_QUERIED;
1612  	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1613  	return cur >> I_VERSION_QUERIED_SHIFT;
1614  }
1615  EXPORT_SYMBOL(inode_query_iversion);
1616  
1617  ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1618  		ssize_t direct_written, ssize_t buffered_written)
1619  {
1620  	struct address_space *mapping = iocb->ki_filp->f_mapping;
1621  	loff_t pos = iocb->ki_pos - buffered_written;
1622  	loff_t end = iocb->ki_pos - 1;
1623  	int err;
1624  
1625  	/*
1626  	 * If the buffered write fallback returned an error, we want to return
1627  	 * the number of bytes which were written by direct I/O, or the error
1628  	 * code if that was zero.
1629  	 *
1630  	 * Note that this differs from normal direct-io semantics, which will
1631  	 * return -EFOO even if some bytes were written.
1632  	 */
1633  	if (unlikely(buffered_written < 0)) {
1634  		if (direct_written)
1635  			return direct_written;
1636  		return buffered_written;
1637  	}
1638  
1639  	/*
1640  	 * We need to ensure that the page cache pages are written to disk and
1641  	 * invalidated to preserve the expected O_DIRECT semantics.
1642  	 */
1643  	err = filemap_write_and_wait_range(mapping, pos, end);
1644  	if (err < 0) {
1645  		/*
1646  		 * We don't know how much we wrote, so just return the number of
1647  		 * bytes which were direct-written
1648  		 */
1649  		if (direct_written)
1650  			return direct_written;
1651  		return err;
1652  	}
1653  	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1654  	return direct_written + buffered_written;
1655  }
1656  EXPORT_SYMBOL_GPL(direct_write_fallback);
1657