1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 32 struct kstat *stat, u32 request_mask, 33 unsigned int query_flags) 34 { 35 struct inode *inode = d_inode(path->dentry); 36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 38 return 0; 39 } 40 EXPORT_SYMBOL(simple_getattr); 41 42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 43 { 44 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 45 46 buf->f_fsid = u64_to_fsid(id); 47 buf->f_type = dentry->d_sb->s_magic; 48 buf->f_bsize = PAGE_SIZE; 49 buf->f_namelen = NAME_MAX; 50 return 0; 51 } 52 EXPORT_SYMBOL(simple_statfs); 53 54 /* 55 * Retaining negative dentries for an in-memory filesystem just wastes 56 * memory and lookup time: arrange for them to be deleted immediately. 57 */ 58 int always_delete_dentry(const struct dentry *dentry) 59 { 60 return 1; 61 } 62 EXPORT_SYMBOL(always_delete_dentry); 63 64 const struct dentry_operations simple_dentry_operations = { 65 .d_delete = always_delete_dentry, 66 }; 67 EXPORT_SYMBOL(simple_dentry_operations); 68 69 /* 70 * Lookup the data. This is trivial - if the dentry didn't already 71 * exist, we know it is negative. Set d_op to delete negative dentries. 72 */ 73 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 74 { 75 if (dentry->d_name.len > NAME_MAX) 76 return ERR_PTR(-ENAMETOOLONG); 77 if (!dentry->d_sb->s_d_op) 78 d_set_d_op(dentry, &simple_dentry_operations); 79 d_add(dentry, NULL); 80 return NULL; 81 } 82 EXPORT_SYMBOL(simple_lookup); 83 84 int dcache_dir_open(struct inode *inode, struct file *file) 85 { 86 file->private_data = d_alloc_cursor(file->f_path.dentry); 87 88 return file->private_data ? 0 : -ENOMEM; 89 } 90 EXPORT_SYMBOL(dcache_dir_open); 91 92 int dcache_dir_close(struct inode *inode, struct file *file) 93 { 94 dput(file->private_data); 95 return 0; 96 } 97 EXPORT_SYMBOL(dcache_dir_close); 98 99 /* parent is locked at least shared */ 100 /* 101 * Returns an element of siblings' list. 102 * We are looking for <count>th positive after <p>; if 103 * found, dentry is grabbed and returned to caller. 104 * If no such element exists, NULL is returned. 105 */ 106 static struct dentry *scan_positives(struct dentry *cursor, 107 struct hlist_node **p, 108 loff_t count, 109 struct dentry *last) 110 { 111 struct dentry *dentry = cursor->d_parent, *found = NULL; 112 113 spin_lock(&dentry->d_lock); 114 while (*p) { 115 struct dentry *d = hlist_entry(*p, struct dentry, d_sib); 116 p = &d->d_sib.next; 117 // we must at least skip cursors, to avoid livelocks 118 if (d->d_flags & DCACHE_DENTRY_CURSOR) 119 continue; 120 if (simple_positive(d) && !--count) { 121 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 122 if (simple_positive(d)) 123 found = dget_dlock(d); 124 spin_unlock(&d->d_lock); 125 if (likely(found)) 126 break; 127 count = 1; 128 } 129 if (need_resched()) { 130 if (!hlist_unhashed(&cursor->d_sib)) 131 __hlist_del(&cursor->d_sib); 132 hlist_add_behind(&cursor->d_sib, &d->d_sib); 133 p = &cursor->d_sib.next; 134 spin_unlock(&dentry->d_lock); 135 cond_resched(); 136 spin_lock(&dentry->d_lock); 137 } 138 } 139 spin_unlock(&dentry->d_lock); 140 dput(last); 141 return found; 142 } 143 144 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 145 { 146 struct dentry *dentry = file->f_path.dentry; 147 switch (whence) { 148 case 1: 149 offset += file->f_pos; 150 fallthrough; 151 case 0: 152 if (offset >= 0) 153 break; 154 fallthrough; 155 default: 156 return -EINVAL; 157 } 158 if (offset != file->f_pos) { 159 struct dentry *cursor = file->private_data; 160 struct dentry *to = NULL; 161 162 inode_lock_shared(dentry->d_inode); 163 164 if (offset > 2) 165 to = scan_positives(cursor, &dentry->d_children.first, 166 offset - 2, NULL); 167 spin_lock(&dentry->d_lock); 168 hlist_del_init(&cursor->d_sib); 169 if (to) 170 hlist_add_behind(&cursor->d_sib, &to->d_sib); 171 spin_unlock(&dentry->d_lock); 172 dput(to); 173 174 file->f_pos = offset; 175 176 inode_unlock_shared(dentry->d_inode); 177 } 178 return offset; 179 } 180 EXPORT_SYMBOL(dcache_dir_lseek); 181 182 /* 183 * Directory is locked and all positive dentries in it are safe, since 184 * for ramfs-type trees they can't go away without unlink() or rmdir(), 185 * both impossible due to the lock on directory. 186 */ 187 188 int dcache_readdir(struct file *file, struct dir_context *ctx) 189 { 190 struct dentry *dentry = file->f_path.dentry; 191 struct dentry *cursor = file->private_data; 192 struct dentry *next = NULL; 193 struct hlist_node **p; 194 195 if (!dir_emit_dots(file, ctx)) 196 return 0; 197 198 if (ctx->pos == 2) 199 p = &dentry->d_children.first; 200 else 201 p = &cursor->d_sib.next; 202 203 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 204 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 205 d_inode(next)->i_ino, 206 fs_umode_to_dtype(d_inode(next)->i_mode))) 207 break; 208 ctx->pos++; 209 p = &next->d_sib.next; 210 } 211 spin_lock(&dentry->d_lock); 212 hlist_del_init(&cursor->d_sib); 213 if (next) 214 hlist_add_before(&cursor->d_sib, &next->d_sib); 215 spin_unlock(&dentry->d_lock); 216 dput(next); 217 218 return 0; 219 } 220 EXPORT_SYMBOL(dcache_readdir); 221 222 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 223 { 224 return -EISDIR; 225 } 226 EXPORT_SYMBOL(generic_read_dir); 227 228 const struct file_operations simple_dir_operations = { 229 .open = dcache_dir_open, 230 .release = dcache_dir_close, 231 .llseek = dcache_dir_lseek, 232 .read = generic_read_dir, 233 .iterate_shared = dcache_readdir, 234 .fsync = noop_fsync, 235 }; 236 EXPORT_SYMBOL(simple_dir_operations); 237 238 const struct inode_operations simple_dir_inode_operations = { 239 .lookup = simple_lookup, 240 }; 241 EXPORT_SYMBOL(simple_dir_inode_operations); 242 243 static void offset_set(struct dentry *dentry, u32 offset) 244 { 245 dentry->d_fsdata = (void *)((uintptr_t)(offset)); 246 } 247 248 static u32 dentry2offset(struct dentry *dentry) 249 { 250 return (u32)((uintptr_t)(dentry->d_fsdata)); 251 } 252 253 static struct lock_class_key simple_offset_xa_lock; 254 255 /** 256 * simple_offset_init - initialize an offset_ctx 257 * @octx: directory offset map to be initialized 258 * 259 */ 260 void simple_offset_init(struct offset_ctx *octx) 261 { 262 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1); 263 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock); 264 265 /* 0 is '.', 1 is '..', so always start with offset 2 */ 266 octx->next_offset = 2; 267 } 268 269 /** 270 * simple_offset_add - Add an entry to a directory's offset map 271 * @octx: directory offset ctx to be updated 272 * @dentry: new dentry being added 273 * 274 * Returns zero on success. @so_ctx and the dentry offset are updated. 275 * Otherwise, a negative errno value is returned. 276 */ 277 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 278 { 279 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX); 280 u32 offset; 281 int ret; 282 283 if (dentry2offset(dentry) != 0) 284 return -EBUSY; 285 286 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit, 287 &octx->next_offset, GFP_KERNEL); 288 if (ret < 0) 289 return ret; 290 291 offset_set(dentry, offset); 292 return 0; 293 } 294 295 /** 296 * simple_offset_remove - Remove an entry to a directory's offset map 297 * @octx: directory offset ctx to be updated 298 * @dentry: dentry being removed 299 * 300 */ 301 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 302 { 303 u32 offset; 304 305 offset = dentry2offset(dentry); 306 if (offset == 0) 307 return; 308 309 xa_erase(&octx->xa, offset); 310 offset_set(dentry, 0); 311 } 312 313 /** 314 * simple_offset_rename_exchange - exchange rename with directory offsets 315 * @old_dir: parent of dentry being moved 316 * @old_dentry: dentry being moved 317 * @new_dir: destination parent 318 * @new_dentry: destination dentry 319 * 320 * Returns zero on success. Otherwise a negative errno is returned and the 321 * rename is rolled back. 322 */ 323 int simple_offset_rename_exchange(struct inode *old_dir, 324 struct dentry *old_dentry, 325 struct inode *new_dir, 326 struct dentry *new_dentry) 327 { 328 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 329 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 330 u32 old_index = dentry2offset(old_dentry); 331 u32 new_index = dentry2offset(new_dentry); 332 int ret; 333 334 simple_offset_remove(old_ctx, old_dentry); 335 simple_offset_remove(new_ctx, new_dentry); 336 337 ret = simple_offset_add(new_ctx, old_dentry); 338 if (ret) 339 goto out_restore; 340 341 ret = simple_offset_add(old_ctx, new_dentry); 342 if (ret) { 343 simple_offset_remove(new_ctx, old_dentry); 344 goto out_restore; 345 } 346 347 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 348 if (ret) { 349 simple_offset_remove(new_ctx, old_dentry); 350 simple_offset_remove(old_ctx, new_dentry); 351 goto out_restore; 352 } 353 return 0; 354 355 out_restore: 356 offset_set(old_dentry, old_index); 357 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL); 358 offset_set(new_dentry, new_index); 359 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL); 360 return ret; 361 } 362 363 /** 364 * simple_offset_destroy - Release offset map 365 * @octx: directory offset ctx that is about to be destroyed 366 * 367 * During fs teardown (eg. umount), a directory's offset map might still 368 * contain entries. xa_destroy() cleans out anything that remains. 369 */ 370 void simple_offset_destroy(struct offset_ctx *octx) 371 { 372 xa_destroy(&octx->xa); 373 } 374 375 /** 376 * offset_dir_llseek - Advance the read position of a directory descriptor 377 * @file: an open directory whose position is to be updated 378 * @offset: a byte offset 379 * @whence: enumerator describing the starting position for this update 380 * 381 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 382 * 383 * Returns the updated read position if successful; otherwise a 384 * negative errno is returned and the read position remains unchanged. 385 */ 386 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 387 { 388 switch (whence) { 389 case SEEK_CUR: 390 offset += file->f_pos; 391 fallthrough; 392 case SEEK_SET: 393 if (offset >= 0) 394 break; 395 fallthrough; 396 default: 397 return -EINVAL; 398 } 399 400 /* In this case, ->private_data is protected by f_pos_lock */ 401 file->private_data = NULL; 402 return vfs_setpos(file, offset, U32_MAX); 403 } 404 405 static struct dentry *offset_find_next(struct xa_state *xas) 406 { 407 struct dentry *child, *found = NULL; 408 409 rcu_read_lock(); 410 child = xas_next_entry(xas, U32_MAX); 411 if (!child) 412 goto out; 413 spin_lock(&child->d_lock); 414 if (simple_positive(child)) 415 found = dget_dlock(child); 416 spin_unlock(&child->d_lock); 417 out: 418 rcu_read_unlock(); 419 return found; 420 } 421 422 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 423 { 424 u32 offset = dentry2offset(dentry); 425 struct inode *inode = d_inode(dentry); 426 427 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 428 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 429 } 430 431 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx) 432 { 433 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode); 434 XA_STATE(xas, &so_ctx->xa, ctx->pos); 435 struct dentry *dentry; 436 437 while (true) { 438 dentry = offset_find_next(&xas); 439 if (!dentry) 440 return ERR_PTR(-ENOENT); 441 442 if (!offset_dir_emit(ctx, dentry)) { 443 dput(dentry); 444 break; 445 } 446 447 dput(dentry); 448 ctx->pos = xas.xa_index + 1; 449 } 450 return NULL; 451 } 452 453 /** 454 * offset_readdir - Emit entries starting at offset @ctx->pos 455 * @file: an open directory to iterate over 456 * @ctx: directory iteration context 457 * 458 * Caller must hold @file's i_rwsem to prevent insertion or removal of 459 * entries during this call. 460 * 461 * On entry, @ctx->pos contains an offset that represents the first entry 462 * to be read from the directory. 463 * 464 * The operation continues until there are no more entries to read, or 465 * until the ctx->actor indicates there is no more space in the caller's 466 * output buffer. 467 * 468 * On return, @ctx->pos contains an offset that will read the next entry 469 * in this directory when offset_readdir() is called again with @ctx. 470 * 471 * Return values: 472 * %0 - Complete 473 */ 474 static int offset_readdir(struct file *file, struct dir_context *ctx) 475 { 476 struct dentry *dir = file->f_path.dentry; 477 478 lockdep_assert_held(&d_inode(dir)->i_rwsem); 479 480 if (!dir_emit_dots(file, ctx)) 481 return 0; 482 483 /* In this case, ->private_data is protected by f_pos_lock */ 484 if (ctx->pos == 2) 485 file->private_data = NULL; 486 else if (file->private_data == ERR_PTR(-ENOENT)) 487 return 0; 488 file->private_data = offset_iterate_dir(d_inode(dir), ctx); 489 return 0; 490 } 491 492 const struct file_operations simple_offset_dir_operations = { 493 .llseek = offset_dir_llseek, 494 .iterate_shared = offset_readdir, 495 .read = generic_read_dir, 496 .fsync = noop_fsync, 497 }; 498 499 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 500 { 501 struct dentry *child = NULL, *d; 502 503 spin_lock(&parent->d_lock); 504 d = prev ? d_next_sibling(prev) : d_first_child(parent); 505 hlist_for_each_entry_from(d, d_sib) { 506 if (simple_positive(d)) { 507 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 508 if (simple_positive(d)) 509 child = dget_dlock(d); 510 spin_unlock(&d->d_lock); 511 if (likely(child)) 512 break; 513 } 514 } 515 spin_unlock(&parent->d_lock); 516 dput(prev); 517 return child; 518 } 519 520 void simple_recursive_removal(struct dentry *dentry, 521 void (*callback)(struct dentry *)) 522 { 523 struct dentry *this = dget(dentry); 524 while (true) { 525 struct dentry *victim = NULL, *child; 526 struct inode *inode = this->d_inode; 527 528 inode_lock(inode); 529 if (d_is_dir(this)) 530 inode->i_flags |= S_DEAD; 531 while ((child = find_next_child(this, victim)) == NULL) { 532 // kill and ascend 533 // update metadata while it's still locked 534 inode_set_ctime_current(inode); 535 clear_nlink(inode); 536 inode_unlock(inode); 537 victim = this; 538 this = this->d_parent; 539 inode = this->d_inode; 540 inode_lock(inode); 541 if (simple_positive(victim)) { 542 d_invalidate(victim); // avoid lost mounts 543 if (d_is_dir(victim)) 544 fsnotify_rmdir(inode, victim); 545 else 546 fsnotify_unlink(inode, victim); 547 if (callback) 548 callback(victim); 549 dput(victim); // unpin it 550 } 551 if (victim == dentry) { 552 inode_set_mtime_to_ts(inode, 553 inode_set_ctime_current(inode)); 554 if (d_is_dir(dentry)) 555 drop_nlink(inode); 556 inode_unlock(inode); 557 dput(dentry); 558 return; 559 } 560 } 561 inode_unlock(inode); 562 this = child; 563 } 564 } 565 EXPORT_SYMBOL(simple_recursive_removal); 566 567 static const struct super_operations simple_super_operations = { 568 .statfs = simple_statfs, 569 }; 570 571 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 572 { 573 struct pseudo_fs_context *ctx = fc->fs_private; 574 struct inode *root; 575 576 s->s_maxbytes = MAX_LFS_FILESIZE; 577 s->s_blocksize = PAGE_SIZE; 578 s->s_blocksize_bits = PAGE_SHIFT; 579 s->s_magic = ctx->magic; 580 s->s_op = ctx->ops ?: &simple_super_operations; 581 s->s_xattr = ctx->xattr; 582 s->s_time_gran = 1; 583 root = new_inode(s); 584 if (!root) 585 return -ENOMEM; 586 587 /* 588 * since this is the first inode, make it number 1. New inodes created 589 * after this must take care not to collide with it (by passing 590 * max_reserved of 1 to iunique). 591 */ 592 root->i_ino = 1; 593 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 594 simple_inode_init_ts(root); 595 s->s_root = d_make_root(root); 596 if (!s->s_root) 597 return -ENOMEM; 598 s->s_d_op = ctx->dops; 599 return 0; 600 } 601 602 static int pseudo_fs_get_tree(struct fs_context *fc) 603 { 604 return get_tree_nodev(fc, pseudo_fs_fill_super); 605 } 606 607 static void pseudo_fs_free(struct fs_context *fc) 608 { 609 kfree(fc->fs_private); 610 } 611 612 static const struct fs_context_operations pseudo_fs_context_ops = { 613 .free = pseudo_fs_free, 614 .get_tree = pseudo_fs_get_tree, 615 }; 616 617 /* 618 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 619 * will never be mountable) 620 */ 621 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 622 unsigned long magic) 623 { 624 struct pseudo_fs_context *ctx; 625 626 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 627 if (likely(ctx)) { 628 ctx->magic = magic; 629 fc->fs_private = ctx; 630 fc->ops = &pseudo_fs_context_ops; 631 fc->sb_flags |= SB_NOUSER; 632 fc->global = true; 633 } 634 return ctx; 635 } 636 EXPORT_SYMBOL(init_pseudo); 637 638 int simple_open(struct inode *inode, struct file *file) 639 { 640 if (inode->i_private) 641 file->private_data = inode->i_private; 642 return 0; 643 } 644 EXPORT_SYMBOL(simple_open); 645 646 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 647 { 648 struct inode *inode = d_inode(old_dentry); 649 650 inode_set_mtime_to_ts(dir, 651 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 652 inc_nlink(inode); 653 ihold(inode); 654 dget(dentry); 655 d_instantiate(dentry, inode); 656 return 0; 657 } 658 EXPORT_SYMBOL(simple_link); 659 660 int simple_empty(struct dentry *dentry) 661 { 662 struct dentry *child; 663 int ret = 0; 664 665 spin_lock(&dentry->d_lock); 666 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 667 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 668 if (simple_positive(child)) { 669 spin_unlock(&child->d_lock); 670 goto out; 671 } 672 spin_unlock(&child->d_lock); 673 } 674 ret = 1; 675 out: 676 spin_unlock(&dentry->d_lock); 677 return ret; 678 } 679 EXPORT_SYMBOL(simple_empty); 680 681 int simple_unlink(struct inode *dir, struct dentry *dentry) 682 { 683 struct inode *inode = d_inode(dentry); 684 685 inode_set_mtime_to_ts(dir, 686 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 687 drop_nlink(inode); 688 dput(dentry); 689 return 0; 690 } 691 EXPORT_SYMBOL(simple_unlink); 692 693 int simple_rmdir(struct inode *dir, struct dentry *dentry) 694 { 695 if (!simple_empty(dentry)) 696 return -ENOTEMPTY; 697 698 drop_nlink(d_inode(dentry)); 699 simple_unlink(dir, dentry); 700 drop_nlink(dir); 701 return 0; 702 } 703 EXPORT_SYMBOL(simple_rmdir); 704 705 /** 706 * simple_rename_timestamp - update the various inode timestamps for rename 707 * @old_dir: old parent directory 708 * @old_dentry: dentry that is being renamed 709 * @new_dir: new parent directory 710 * @new_dentry: target for rename 711 * 712 * POSIX mandates that the old and new parent directories have their ctime and 713 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 714 * their ctime updated. 715 */ 716 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 717 struct inode *new_dir, struct dentry *new_dentry) 718 { 719 struct inode *newino = d_inode(new_dentry); 720 721 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 722 if (new_dir != old_dir) 723 inode_set_mtime_to_ts(new_dir, 724 inode_set_ctime_current(new_dir)); 725 inode_set_ctime_current(d_inode(old_dentry)); 726 if (newino) 727 inode_set_ctime_current(newino); 728 } 729 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 730 731 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 732 struct inode *new_dir, struct dentry *new_dentry) 733 { 734 bool old_is_dir = d_is_dir(old_dentry); 735 bool new_is_dir = d_is_dir(new_dentry); 736 737 if (old_dir != new_dir && old_is_dir != new_is_dir) { 738 if (old_is_dir) { 739 drop_nlink(old_dir); 740 inc_nlink(new_dir); 741 } else { 742 drop_nlink(new_dir); 743 inc_nlink(old_dir); 744 } 745 } 746 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 747 return 0; 748 } 749 EXPORT_SYMBOL_GPL(simple_rename_exchange); 750 751 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 752 struct dentry *old_dentry, struct inode *new_dir, 753 struct dentry *new_dentry, unsigned int flags) 754 { 755 int they_are_dirs = d_is_dir(old_dentry); 756 757 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 758 return -EINVAL; 759 760 if (flags & RENAME_EXCHANGE) 761 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 762 763 if (!simple_empty(new_dentry)) 764 return -ENOTEMPTY; 765 766 if (d_really_is_positive(new_dentry)) { 767 simple_unlink(new_dir, new_dentry); 768 if (they_are_dirs) { 769 drop_nlink(d_inode(new_dentry)); 770 drop_nlink(old_dir); 771 } 772 } else if (they_are_dirs) { 773 drop_nlink(old_dir); 774 inc_nlink(new_dir); 775 } 776 777 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 778 return 0; 779 } 780 EXPORT_SYMBOL(simple_rename); 781 782 /** 783 * simple_setattr - setattr for simple filesystem 784 * @idmap: idmap of the target mount 785 * @dentry: dentry 786 * @iattr: iattr structure 787 * 788 * Returns 0 on success, -error on failure. 789 * 790 * simple_setattr is a simple ->setattr implementation without a proper 791 * implementation of size changes. 792 * 793 * It can either be used for in-memory filesystems or special files 794 * on simple regular filesystems. Anything that needs to change on-disk 795 * or wire state on size changes needs its own setattr method. 796 */ 797 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 798 struct iattr *iattr) 799 { 800 struct inode *inode = d_inode(dentry); 801 int error; 802 803 error = setattr_prepare(idmap, dentry, iattr); 804 if (error) 805 return error; 806 807 if (iattr->ia_valid & ATTR_SIZE) 808 truncate_setsize(inode, iattr->ia_size); 809 setattr_copy(idmap, inode, iattr); 810 mark_inode_dirty(inode); 811 return 0; 812 } 813 EXPORT_SYMBOL(simple_setattr); 814 815 static int simple_read_folio(struct file *file, struct folio *folio) 816 { 817 folio_zero_range(folio, 0, folio_size(folio)); 818 flush_dcache_folio(folio); 819 folio_mark_uptodate(folio); 820 folio_unlock(folio); 821 return 0; 822 } 823 824 int simple_write_begin(struct file *file, struct address_space *mapping, 825 loff_t pos, unsigned len, 826 struct page **pagep, void **fsdata) 827 { 828 struct folio *folio; 829 830 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 831 mapping_gfp_mask(mapping)); 832 if (IS_ERR(folio)) 833 return PTR_ERR(folio); 834 835 *pagep = &folio->page; 836 837 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 838 size_t from = offset_in_folio(folio, pos); 839 840 folio_zero_segments(folio, 0, from, 841 from + len, folio_size(folio)); 842 } 843 return 0; 844 } 845 EXPORT_SYMBOL(simple_write_begin); 846 847 /** 848 * simple_write_end - .write_end helper for non-block-device FSes 849 * @file: See .write_end of address_space_operations 850 * @mapping: " 851 * @pos: " 852 * @len: " 853 * @copied: " 854 * @page: " 855 * @fsdata: " 856 * 857 * simple_write_end does the minimum needed for updating a page after writing is 858 * done. It has the same API signature as the .write_end of 859 * address_space_operations vector. So it can just be set onto .write_end for 860 * FSes that don't need any other processing. i_mutex is assumed to be held. 861 * Block based filesystems should use generic_write_end(). 862 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 863 * is not called, so a filesystem that actually does store data in .write_inode 864 * should extend on what's done here with a call to mark_inode_dirty() in the 865 * case that i_size has changed. 866 * 867 * Use *ONLY* with simple_read_folio() 868 */ 869 static int simple_write_end(struct file *file, struct address_space *mapping, 870 loff_t pos, unsigned len, unsigned copied, 871 struct page *page, void *fsdata) 872 { 873 struct folio *folio = page_folio(page); 874 struct inode *inode = folio->mapping->host; 875 loff_t last_pos = pos + copied; 876 877 /* zero the stale part of the folio if we did a short copy */ 878 if (!folio_test_uptodate(folio)) { 879 if (copied < len) { 880 size_t from = offset_in_folio(folio, pos); 881 882 folio_zero_range(folio, from + copied, len - copied); 883 } 884 folio_mark_uptodate(folio); 885 } 886 /* 887 * No need to use i_size_read() here, the i_size 888 * cannot change under us because we hold the i_mutex. 889 */ 890 if (last_pos > inode->i_size) 891 i_size_write(inode, last_pos); 892 893 folio_mark_dirty(folio); 894 folio_unlock(folio); 895 folio_put(folio); 896 897 return copied; 898 } 899 900 /* 901 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 902 */ 903 const struct address_space_operations ram_aops = { 904 .read_folio = simple_read_folio, 905 .write_begin = simple_write_begin, 906 .write_end = simple_write_end, 907 .dirty_folio = noop_dirty_folio, 908 }; 909 EXPORT_SYMBOL(ram_aops); 910 911 /* 912 * the inodes created here are not hashed. If you use iunique to generate 913 * unique inode values later for this filesystem, then you must take care 914 * to pass it an appropriate max_reserved value to avoid collisions. 915 */ 916 int simple_fill_super(struct super_block *s, unsigned long magic, 917 const struct tree_descr *files) 918 { 919 struct inode *inode; 920 struct dentry *dentry; 921 int i; 922 923 s->s_blocksize = PAGE_SIZE; 924 s->s_blocksize_bits = PAGE_SHIFT; 925 s->s_magic = magic; 926 s->s_op = &simple_super_operations; 927 s->s_time_gran = 1; 928 929 inode = new_inode(s); 930 if (!inode) 931 return -ENOMEM; 932 /* 933 * because the root inode is 1, the files array must not contain an 934 * entry at index 1 935 */ 936 inode->i_ino = 1; 937 inode->i_mode = S_IFDIR | 0755; 938 simple_inode_init_ts(inode); 939 inode->i_op = &simple_dir_inode_operations; 940 inode->i_fop = &simple_dir_operations; 941 set_nlink(inode, 2); 942 s->s_root = d_make_root(inode); 943 if (!s->s_root) 944 return -ENOMEM; 945 for (i = 0; !files->name || files->name[0]; i++, files++) { 946 if (!files->name) 947 continue; 948 949 /* warn if it tries to conflict with the root inode */ 950 if (unlikely(i == 1)) 951 printk(KERN_WARNING "%s: %s passed in a files array" 952 "with an index of 1!\n", __func__, 953 s->s_type->name); 954 955 dentry = d_alloc_name(s->s_root, files->name); 956 if (!dentry) 957 return -ENOMEM; 958 inode = new_inode(s); 959 if (!inode) { 960 dput(dentry); 961 return -ENOMEM; 962 } 963 inode->i_mode = S_IFREG | files->mode; 964 simple_inode_init_ts(inode); 965 inode->i_fop = files->ops; 966 inode->i_ino = i; 967 d_add(dentry, inode); 968 } 969 return 0; 970 } 971 EXPORT_SYMBOL(simple_fill_super); 972 973 static DEFINE_SPINLOCK(pin_fs_lock); 974 975 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 976 { 977 struct vfsmount *mnt = NULL; 978 spin_lock(&pin_fs_lock); 979 if (unlikely(!*mount)) { 980 spin_unlock(&pin_fs_lock); 981 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 982 if (IS_ERR(mnt)) 983 return PTR_ERR(mnt); 984 spin_lock(&pin_fs_lock); 985 if (!*mount) 986 *mount = mnt; 987 } 988 mntget(*mount); 989 ++*count; 990 spin_unlock(&pin_fs_lock); 991 mntput(mnt); 992 return 0; 993 } 994 EXPORT_SYMBOL(simple_pin_fs); 995 996 void simple_release_fs(struct vfsmount **mount, int *count) 997 { 998 struct vfsmount *mnt; 999 spin_lock(&pin_fs_lock); 1000 mnt = *mount; 1001 if (!--*count) 1002 *mount = NULL; 1003 spin_unlock(&pin_fs_lock); 1004 mntput(mnt); 1005 } 1006 EXPORT_SYMBOL(simple_release_fs); 1007 1008 /** 1009 * simple_read_from_buffer - copy data from the buffer to user space 1010 * @to: the user space buffer to read to 1011 * @count: the maximum number of bytes to read 1012 * @ppos: the current position in the buffer 1013 * @from: the buffer to read from 1014 * @available: the size of the buffer 1015 * 1016 * The simple_read_from_buffer() function reads up to @count bytes from the 1017 * buffer @from at offset @ppos into the user space address starting at @to. 1018 * 1019 * On success, the number of bytes read is returned and the offset @ppos is 1020 * advanced by this number, or negative value is returned on error. 1021 **/ 1022 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1023 const void *from, size_t available) 1024 { 1025 loff_t pos = *ppos; 1026 size_t ret; 1027 1028 if (pos < 0) 1029 return -EINVAL; 1030 if (pos >= available || !count) 1031 return 0; 1032 if (count > available - pos) 1033 count = available - pos; 1034 ret = copy_to_user(to, from + pos, count); 1035 if (ret == count) 1036 return -EFAULT; 1037 count -= ret; 1038 *ppos = pos + count; 1039 return count; 1040 } 1041 EXPORT_SYMBOL(simple_read_from_buffer); 1042 1043 /** 1044 * simple_write_to_buffer - copy data from user space to the buffer 1045 * @to: the buffer to write to 1046 * @available: the size of the buffer 1047 * @ppos: the current position in the buffer 1048 * @from: the user space buffer to read from 1049 * @count: the maximum number of bytes to read 1050 * 1051 * The simple_write_to_buffer() function reads up to @count bytes from the user 1052 * space address starting at @from into the buffer @to at offset @ppos. 1053 * 1054 * On success, the number of bytes written is returned and the offset @ppos is 1055 * advanced by this number, or negative value is returned on error. 1056 **/ 1057 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1058 const void __user *from, size_t count) 1059 { 1060 loff_t pos = *ppos; 1061 size_t res; 1062 1063 if (pos < 0) 1064 return -EINVAL; 1065 if (pos >= available || !count) 1066 return 0; 1067 if (count > available - pos) 1068 count = available - pos; 1069 res = copy_from_user(to + pos, from, count); 1070 if (res == count) 1071 return -EFAULT; 1072 count -= res; 1073 *ppos = pos + count; 1074 return count; 1075 } 1076 EXPORT_SYMBOL(simple_write_to_buffer); 1077 1078 /** 1079 * memory_read_from_buffer - copy data from the buffer 1080 * @to: the kernel space buffer to read to 1081 * @count: the maximum number of bytes to read 1082 * @ppos: the current position in the buffer 1083 * @from: the buffer to read from 1084 * @available: the size of the buffer 1085 * 1086 * The memory_read_from_buffer() function reads up to @count bytes from the 1087 * buffer @from at offset @ppos into the kernel space address starting at @to. 1088 * 1089 * On success, the number of bytes read is returned and the offset @ppos is 1090 * advanced by this number, or negative value is returned on error. 1091 **/ 1092 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1093 const void *from, size_t available) 1094 { 1095 loff_t pos = *ppos; 1096 1097 if (pos < 0) 1098 return -EINVAL; 1099 if (pos >= available) 1100 return 0; 1101 if (count > available - pos) 1102 count = available - pos; 1103 memcpy(to, from + pos, count); 1104 *ppos = pos + count; 1105 1106 return count; 1107 } 1108 EXPORT_SYMBOL(memory_read_from_buffer); 1109 1110 /* 1111 * Transaction based IO. 1112 * The file expects a single write which triggers the transaction, and then 1113 * possibly a read which collects the result - which is stored in a 1114 * file-local buffer. 1115 */ 1116 1117 void simple_transaction_set(struct file *file, size_t n) 1118 { 1119 struct simple_transaction_argresp *ar = file->private_data; 1120 1121 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1122 1123 /* 1124 * The barrier ensures that ar->size will really remain zero until 1125 * ar->data is ready for reading. 1126 */ 1127 smp_mb(); 1128 ar->size = n; 1129 } 1130 EXPORT_SYMBOL(simple_transaction_set); 1131 1132 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1133 { 1134 struct simple_transaction_argresp *ar; 1135 static DEFINE_SPINLOCK(simple_transaction_lock); 1136 1137 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1138 return ERR_PTR(-EFBIG); 1139 1140 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1141 if (!ar) 1142 return ERR_PTR(-ENOMEM); 1143 1144 spin_lock(&simple_transaction_lock); 1145 1146 /* only one write allowed per open */ 1147 if (file->private_data) { 1148 spin_unlock(&simple_transaction_lock); 1149 free_page((unsigned long)ar); 1150 return ERR_PTR(-EBUSY); 1151 } 1152 1153 file->private_data = ar; 1154 1155 spin_unlock(&simple_transaction_lock); 1156 1157 if (copy_from_user(ar->data, buf, size)) 1158 return ERR_PTR(-EFAULT); 1159 1160 return ar->data; 1161 } 1162 EXPORT_SYMBOL(simple_transaction_get); 1163 1164 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1165 { 1166 struct simple_transaction_argresp *ar = file->private_data; 1167 1168 if (!ar) 1169 return 0; 1170 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1171 } 1172 EXPORT_SYMBOL(simple_transaction_read); 1173 1174 int simple_transaction_release(struct inode *inode, struct file *file) 1175 { 1176 free_page((unsigned long)file->private_data); 1177 return 0; 1178 } 1179 EXPORT_SYMBOL(simple_transaction_release); 1180 1181 /* Simple attribute files */ 1182 1183 struct simple_attr { 1184 int (*get)(void *, u64 *); 1185 int (*set)(void *, u64); 1186 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1187 char set_buf[24]; 1188 void *data; 1189 const char *fmt; /* format for read operation */ 1190 struct mutex mutex; /* protects access to these buffers */ 1191 }; 1192 1193 /* simple_attr_open is called by an actual attribute open file operation 1194 * to set the attribute specific access operations. */ 1195 int simple_attr_open(struct inode *inode, struct file *file, 1196 int (*get)(void *, u64 *), int (*set)(void *, u64), 1197 const char *fmt) 1198 { 1199 struct simple_attr *attr; 1200 1201 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1202 if (!attr) 1203 return -ENOMEM; 1204 1205 attr->get = get; 1206 attr->set = set; 1207 attr->data = inode->i_private; 1208 attr->fmt = fmt; 1209 mutex_init(&attr->mutex); 1210 1211 file->private_data = attr; 1212 1213 return nonseekable_open(inode, file); 1214 } 1215 EXPORT_SYMBOL_GPL(simple_attr_open); 1216 1217 int simple_attr_release(struct inode *inode, struct file *file) 1218 { 1219 kfree(file->private_data); 1220 return 0; 1221 } 1222 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1223 1224 /* read from the buffer that is filled with the get function */ 1225 ssize_t simple_attr_read(struct file *file, char __user *buf, 1226 size_t len, loff_t *ppos) 1227 { 1228 struct simple_attr *attr; 1229 size_t size; 1230 ssize_t ret; 1231 1232 attr = file->private_data; 1233 1234 if (!attr->get) 1235 return -EACCES; 1236 1237 ret = mutex_lock_interruptible(&attr->mutex); 1238 if (ret) 1239 return ret; 1240 1241 if (*ppos && attr->get_buf[0]) { 1242 /* continued read */ 1243 size = strlen(attr->get_buf); 1244 } else { 1245 /* first read */ 1246 u64 val; 1247 ret = attr->get(attr->data, &val); 1248 if (ret) 1249 goto out; 1250 1251 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1252 attr->fmt, (unsigned long long)val); 1253 } 1254 1255 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1256 out: 1257 mutex_unlock(&attr->mutex); 1258 return ret; 1259 } 1260 EXPORT_SYMBOL_GPL(simple_attr_read); 1261 1262 /* interpret the buffer as a number to call the set function with */ 1263 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1264 size_t len, loff_t *ppos, bool is_signed) 1265 { 1266 struct simple_attr *attr; 1267 unsigned long long val; 1268 size_t size; 1269 ssize_t ret; 1270 1271 attr = file->private_data; 1272 if (!attr->set) 1273 return -EACCES; 1274 1275 ret = mutex_lock_interruptible(&attr->mutex); 1276 if (ret) 1277 return ret; 1278 1279 ret = -EFAULT; 1280 size = min(sizeof(attr->set_buf) - 1, len); 1281 if (copy_from_user(attr->set_buf, buf, size)) 1282 goto out; 1283 1284 attr->set_buf[size] = '\0'; 1285 if (is_signed) 1286 ret = kstrtoll(attr->set_buf, 0, &val); 1287 else 1288 ret = kstrtoull(attr->set_buf, 0, &val); 1289 if (ret) 1290 goto out; 1291 ret = attr->set(attr->data, val); 1292 if (ret == 0) 1293 ret = len; /* on success, claim we got the whole input */ 1294 out: 1295 mutex_unlock(&attr->mutex); 1296 return ret; 1297 } 1298 1299 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1300 size_t len, loff_t *ppos) 1301 { 1302 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1303 } 1304 EXPORT_SYMBOL_GPL(simple_attr_write); 1305 1306 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1307 size_t len, loff_t *ppos) 1308 { 1309 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1310 } 1311 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1312 1313 /** 1314 * generic_encode_ino32_fh - generic export_operations->encode_fh function 1315 * @inode: the object to encode 1316 * @fh: where to store the file handle fragment 1317 * @max_len: maximum length to store there (in 4 byte units) 1318 * @parent: parent directory inode, if wanted 1319 * 1320 * This generic encode_fh function assumes that the 32 inode number 1321 * is suitable for locating an inode, and that the generation number 1322 * can be used to check that it is still valid. It places them in the 1323 * filehandle fragment where export_decode_fh expects to find them. 1324 */ 1325 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, 1326 struct inode *parent) 1327 { 1328 struct fid *fid = (void *)fh; 1329 int len = *max_len; 1330 int type = FILEID_INO32_GEN; 1331 1332 if (parent && (len < 4)) { 1333 *max_len = 4; 1334 return FILEID_INVALID; 1335 } else if (len < 2) { 1336 *max_len = 2; 1337 return FILEID_INVALID; 1338 } 1339 1340 len = 2; 1341 fid->i32.ino = inode->i_ino; 1342 fid->i32.gen = inode->i_generation; 1343 if (parent) { 1344 fid->i32.parent_ino = parent->i_ino; 1345 fid->i32.parent_gen = parent->i_generation; 1346 len = 4; 1347 type = FILEID_INO32_GEN_PARENT; 1348 } 1349 *max_len = len; 1350 return type; 1351 } 1352 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); 1353 1354 /** 1355 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1356 * @sb: filesystem to do the file handle conversion on 1357 * @fid: file handle to convert 1358 * @fh_len: length of the file handle in bytes 1359 * @fh_type: type of file handle 1360 * @get_inode: filesystem callback to retrieve inode 1361 * 1362 * This function decodes @fid as long as it has one of the well-known 1363 * Linux filehandle types and calls @get_inode on it to retrieve the 1364 * inode for the object specified in the file handle. 1365 */ 1366 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1367 int fh_len, int fh_type, struct inode *(*get_inode) 1368 (struct super_block *sb, u64 ino, u32 gen)) 1369 { 1370 struct inode *inode = NULL; 1371 1372 if (fh_len < 2) 1373 return NULL; 1374 1375 switch (fh_type) { 1376 case FILEID_INO32_GEN: 1377 case FILEID_INO32_GEN_PARENT: 1378 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1379 break; 1380 } 1381 1382 return d_obtain_alias(inode); 1383 } 1384 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1385 1386 /** 1387 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1388 * @sb: filesystem to do the file handle conversion on 1389 * @fid: file handle to convert 1390 * @fh_len: length of the file handle in bytes 1391 * @fh_type: type of file handle 1392 * @get_inode: filesystem callback to retrieve inode 1393 * 1394 * This function decodes @fid as long as it has one of the well-known 1395 * Linux filehandle types and calls @get_inode on it to retrieve the 1396 * inode for the _parent_ object specified in the file handle if it 1397 * is specified in the file handle, or NULL otherwise. 1398 */ 1399 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1400 int fh_len, int fh_type, struct inode *(*get_inode) 1401 (struct super_block *sb, u64 ino, u32 gen)) 1402 { 1403 struct inode *inode = NULL; 1404 1405 if (fh_len <= 2) 1406 return NULL; 1407 1408 switch (fh_type) { 1409 case FILEID_INO32_GEN_PARENT: 1410 inode = get_inode(sb, fid->i32.parent_ino, 1411 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1412 break; 1413 } 1414 1415 return d_obtain_alias(inode); 1416 } 1417 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1418 1419 /** 1420 * __generic_file_fsync - generic fsync implementation for simple filesystems 1421 * 1422 * @file: file to synchronize 1423 * @start: start offset in bytes 1424 * @end: end offset in bytes (inclusive) 1425 * @datasync: only synchronize essential metadata if true 1426 * 1427 * This is a generic implementation of the fsync method for simple 1428 * filesystems which track all non-inode metadata in the buffers list 1429 * hanging off the address_space structure. 1430 */ 1431 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1432 int datasync) 1433 { 1434 struct inode *inode = file->f_mapping->host; 1435 int err; 1436 int ret; 1437 1438 err = file_write_and_wait_range(file, start, end); 1439 if (err) 1440 return err; 1441 1442 inode_lock(inode); 1443 ret = sync_mapping_buffers(inode->i_mapping); 1444 if (!(inode->i_state & I_DIRTY_ALL)) 1445 goto out; 1446 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1447 goto out; 1448 1449 err = sync_inode_metadata(inode, 1); 1450 if (ret == 0) 1451 ret = err; 1452 1453 out: 1454 inode_unlock(inode); 1455 /* check and advance again to catch errors after syncing out buffers */ 1456 err = file_check_and_advance_wb_err(file); 1457 if (ret == 0) 1458 ret = err; 1459 return ret; 1460 } 1461 EXPORT_SYMBOL(__generic_file_fsync); 1462 1463 /** 1464 * generic_file_fsync - generic fsync implementation for simple filesystems 1465 * with flush 1466 * @file: file to synchronize 1467 * @start: start offset in bytes 1468 * @end: end offset in bytes (inclusive) 1469 * @datasync: only synchronize essential metadata if true 1470 * 1471 */ 1472 1473 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1474 int datasync) 1475 { 1476 struct inode *inode = file->f_mapping->host; 1477 int err; 1478 1479 err = __generic_file_fsync(file, start, end, datasync); 1480 if (err) 1481 return err; 1482 return blkdev_issue_flush(inode->i_sb->s_bdev); 1483 } 1484 EXPORT_SYMBOL(generic_file_fsync); 1485 1486 /** 1487 * generic_check_addressable - Check addressability of file system 1488 * @blocksize_bits: log of file system block size 1489 * @num_blocks: number of blocks in file system 1490 * 1491 * Determine whether a file system with @num_blocks blocks (and a 1492 * block size of 2**@blocksize_bits) is addressable by the sector_t 1493 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1494 */ 1495 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1496 { 1497 u64 last_fs_block = num_blocks - 1; 1498 u64 last_fs_page = 1499 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1500 1501 if (unlikely(num_blocks == 0)) 1502 return 0; 1503 1504 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1505 return -EINVAL; 1506 1507 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1508 (last_fs_page > (pgoff_t)(~0ULL))) { 1509 return -EFBIG; 1510 } 1511 return 0; 1512 } 1513 EXPORT_SYMBOL(generic_check_addressable); 1514 1515 /* 1516 * No-op implementation of ->fsync for in-memory filesystems. 1517 */ 1518 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1519 { 1520 return 0; 1521 } 1522 EXPORT_SYMBOL(noop_fsync); 1523 1524 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1525 { 1526 /* 1527 * iomap based filesystems support direct I/O without need for 1528 * this callback. However, it still needs to be set in 1529 * inode->a_ops so that open/fcntl know that direct I/O is 1530 * generally supported. 1531 */ 1532 return -EINVAL; 1533 } 1534 EXPORT_SYMBOL_GPL(noop_direct_IO); 1535 1536 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1537 void kfree_link(void *p) 1538 { 1539 kfree(p); 1540 } 1541 EXPORT_SYMBOL(kfree_link); 1542 1543 struct inode *alloc_anon_inode(struct super_block *s) 1544 { 1545 static const struct address_space_operations anon_aops = { 1546 .dirty_folio = noop_dirty_folio, 1547 }; 1548 struct inode *inode = new_inode_pseudo(s); 1549 1550 if (!inode) 1551 return ERR_PTR(-ENOMEM); 1552 1553 inode->i_ino = get_next_ino(); 1554 inode->i_mapping->a_ops = &anon_aops; 1555 1556 /* 1557 * Mark the inode dirty from the very beginning, 1558 * that way it will never be moved to the dirty 1559 * list because mark_inode_dirty() will think 1560 * that it already _is_ on the dirty list. 1561 */ 1562 inode->i_state = I_DIRTY; 1563 inode->i_mode = S_IRUSR | S_IWUSR; 1564 inode->i_uid = current_fsuid(); 1565 inode->i_gid = current_fsgid(); 1566 inode->i_flags |= S_PRIVATE; 1567 simple_inode_init_ts(inode); 1568 return inode; 1569 } 1570 EXPORT_SYMBOL(alloc_anon_inode); 1571 1572 /** 1573 * simple_nosetlease - generic helper for prohibiting leases 1574 * @filp: file pointer 1575 * @arg: type of lease to obtain 1576 * @flp: new lease supplied for insertion 1577 * @priv: private data for lm_setup operation 1578 * 1579 * Generic helper for filesystems that do not wish to allow leases to be set. 1580 * All arguments are ignored and it just returns -EINVAL. 1581 */ 1582 int 1583 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp, 1584 void **priv) 1585 { 1586 return -EINVAL; 1587 } 1588 EXPORT_SYMBOL(simple_nosetlease); 1589 1590 /** 1591 * simple_get_link - generic helper to get the target of "fast" symlinks 1592 * @dentry: not used here 1593 * @inode: the symlink inode 1594 * @done: not used here 1595 * 1596 * Generic helper for filesystems to use for symlink inodes where a pointer to 1597 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1598 * since as an optimization the path lookup code uses any non-NULL ->i_link 1599 * directly, without calling ->get_link(). But ->get_link() still must be set, 1600 * to mark the inode_operations as being for a symlink. 1601 * 1602 * Return: the symlink target 1603 */ 1604 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1605 struct delayed_call *done) 1606 { 1607 return inode->i_link; 1608 } 1609 EXPORT_SYMBOL(simple_get_link); 1610 1611 const struct inode_operations simple_symlink_inode_operations = { 1612 .get_link = simple_get_link, 1613 }; 1614 EXPORT_SYMBOL(simple_symlink_inode_operations); 1615 1616 /* 1617 * Operations for a permanently empty directory. 1618 */ 1619 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1620 { 1621 return ERR_PTR(-ENOENT); 1622 } 1623 1624 static int empty_dir_getattr(struct mnt_idmap *idmap, 1625 const struct path *path, struct kstat *stat, 1626 u32 request_mask, unsigned int query_flags) 1627 { 1628 struct inode *inode = d_inode(path->dentry); 1629 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1630 return 0; 1631 } 1632 1633 static int empty_dir_setattr(struct mnt_idmap *idmap, 1634 struct dentry *dentry, struct iattr *attr) 1635 { 1636 return -EPERM; 1637 } 1638 1639 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1640 { 1641 return -EOPNOTSUPP; 1642 } 1643 1644 static const struct inode_operations empty_dir_inode_operations = { 1645 .lookup = empty_dir_lookup, 1646 .permission = generic_permission, 1647 .setattr = empty_dir_setattr, 1648 .getattr = empty_dir_getattr, 1649 .listxattr = empty_dir_listxattr, 1650 }; 1651 1652 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1653 { 1654 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1655 return generic_file_llseek_size(file, offset, whence, 2, 2); 1656 } 1657 1658 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1659 { 1660 dir_emit_dots(file, ctx); 1661 return 0; 1662 } 1663 1664 static const struct file_operations empty_dir_operations = { 1665 .llseek = empty_dir_llseek, 1666 .read = generic_read_dir, 1667 .iterate_shared = empty_dir_readdir, 1668 .fsync = noop_fsync, 1669 }; 1670 1671 1672 void make_empty_dir_inode(struct inode *inode) 1673 { 1674 set_nlink(inode, 2); 1675 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1676 inode->i_uid = GLOBAL_ROOT_UID; 1677 inode->i_gid = GLOBAL_ROOT_GID; 1678 inode->i_rdev = 0; 1679 inode->i_size = 0; 1680 inode->i_blkbits = PAGE_SHIFT; 1681 inode->i_blocks = 0; 1682 1683 inode->i_op = &empty_dir_inode_operations; 1684 inode->i_opflags &= ~IOP_XATTR; 1685 inode->i_fop = &empty_dir_operations; 1686 } 1687 1688 bool is_empty_dir_inode(struct inode *inode) 1689 { 1690 return (inode->i_fop == &empty_dir_operations) && 1691 (inode->i_op == &empty_dir_inode_operations); 1692 } 1693 1694 #if IS_ENABLED(CONFIG_UNICODE) 1695 /** 1696 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1697 * @dentry: dentry whose name we are checking against 1698 * @len: len of name of dentry 1699 * @str: str pointer to name of dentry 1700 * @name: Name to compare against 1701 * 1702 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1703 */ 1704 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1705 const char *str, const struct qstr *name) 1706 { 1707 const struct dentry *parent = READ_ONCE(dentry->d_parent); 1708 const struct inode *dir = READ_ONCE(parent->d_inode); 1709 const struct super_block *sb = dentry->d_sb; 1710 const struct unicode_map *um = sb->s_encoding; 1711 struct qstr qstr = QSTR_INIT(str, len); 1712 char strbuf[DNAME_INLINE_LEN]; 1713 int ret; 1714 1715 if (!dir || !IS_CASEFOLDED(dir)) 1716 goto fallback; 1717 /* 1718 * If the dentry name is stored in-line, then it may be concurrently 1719 * modified by a rename. If this happens, the VFS will eventually retry 1720 * the lookup, so it doesn't matter what ->d_compare() returns. 1721 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1722 * string. Therefore, we have to copy the name into a temporary buffer. 1723 */ 1724 if (len <= DNAME_INLINE_LEN - 1) { 1725 memcpy(strbuf, str, len); 1726 strbuf[len] = 0; 1727 qstr.name = strbuf; 1728 /* prevent compiler from optimizing out the temporary buffer */ 1729 barrier(); 1730 } 1731 ret = utf8_strncasecmp(um, name, &qstr); 1732 if (ret >= 0) 1733 return ret; 1734 1735 if (sb_has_strict_encoding(sb)) 1736 return -EINVAL; 1737 fallback: 1738 if (len != name->len) 1739 return 1; 1740 return !!memcmp(str, name->name, len); 1741 } 1742 1743 /** 1744 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1745 * @dentry: dentry of the parent directory 1746 * @str: qstr of name whose hash we should fill in 1747 * 1748 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1749 */ 1750 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1751 { 1752 const struct inode *dir = READ_ONCE(dentry->d_inode); 1753 struct super_block *sb = dentry->d_sb; 1754 const struct unicode_map *um = sb->s_encoding; 1755 int ret = 0; 1756 1757 if (!dir || !IS_CASEFOLDED(dir)) 1758 return 0; 1759 1760 ret = utf8_casefold_hash(um, dentry, str); 1761 if (ret < 0 && sb_has_strict_encoding(sb)) 1762 return -EINVAL; 1763 return 0; 1764 } 1765 1766 static const struct dentry_operations generic_ci_dentry_ops = { 1767 .d_hash = generic_ci_d_hash, 1768 .d_compare = generic_ci_d_compare, 1769 }; 1770 #endif 1771 1772 #ifdef CONFIG_FS_ENCRYPTION 1773 static const struct dentry_operations generic_encrypted_dentry_ops = { 1774 .d_revalidate = fscrypt_d_revalidate, 1775 }; 1776 #endif 1777 1778 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1779 static const struct dentry_operations generic_encrypted_ci_dentry_ops = { 1780 .d_hash = generic_ci_d_hash, 1781 .d_compare = generic_ci_d_compare, 1782 .d_revalidate = fscrypt_d_revalidate, 1783 }; 1784 #endif 1785 1786 /** 1787 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry 1788 * @dentry: dentry to set ops on 1789 * 1790 * Casefolded directories need d_hash and d_compare set, so that the dentries 1791 * contained in them are handled case-insensitively. Note that these operations 1792 * are needed on the parent directory rather than on the dentries in it, and 1793 * while the casefolding flag can be toggled on and off on an empty directory, 1794 * dentry_operations can't be changed later. As a result, if the filesystem has 1795 * casefolding support enabled at all, we have to give all dentries the 1796 * casefolding operations even if their inode doesn't have the casefolding flag 1797 * currently (and thus the casefolding ops would be no-ops for now). 1798 * 1799 * Encryption works differently in that the only dentry operation it needs is 1800 * d_revalidate, which it only needs on dentries that have the no-key name flag. 1801 * The no-key flag can't be set "later", so we don't have to worry about that. 1802 * 1803 * Finally, to maximize compatibility with overlayfs (which isn't compatible 1804 * with certain dentry operations) and to avoid taking an unnecessary 1805 * performance hit, we use custom dentry_operations for each possible 1806 * combination rather than always installing all operations. 1807 */ 1808 void generic_set_encrypted_ci_d_ops(struct dentry *dentry) 1809 { 1810 #ifdef CONFIG_FS_ENCRYPTION 1811 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; 1812 #endif 1813 #if IS_ENABLED(CONFIG_UNICODE) 1814 bool needs_ci_ops = dentry->d_sb->s_encoding; 1815 #endif 1816 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1817 if (needs_encrypt_ops && needs_ci_ops) { 1818 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); 1819 return; 1820 } 1821 #endif 1822 #ifdef CONFIG_FS_ENCRYPTION 1823 if (needs_encrypt_ops) { 1824 d_set_d_op(dentry, &generic_encrypted_dentry_ops); 1825 return; 1826 } 1827 #endif 1828 #if IS_ENABLED(CONFIG_UNICODE) 1829 if (needs_ci_ops) { 1830 d_set_d_op(dentry, &generic_ci_dentry_ops); 1831 return; 1832 } 1833 #endif 1834 } 1835 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops); 1836 1837 /** 1838 * inode_maybe_inc_iversion - increments i_version 1839 * @inode: inode with the i_version that should be updated 1840 * @force: increment the counter even if it's not necessary? 1841 * 1842 * Every time the inode is modified, the i_version field must be seen to have 1843 * changed by any observer. 1844 * 1845 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1846 * the value, and clear the queried flag. 1847 * 1848 * In the common case where neither is set, then we can return "false" without 1849 * updating i_version. 1850 * 1851 * If this function returns false, and no other metadata has changed, then we 1852 * can avoid logging the metadata. 1853 */ 1854 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1855 { 1856 u64 cur, new; 1857 1858 /* 1859 * The i_version field is not strictly ordered with any other inode 1860 * information, but the legacy inode_inc_iversion code used a spinlock 1861 * to serialize increments. 1862 * 1863 * Here, we add full memory barriers to ensure that any de-facto 1864 * ordering with other info is preserved. 1865 * 1866 * This barrier pairs with the barrier in inode_query_iversion() 1867 */ 1868 smp_mb(); 1869 cur = inode_peek_iversion_raw(inode); 1870 do { 1871 /* If flag is clear then we needn't do anything */ 1872 if (!force && !(cur & I_VERSION_QUERIED)) 1873 return false; 1874 1875 /* Since lowest bit is flag, add 2 to avoid it */ 1876 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 1877 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1878 return true; 1879 } 1880 EXPORT_SYMBOL(inode_maybe_inc_iversion); 1881 1882 /** 1883 * inode_query_iversion - read i_version for later use 1884 * @inode: inode from which i_version should be read 1885 * 1886 * Read the inode i_version counter. This should be used by callers that wish 1887 * to store the returned i_version for later comparison. This will guarantee 1888 * that a later query of the i_version will result in a different value if 1889 * anything has changed. 1890 * 1891 * In this implementation, we fetch the current value, set the QUERIED flag and 1892 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 1893 * that fails, we try again with the newly fetched value from the cmpxchg. 1894 */ 1895 u64 inode_query_iversion(struct inode *inode) 1896 { 1897 u64 cur, new; 1898 1899 cur = inode_peek_iversion_raw(inode); 1900 do { 1901 /* If flag is already set, then no need to swap */ 1902 if (cur & I_VERSION_QUERIED) { 1903 /* 1904 * This barrier (and the implicit barrier in the 1905 * cmpxchg below) pairs with the barrier in 1906 * inode_maybe_inc_iversion(). 1907 */ 1908 smp_mb(); 1909 break; 1910 } 1911 1912 new = cur | I_VERSION_QUERIED; 1913 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1914 return cur >> I_VERSION_QUERIED_SHIFT; 1915 } 1916 EXPORT_SYMBOL(inode_query_iversion); 1917 1918 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 1919 ssize_t direct_written, ssize_t buffered_written) 1920 { 1921 struct address_space *mapping = iocb->ki_filp->f_mapping; 1922 loff_t pos = iocb->ki_pos - buffered_written; 1923 loff_t end = iocb->ki_pos - 1; 1924 int err; 1925 1926 /* 1927 * If the buffered write fallback returned an error, we want to return 1928 * the number of bytes which were written by direct I/O, or the error 1929 * code if that was zero. 1930 * 1931 * Note that this differs from normal direct-io semantics, which will 1932 * return -EFOO even if some bytes were written. 1933 */ 1934 if (unlikely(buffered_written < 0)) { 1935 if (direct_written) 1936 return direct_written; 1937 return buffered_written; 1938 } 1939 1940 /* 1941 * We need to ensure that the page cache pages are written to disk and 1942 * invalidated to preserve the expected O_DIRECT semantics. 1943 */ 1944 err = filemap_write_and_wait_range(mapping, pos, end); 1945 if (err < 0) { 1946 /* 1947 * We don't know how much we wrote, so just return the number of 1948 * bytes which were direct-written 1949 */ 1950 iocb->ki_pos -= buffered_written; 1951 if (direct_written) 1952 return direct_written; 1953 return err; 1954 } 1955 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 1956 return direct_written + buffered_written; 1957 } 1958 EXPORT_SYMBOL_GPL(direct_write_fallback); 1959 1960 /** 1961 * simple_inode_init_ts - initialize the timestamps for a new inode 1962 * @inode: inode to be initialized 1963 * 1964 * When a new inode is created, most filesystems set the timestamps to the 1965 * current time. Add a helper to do this. 1966 */ 1967 struct timespec64 simple_inode_init_ts(struct inode *inode) 1968 { 1969 struct timespec64 ts = inode_set_ctime_current(inode); 1970 1971 inode_set_atime_to_ts(inode, ts); 1972 inode_set_mtime_to_ts(inode, ts); 1973 return ts; 1974 } 1975 EXPORT_SYMBOL(simple_inode_init_ts); 1976