1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/writeback.h> 19 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 20 #include <linux/fs_context.h> 21 #include <linux/pseudo_fs.h> 22 23 #include <linux/uaccess.h> 24 25 #include "internal.h" 26 27 int simple_getattr(const struct path *path, struct kstat *stat, 28 u32 request_mask, unsigned int query_flags) 29 { 30 struct inode *inode = d_inode(path->dentry); 31 generic_fillattr(inode, stat); 32 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 33 return 0; 34 } 35 EXPORT_SYMBOL(simple_getattr); 36 37 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 38 { 39 buf->f_type = dentry->d_sb->s_magic; 40 buf->f_bsize = PAGE_SIZE; 41 buf->f_namelen = NAME_MAX; 42 return 0; 43 } 44 EXPORT_SYMBOL(simple_statfs); 45 46 /* 47 * Retaining negative dentries for an in-memory filesystem just wastes 48 * memory and lookup time: arrange for them to be deleted immediately. 49 */ 50 int always_delete_dentry(const struct dentry *dentry) 51 { 52 return 1; 53 } 54 EXPORT_SYMBOL(always_delete_dentry); 55 56 const struct dentry_operations simple_dentry_operations = { 57 .d_delete = always_delete_dentry, 58 }; 59 EXPORT_SYMBOL(simple_dentry_operations); 60 61 /* 62 * Lookup the data. This is trivial - if the dentry didn't already 63 * exist, we know it is negative. Set d_op to delete negative dentries. 64 */ 65 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 66 { 67 if (dentry->d_name.len > NAME_MAX) 68 return ERR_PTR(-ENAMETOOLONG); 69 if (!dentry->d_sb->s_d_op) 70 d_set_d_op(dentry, &simple_dentry_operations); 71 d_add(dentry, NULL); 72 return NULL; 73 } 74 EXPORT_SYMBOL(simple_lookup); 75 76 int dcache_dir_open(struct inode *inode, struct file *file) 77 { 78 file->private_data = d_alloc_cursor(file->f_path.dentry); 79 80 return file->private_data ? 0 : -ENOMEM; 81 } 82 EXPORT_SYMBOL(dcache_dir_open); 83 84 int dcache_dir_close(struct inode *inode, struct file *file) 85 { 86 dput(file->private_data); 87 return 0; 88 } 89 EXPORT_SYMBOL(dcache_dir_close); 90 91 /* parent is locked at least shared */ 92 /* 93 * Returns an element of siblings' list. 94 * We are looking for <count>th positive after <p>; if 95 * found, dentry is grabbed and returned to caller. 96 * If no such element exists, NULL is returned. 97 */ 98 static struct dentry *scan_positives(struct dentry *cursor, 99 struct list_head *p, 100 loff_t count, 101 struct dentry *last) 102 { 103 struct dentry *dentry = cursor->d_parent, *found = NULL; 104 105 spin_lock(&dentry->d_lock); 106 while ((p = p->next) != &dentry->d_subdirs) { 107 struct dentry *d = list_entry(p, struct dentry, d_child); 108 // we must at least skip cursors, to avoid livelocks 109 if (d->d_flags & DCACHE_DENTRY_CURSOR) 110 continue; 111 if (simple_positive(d) && !--count) { 112 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 113 if (simple_positive(d)) 114 found = dget_dlock(d); 115 spin_unlock(&d->d_lock); 116 if (likely(found)) 117 break; 118 count = 1; 119 } 120 if (need_resched()) { 121 list_move(&cursor->d_child, p); 122 p = &cursor->d_child; 123 spin_unlock(&dentry->d_lock); 124 cond_resched(); 125 spin_lock(&dentry->d_lock); 126 } 127 } 128 spin_unlock(&dentry->d_lock); 129 dput(last); 130 return found; 131 } 132 133 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 134 { 135 struct dentry *dentry = file->f_path.dentry; 136 switch (whence) { 137 case 1: 138 offset += file->f_pos; 139 /* fall through */ 140 case 0: 141 if (offset >= 0) 142 break; 143 /* fall through */ 144 default: 145 return -EINVAL; 146 } 147 if (offset != file->f_pos) { 148 struct dentry *cursor = file->private_data; 149 struct dentry *to = NULL; 150 151 inode_lock_shared(dentry->d_inode); 152 153 if (offset > 2) 154 to = scan_positives(cursor, &dentry->d_subdirs, 155 offset - 2, NULL); 156 spin_lock(&dentry->d_lock); 157 if (to) 158 list_move(&cursor->d_child, &to->d_child); 159 else 160 list_del_init(&cursor->d_child); 161 spin_unlock(&dentry->d_lock); 162 dput(to); 163 164 file->f_pos = offset; 165 166 inode_unlock_shared(dentry->d_inode); 167 } 168 return offset; 169 } 170 EXPORT_SYMBOL(dcache_dir_lseek); 171 172 /* Relationship between i_mode and the DT_xxx types */ 173 static inline unsigned char dt_type(struct inode *inode) 174 { 175 return (inode->i_mode >> 12) & 15; 176 } 177 178 /* 179 * Directory is locked and all positive dentries in it are safe, since 180 * for ramfs-type trees they can't go away without unlink() or rmdir(), 181 * both impossible due to the lock on directory. 182 */ 183 184 int dcache_readdir(struct file *file, struct dir_context *ctx) 185 { 186 struct dentry *dentry = file->f_path.dentry; 187 struct dentry *cursor = file->private_data; 188 struct list_head *anchor = &dentry->d_subdirs; 189 struct dentry *next = NULL; 190 struct list_head *p; 191 192 if (!dir_emit_dots(file, ctx)) 193 return 0; 194 195 if (ctx->pos == 2) 196 p = anchor; 197 else if (!list_empty(&cursor->d_child)) 198 p = &cursor->d_child; 199 else 200 return 0; 201 202 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 203 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 204 d_inode(next)->i_ino, dt_type(d_inode(next)))) 205 break; 206 ctx->pos++; 207 p = &next->d_child; 208 } 209 spin_lock(&dentry->d_lock); 210 if (next) 211 list_move_tail(&cursor->d_child, &next->d_child); 212 else 213 list_del_init(&cursor->d_child); 214 spin_unlock(&dentry->d_lock); 215 dput(next); 216 217 return 0; 218 } 219 EXPORT_SYMBOL(dcache_readdir); 220 221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 222 { 223 return -EISDIR; 224 } 225 EXPORT_SYMBOL(generic_read_dir); 226 227 const struct file_operations simple_dir_operations = { 228 .open = dcache_dir_open, 229 .release = dcache_dir_close, 230 .llseek = dcache_dir_lseek, 231 .read = generic_read_dir, 232 .iterate_shared = dcache_readdir, 233 .fsync = noop_fsync, 234 }; 235 EXPORT_SYMBOL(simple_dir_operations); 236 237 const struct inode_operations simple_dir_inode_operations = { 238 .lookup = simple_lookup, 239 }; 240 EXPORT_SYMBOL(simple_dir_inode_operations); 241 242 static const struct super_operations simple_super_operations = { 243 .statfs = simple_statfs, 244 }; 245 246 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 247 { 248 struct pseudo_fs_context *ctx = fc->fs_private; 249 struct inode *root; 250 251 s->s_maxbytes = MAX_LFS_FILESIZE; 252 s->s_blocksize = PAGE_SIZE; 253 s->s_blocksize_bits = PAGE_SHIFT; 254 s->s_magic = ctx->magic; 255 s->s_op = ctx->ops ?: &simple_super_operations; 256 s->s_xattr = ctx->xattr; 257 s->s_time_gran = 1; 258 root = new_inode(s); 259 if (!root) 260 return -ENOMEM; 261 262 /* 263 * since this is the first inode, make it number 1. New inodes created 264 * after this must take care not to collide with it (by passing 265 * max_reserved of 1 to iunique). 266 */ 267 root->i_ino = 1; 268 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 269 root->i_atime = root->i_mtime = root->i_ctime = current_time(root); 270 s->s_root = d_make_root(root); 271 if (!s->s_root) 272 return -ENOMEM; 273 s->s_d_op = ctx->dops; 274 return 0; 275 } 276 277 static int pseudo_fs_get_tree(struct fs_context *fc) 278 { 279 return get_tree_nodev(fc, pseudo_fs_fill_super); 280 } 281 282 static void pseudo_fs_free(struct fs_context *fc) 283 { 284 kfree(fc->fs_private); 285 } 286 287 static const struct fs_context_operations pseudo_fs_context_ops = { 288 .free = pseudo_fs_free, 289 .get_tree = pseudo_fs_get_tree, 290 }; 291 292 /* 293 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 294 * will never be mountable) 295 */ 296 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 297 unsigned long magic) 298 { 299 struct pseudo_fs_context *ctx; 300 301 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 302 if (likely(ctx)) { 303 ctx->magic = magic; 304 fc->fs_private = ctx; 305 fc->ops = &pseudo_fs_context_ops; 306 fc->sb_flags |= SB_NOUSER; 307 fc->global = true; 308 } 309 return ctx; 310 } 311 EXPORT_SYMBOL(init_pseudo); 312 313 int simple_open(struct inode *inode, struct file *file) 314 { 315 if (inode->i_private) 316 file->private_data = inode->i_private; 317 return 0; 318 } 319 EXPORT_SYMBOL(simple_open); 320 321 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 322 { 323 struct inode *inode = d_inode(old_dentry); 324 325 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 326 inc_nlink(inode); 327 ihold(inode); 328 dget(dentry); 329 d_instantiate(dentry, inode); 330 return 0; 331 } 332 EXPORT_SYMBOL(simple_link); 333 334 int simple_empty(struct dentry *dentry) 335 { 336 struct dentry *child; 337 int ret = 0; 338 339 spin_lock(&dentry->d_lock); 340 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 341 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 342 if (simple_positive(child)) { 343 spin_unlock(&child->d_lock); 344 goto out; 345 } 346 spin_unlock(&child->d_lock); 347 } 348 ret = 1; 349 out: 350 spin_unlock(&dentry->d_lock); 351 return ret; 352 } 353 EXPORT_SYMBOL(simple_empty); 354 355 int simple_unlink(struct inode *dir, struct dentry *dentry) 356 { 357 struct inode *inode = d_inode(dentry); 358 359 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 360 drop_nlink(inode); 361 dput(dentry); 362 return 0; 363 } 364 EXPORT_SYMBOL(simple_unlink); 365 366 int simple_rmdir(struct inode *dir, struct dentry *dentry) 367 { 368 if (!simple_empty(dentry)) 369 return -ENOTEMPTY; 370 371 drop_nlink(d_inode(dentry)); 372 simple_unlink(dir, dentry); 373 drop_nlink(dir); 374 return 0; 375 } 376 EXPORT_SYMBOL(simple_rmdir); 377 378 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 379 struct inode *new_dir, struct dentry *new_dentry, 380 unsigned int flags) 381 { 382 struct inode *inode = d_inode(old_dentry); 383 int they_are_dirs = d_is_dir(old_dentry); 384 385 if (flags & ~RENAME_NOREPLACE) 386 return -EINVAL; 387 388 if (!simple_empty(new_dentry)) 389 return -ENOTEMPTY; 390 391 if (d_really_is_positive(new_dentry)) { 392 simple_unlink(new_dir, new_dentry); 393 if (they_are_dirs) { 394 drop_nlink(d_inode(new_dentry)); 395 drop_nlink(old_dir); 396 } 397 } else if (they_are_dirs) { 398 drop_nlink(old_dir); 399 inc_nlink(new_dir); 400 } 401 402 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 403 new_dir->i_mtime = inode->i_ctime = current_time(old_dir); 404 405 return 0; 406 } 407 EXPORT_SYMBOL(simple_rename); 408 409 /** 410 * simple_setattr - setattr for simple filesystem 411 * @dentry: dentry 412 * @iattr: iattr structure 413 * 414 * Returns 0 on success, -error on failure. 415 * 416 * simple_setattr is a simple ->setattr implementation without a proper 417 * implementation of size changes. 418 * 419 * It can either be used for in-memory filesystems or special files 420 * on simple regular filesystems. Anything that needs to change on-disk 421 * or wire state on size changes needs its own setattr method. 422 */ 423 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 424 { 425 struct inode *inode = d_inode(dentry); 426 int error; 427 428 error = setattr_prepare(dentry, iattr); 429 if (error) 430 return error; 431 432 if (iattr->ia_valid & ATTR_SIZE) 433 truncate_setsize(inode, iattr->ia_size); 434 setattr_copy(inode, iattr); 435 mark_inode_dirty(inode); 436 return 0; 437 } 438 EXPORT_SYMBOL(simple_setattr); 439 440 int simple_readpage(struct file *file, struct page *page) 441 { 442 clear_highpage(page); 443 flush_dcache_page(page); 444 SetPageUptodate(page); 445 unlock_page(page); 446 return 0; 447 } 448 EXPORT_SYMBOL(simple_readpage); 449 450 int simple_write_begin(struct file *file, struct address_space *mapping, 451 loff_t pos, unsigned len, unsigned flags, 452 struct page **pagep, void **fsdata) 453 { 454 struct page *page; 455 pgoff_t index; 456 457 index = pos >> PAGE_SHIFT; 458 459 page = grab_cache_page_write_begin(mapping, index, flags); 460 if (!page) 461 return -ENOMEM; 462 463 *pagep = page; 464 465 if (!PageUptodate(page) && (len != PAGE_SIZE)) { 466 unsigned from = pos & (PAGE_SIZE - 1); 467 468 zero_user_segments(page, 0, from, from + len, PAGE_SIZE); 469 } 470 return 0; 471 } 472 EXPORT_SYMBOL(simple_write_begin); 473 474 /** 475 * simple_write_end - .write_end helper for non-block-device FSes 476 * @available: See .write_end of address_space_operations 477 * @file: " 478 * @mapping: " 479 * @pos: " 480 * @len: " 481 * @copied: " 482 * @page: " 483 * @fsdata: " 484 * 485 * simple_write_end does the minimum needed for updating a page after writing is 486 * done. It has the same API signature as the .write_end of 487 * address_space_operations vector. So it can just be set onto .write_end for 488 * FSes that don't need any other processing. i_mutex is assumed to be held. 489 * Block based filesystems should use generic_write_end(). 490 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 491 * is not called, so a filesystem that actually does store data in .write_inode 492 * should extend on what's done here with a call to mark_inode_dirty() in the 493 * case that i_size has changed. 494 * 495 * Use *ONLY* with simple_readpage() 496 */ 497 int simple_write_end(struct file *file, struct address_space *mapping, 498 loff_t pos, unsigned len, unsigned copied, 499 struct page *page, void *fsdata) 500 { 501 struct inode *inode = page->mapping->host; 502 loff_t last_pos = pos + copied; 503 504 /* zero the stale part of the page if we did a short copy */ 505 if (!PageUptodate(page)) { 506 if (copied < len) { 507 unsigned from = pos & (PAGE_SIZE - 1); 508 509 zero_user(page, from + copied, len - copied); 510 } 511 SetPageUptodate(page); 512 } 513 /* 514 * No need to use i_size_read() here, the i_size 515 * cannot change under us because we hold the i_mutex. 516 */ 517 if (last_pos > inode->i_size) 518 i_size_write(inode, last_pos); 519 520 set_page_dirty(page); 521 unlock_page(page); 522 put_page(page); 523 524 return copied; 525 } 526 EXPORT_SYMBOL(simple_write_end); 527 528 /* 529 * the inodes created here are not hashed. If you use iunique to generate 530 * unique inode values later for this filesystem, then you must take care 531 * to pass it an appropriate max_reserved value to avoid collisions. 532 */ 533 int simple_fill_super(struct super_block *s, unsigned long magic, 534 const struct tree_descr *files) 535 { 536 struct inode *inode; 537 struct dentry *root; 538 struct dentry *dentry; 539 int i; 540 541 s->s_blocksize = PAGE_SIZE; 542 s->s_blocksize_bits = PAGE_SHIFT; 543 s->s_magic = magic; 544 s->s_op = &simple_super_operations; 545 s->s_time_gran = 1; 546 547 inode = new_inode(s); 548 if (!inode) 549 return -ENOMEM; 550 /* 551 * because the root inode is 1, the files array must not contain an 552 * entry at index 1 553 */ 554 inode->i_ino = 1; 555 inode->i_mode = S_IFDIR | 0755; 556 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 557 inode->i_op = &simple_dir_inode_operations; 558 inode->i_fop = &simple_dir_operations; 559 set_nlink(inode, 2); 560 root = d_make_root(inode); 561 if (!root) 562 return -ENOMEM; 563 for (i = 0; !files->name || files->name[0]; i++, files++) { 564 if (!files->name) 565 continue; 566 567 /* warn if it tries to conflict with the root inode */ 568 if (unlikely(i == 1)) 569 printk(KERN_WARNING "%s: %s passed in a files array" 570 "with an index of 1!\n", __func__, 571 s->s_type->name); 572 573 dentry = d_alloc_name(root, files->name); 574 if (!dentry) 575 goto out; 576 inode = new_inode(s); 577 if (!inode) { 578 dput(dentry); 579 goto out; 580 } 581 inode->i_mode = S_IFREG | files->mode; 582 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 583 inode->i_fop = files->ops; 584 inode->i_ino = i; 585 d_add(dentry, inode); 586 } 587 s->s_root = root; 588 return 0; 589 out: 590 d_genocide(root); 591 shrink_dcache_parent(root); 592 dput(root); 593 return -ENOMEM; 594 } 595 EXPORT_SYMBOL(simple_fill_super); 596 597 static DEFINE_SPINLOCK(pin_fs_lock); 598 599 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 600 { 601 struct vfsmount *mnt = NULL; 602 spin_lock(&pin_fs_lock); 603 if (unlikely(!*mount)) { 604 spin_unlock(&pin_fs_lock); 605 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 606 if (IS_ERR(mnt)) 607 return PTR_ERR(mnt); 608 spin_lock(&pin_fs_lock); 609 if (!*mount) 610 *mount = mnt; 611 } 612 mntget(*mount); 613 ++*count; 614 spin_unlock(&pin_fs_lock); 615 mntput(mnt); 616 return 0; 617 } 618 EXPORT_SYMBOL(simple_pin_fs); 619 620 void simple_release_fs(struct vfsmount **mount, int *count) 621 { 622 struct vfsmount *mnt; 623 spin_lock(&pin_fs_lock); 624 mnt = *mount; 625 if (!--*count) 626 *mount = NULL; 627 spin_unlock(&pin_fs_lock); 628 mntput(mnt); 629 } 630 EXPORT_SYMBOL(simple_release_fs); 631 632 /** 633 * simple_read_from_buffer - copy data from the buffer to user space 634 * @to: the user space buffer to read to 635 * @count: the maximum number of bytes to read 636 * @ppos: the current position in the buffer 637 * @from: the buffer to read from 638 * @available: the size of the buffer 639 * 640 * The simple_read_from_buffer() function reads up to @count bytes from the 641 * buffer @from at offset @ppos into the user space address starting at @to. 642 * 643 * On success, the number of bytes read is returned and the offset @ppos is 644 * advanced by this number, or negative value is returned on error. 645 **/ 646 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 647 const void *from, size_t available) 648 { 649 loff_t pos = *ppos; 650 size_t ret; 651 652 if (pos < 0) 653 return -EINVAL; 654 if (pos >= available || !count) 655 return 0; 656 if (count > available - pos) 657 count = available - pos; 658 ret = copy_to_user(to, from + pos, count); 659 if (ret == count) 660 return -EFAULT; 661 count -= ret; 662 *ppos = pos + count; 663 return count; 664 } 665 EXPORT_SYMBOL(simple_read_from_buffer); 666 667 /** 668 * simple_write_to_buffer - copy data from user space to the buffer 669 * @to: the buffer to write to 670 * @available: the size of the buffer 671 * @ppos: the current position in the buffer 672 * @from: the user space buffer to read from 673 * @count: the maximum number of bytes to read 674 * 675 * The simple_write_to_buffer() function reads up to @count bytes from the user 676 * space address starting at @from into the buffer @to at offset @ppos. 677 * 678 * On success, the number of bytes written is returned and the offset @ppos is 679 * advanced by this number, or negative value is returned on error. 680 **/ 681 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 682 const void __user *from, size_t count) 683 { 684 loff_t pos = *ppos; 685 size_t res; 686 687 if (pos < 0) 688 return -EINVAL; 689 if (pos >= available || !count) 690 return 0; 691 if (count > available - pos) 692 count = available - pos; 693 res = copy_from_user(to + pos, from, count); 694 if (res == count) 695 return -EFAULT; 696 count -= res; 697 *ppos = pos + count; 698 return count; 699 } 700 EXPORT_SYMBOL(simple_write_to_buffer); 701 702 /** 703 * memory_read_from_buffer - copy data from the buffer 704 * @to: the kernel space buffer to read to 705 * @count: the maximum number of bytes to read 706 * @ppos: the current position in the buffer 707 * @from: the buffer to read from 708 * @available: the size of the buffer 709 * 710 * The memory_read_from_buffer() function reads up to @count bytes from the 711 * buffer @from at offset @ppos into the kernel space address starting at @to. 712 * 713 * On success, the number of bytes read is returned and the offset @ppos is 714 * advanced by this number, or negative value is returned on error. 715 **/ 716 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 717 const void *from, size_t available) 718 { 719 loff_t pos = *ppos; 720 721 if (pos < 0) 722 return -EINVAL; 723 if (pos >= available) 724 return 0; 725 if (count > available - pos) 726 count = available - pos; 727 memcpy(to, from + pos, count); 728 *ppos = pos + count; 729 730 return count; 731 } 732 EXPORT_SYMBOL(memory_read_from_buffer); 733 734 /* 735 * Transaction based IO. 736 * The file expects a single write which triggers the transaction, and then 737 * possibly a read which collects the result - which is stored in a 738 * file-local buffer. 739 */ 740 741 void simple_transaction_set(struct file *file, size_t n) 742 { 743 struct simple_transaction_argresp *ar = file->private_data; 744 745 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 746 747 /* 748 * The barrier ensures that ar->size will really remain zero until 749 * ar->data is ready for reading. 750 */ 751 smp_mb(); 752 ar->size = n; 753 } 754 EXPORT_SYMBOL(simple_transaction_set); 755 756 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 757 { 758 struct simple_transaction_argresp *ar; 759 static DEFINE_SPINLOCK(simple_transaction_lock); 760 761 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 762 return ERR_PTR(-EFBIG); 763 764 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 765 if (!ar) 766 return ERR_PTR(-ENOMEM); 767 768 spin_lock(&simple_transaction_lock); 769 770 /* only one write allowed per open */ 771 if (file->private_data) { 772 spin_unlock(&simple_transaction_lock); 773 free_page((unsigned long)ar); 774 return ERR_PTR(-EBUSY); 775 } 776 777 file->private_data = ar; 778 779 spin_unlock(&simple_transaction_lock); 780 781 if (copy_from_user(ar->data, buf, size)) 782 return ERR_PTR(-EFAULT); 783 784 return ar->data; 785 } 786 EXPORT_SYMBOL(simple_transaction_get); 787 788 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 789 { 790 struct simple_transaction_argresp *ar = file->private_data; 791 792 if (!ar) 793 return 0; 794 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 795 } 796 EXPORT_SYMBOL(simple_transaction_read); 797 798 int simple_transaction_release(struct inode *inode, struct file *file) 799 { 800 free_page((unsigned long)file->private_data); 801 return 0; 802 } 803 EXPORT_SYMBOL(simple_transaction_release); 804 805 /* Simple attribute files */ 806 807 struct simple_attr { 808 int (*get)(void *, u64 *); 809 int (*set)(void *, u64); 810 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 811 char set_buf[24]; 812 void *data; 813 const char *fmt; /* format for read operation */ 814 struct mutex mutex; /* protects access to these buffers */ 815 }; 816 817 /* simple_attr_open is called by an actual attribute open file operation 818 * to set the attribute specific access operations. */ 819 int simple_attr_open(struct inode *inode, struct file *file, 820 int (*get)(void *, u64 *), int (*set)(void *, u64), 821 const char *fmt) 822 { 823 struct simple_attr *attr; 824 825 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 826 if (!attr) 827 return -ENOMEM; 828 829 attr->get = get; 830 attr->set = set; 831 attr->data = inode->i_private; 832 attr->fmt = fmt; 833 mutex_init(&attr->mutex); 834 835 file->private_data = attr; 836 837 return nonseekable_open(inode, file); 838 } 839 EXPORT_SYMBOL_GPL(simple_attr_open); 840 841 int simple_attr_release(struct inode *inode, struct file *file) 842 { 843 kfree(file->private_data); 844 return 0; 845 } 846 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 847 848 /* read from the buffer that is filled with the get function */ 849 ssize_t simple_attr_read(struct file *file, char __user *buf, 850 size_t len, loff_t *ppos) 851 { 852 struct simple_attr *attr; 853 size_t size; 854 ssize_t ret; 855 856 attr = file->private_data; 857 858 if (!attr->get) 859 return -EACCES; 860 861 ret = mutex_lock_interruptible(&attr->mutex); 862 if (ret) 863 return ret; 864 865 if (*ppos) { /* continued read */ 866 size = strlen(attr->get_buf); 867 } else { /* first read */ 868 u64 val; 869 ret = attr->get(attr->data, &val); 870 if (ret) 871 goto out; 872 873 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 874 attr->fmt, (unsigned long long)val); 875 } 876 877 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 878 out: 879 mutex_unlock(&attr->mutex); 880 return ret; 881 } 882 EXPORT_SYMBOL_GPL(simple_attr_read); 883 884 /* interpret the buffer as a number to call the set function with */ 885 ssize_t simple_attr_write(struct file *file, const char __user *buf, 886 size_t len, loff_t *ppos) 887 { 888 struct simple_attr *attr; 889 u64 val; 890 size_t size; 891 ssize_t ret; 892 893 attr = file->private_data; 894 if (!attr->set) 895 return -EACCES; 896 897 ret = mutex_lock_interruptible(&attr->mutex); 898 if (ret) 899 return ret; 900 901 ret = -EFAULT; 902 size = min(sizeof(attr->set_buf) - 1, len); 903 if (copy_from_user(attr->set_buf, buf, size)) 904 goto out; 905 906 attr->set_buf[size] = '\0'; 907 val = simple_strtoll(attr->set_buf, NULL, 0); 908 ret = attr->set(attr->data, val); 909 if (ret == 0) 910 ret = len; /* on success, claim we got the whole input */ 911 out: 912 mutex_unlock(&attr->mutex); 913 return ret; 914 } 915 EXPORT_SYMBOL_GPL(simple_attr_write); 916 917 /** 918 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 919 * @sb: filesystem to do the file handle conversion on 920 * @fid: file handle to convert 921 * @fh_len: length of the file handle in bytes 922 * @fh_type: type of file handle 923 * @get_inode: filesystem callback to retrieve inode 924 * 925 * This function decodes @fid as long as it has one of the well-known 926 * Linux filehandle types and calls @get_inode on it to retrieve the 927 * inode for the object specified in the file handle. 928 */ 929 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 930 int fh_len, int fh_type, struct inode *(*get_inode) 931 (struct super_block *sb, u64 ino, u32 gen)) 932 { 933 struct inode *inode = NULL; 934 935 if (fh_len < 2) 936 return NULL; 937 938 switch (fh_type) { 939 case FILEID_INO32_GEN: 940 case FILEID_INO32_GEN_PARENT: 941 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 942 break; 943 } 944 945 return d_obtain_alias(inode); 946 } 947 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 948 949 /** 950 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 951 * @sb: filesystem to do the file handle conversion on 952 * @fid: file handle to convert 953 * @fh_len: length of the file handle in bytes 954 * @fh_type: type of file handle 955 * @get_inode: filesystem callback to retrieve inode 956 * 957 * This function decodes @fid as long as it has one of the well-known 958 * Linux filehandle types and calls @get_inode on it to retrieve the 959 * inode for the _parent_ object specified in the file handle if it 960 * is specified in the file handle, or NULL otherwise. 961 */ 962 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 963 int fh_len, int fh_type, struct inode *(*get_inode) 964 (struct super_block *sb, u64 ino, u32 gen)) 965 { 966 struct inode *inode = NULL; 967 968 if (fh_len <= 2) 969 return NULL; 970 971 switch (fh_type) { 972 case FILEID_INO32_GEN_PARENT: 973 inode = get_inode(sb, fid->i32.parent_ino, 974 (fh_len > 3 ? fid->i32.parent_gen : 0)); 975 break; 976 } 977 978 return d_obtain_alias(inode); 979 } 980 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 981 982 /** 983 * __generic_file_fsync - generic fsync implementation for simple filesystems 984 * 985 * @file: file to synchronize 986 * @start: start offset in bytes 987 * @end: end offset in bytes (inclusive) 988 * @datasync: only synchronize essential metadata if true 989 * 990 * This is a generic implementation of the fsync method for simple 991 * filesystems which track all non-inode metadata in the buffers list 992 * hanging off the address_space structure. 993 */ 994 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 995 int datasync) 996 { 997 struct inode *inode = file->f_mapping->host; 998 int err; 999 int ret; 1000 1001 err = file_write_and_wait_range(file, start, end); 1002 if (err) 1003 return err; 1004 1005 inode_lock(inode); 1006 ret = sync_mapping_buffers(inode->i_mapping); 1007 if (!(inode->i_state & I_DIRTY_ALL)) 1008 goto out; 1009 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1010 goto out; 1011 1012 err = sync_inode_metadata(inode, 1); 1013 if (ret == 0) 1014 ret = err; 1015 1016 out: 1017 inode_unlock(inode); 1018 /* check and advance again to catch errors after syncing out buffers */ 1019 err = file_check_and_advance_wb_err(file); 1020 if (ret == 0) 1021 ret = err; 1022 return ret; 1023 } 1024 EXPORT_SYMBOL(__generic_file_fsync); 1025 1026 /** 1027 * generic_file_fsync - generic fsync implementation for simple filesystems 1028 * with flush 1029 * @file: file to synchronize 1030 * @start: start offset in bytes 1031 * @end: end offset in bytes (inclusive) 1032 * @datasync: only synchronize essential metadata if true 1033 * 1034 */ 1035 1036 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1037 int datasync) 1038 { 1039 struct inode *inode = file->f_mapping->host; 1040 int err; 1041 1042 err = __generic_file_fsync(file, start, end, datasync); 1043 if (err) 1044 return err; 1045 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 1046 } 1047 EXPORT_SYMBOL(generic_file_fsync); 1048 1049 /** 1050 * generic_check_addressable - Check addressability of file system 1051 * @blocksize_bits: log of file system block size 1052 * @num_blocks: number of blocks in file system 1053 * 1054 * Determine whether a file system with @num_blocks blocks (and a 1055 * block size of 2**@blocksize_bits) is addressable by the sector_t 1056 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1057 */ 1058 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1059 { 1060 u64 last_fs_block = num_blocks - 1; 1061 u64 last_fs_page = 1062 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1063 1064 if (unlikely(num_blocks == 0)) 1065 return 0; 1066 1067 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1068 return -EINVAL; 1069 1070 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1071 (last_fs_page > (pgoff_t)(~0ULL))) { 1072 return -EFBIG; 1073 } 1074 return 0; 1075 } 1076 EXPORT_SYMBOL(generic_check_addressable); 1077 1078 /* 1079 * No-op implementation of ->fsync for in-memory filesystems. 1080 */ 1081 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1082 { 1083 return 0; 1084 } 1085 EXPORT_SYMBOL(noop_fsync); 1086 1087 int noop_set_page_dirty(struct page *page) 1088 { 1089 /* 1090 * Unlike __set_page_dirty_no_writeback that handles dirty page 1091 * tracking in the page object, dax does all dirty tracking in 1092 * the inode address_space in response to mkwrite faults. In the 1093 * dax case we only need to worry about potentially dirty CPU 1094 * caches, not dirty page cache pages to write back. 1095 * 1096 * This callback is defined to prevent fallback to 1097 * __set_page_dirty_buffers() in set_page_dirty(). 1098 */ 1099 return 0; 1100 } 1101 EXPORT_SYMBOL_GPL(noop_set_page_dirty); 1102 1103 void noop_invalidatepage(struct page *page, unsigned int offset, 1104 unsigned int length) 1105 { 1106 /* 1107 * There is no page cache to invalidate in the dax case, however 1108 * we need this callback defined to prevent falling back to 1109 * block_invalidatepage() in do_invalidatepage(). 1110 */ 1111 } 1112 EXPORT_SYMBOL_GPL(noop_invalidatepage); 1113 1114 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1115 { 1116 /* 1117 * iomap based filesystems support direct I/O without need for 1118 * this callback. However, it still needs to be set in 1119 * inode->a_ops so that open/fcntl know that direct I/O is 1120 * generally supported. 1121 */ 1122 return -EINVAL; 1123 } 1124 EXPORT_SYMBOL_GPL(noop_direct_IO); 1125 1126 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1127 void kfree_link(void *p) 1128 { 1129 kfree(p); 1130 } 1131 EXPORT_SYMBOL(kfree_link); 1132 1133 /* 1134 * nop .set_page_dirty method so that people can use .page_mkwrite on 1135 * anon inodes. 1136 */ 1137 static int anon_set_page_dirty(struct page *page) 1138 { 1139 return 0; 1140 }; 1141 1142 /* 1143 * A single inode exists for all anon_inode files. Contrary to pipes, 1144 * anon_inode inodes have no associated per-instance data, so we need 1145 * only allocate one of them. 1146 */ 1147 struct inode *alloc_anon_inode(struct super_block *s) 1148 { 1149 static const struct address_space_operations anon_aops = { 1150 .set_page_dirty = anon_set_page_dirty, 1151 }; 1152 struct inode *inode = new_inode_pseudo(s); 1153 1154 if (!inode) 1155 return ERR_PTR(-ENOMEM); 1156 1157 inode->i_ino = get_next_ino(); 1158 inode->i_mapping->a_ops = &anon_aops; 1159 1160 /* 1161 * Mark the inode dirty from the very beginning, 1162 * that way it will never be moved to the dirty 1163 * list because mark_inode_dirty() will think 1164 * that it already _is_ on the dirty list. 1165 */ 1166 inode->i_state = I_DIRTY; 1167 inode->i_mode = S_IRUSR | S_IWUSR; 1168 inode->i_uid = current_fsuid(); 1169 inode->i_gid = current_fsgid(); 1170 inode->i_flags |= S_PRIVATE; 1171 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 1172 return inode; 1173 } 1174 EXPORT_SYMBOL(alloc_anon_inode); 1175 1176 /** 1177 * simple_nosetlease - generic helper for prohibiting leases 1178 * @filp: file pointer 1179 * @arg: type of lease to obtain 1180 * @flp: new lease supplied for insertion 1181 * @priv: private data for lm_setup operation 1182 * 1183 * Generic helper for filesystems that do not wish to allow leases to be set. 1184 * All arguments are ignored and it just returns -EINVAL. 1185 */ 1186 int 1187 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, 1188 void **priv) 1189 { 1190 return -EINVAL; 1191 } 1192 EXPORT_SYMBOL(simple_nosetlease); 1193 1194 /** 1195 * simple_get_link - generic helper to get the target of "fast" symlinks 1196 * @dentry: not used here 1197 * @inode: the symlink inode 1198 * @done: not used here 1199 * 1200 * Generic helper for filesystems to use for symlink inodes where a pointer to 1201 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1202 * since as an optimization the path lookup code uses any non-NULL ->i_link 1203 * directly, without calling ->get_link(). But ->get_link() still must be set, 1204 * to mark the inode_operations as being for a symlink. 1205 * 1206 * Return: the symlink target 1207 */ 1208 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1209 struct delayed_call *done) 1210 { 1211 return inode->i_link; 1212 } 1213 EXPORT_SYMBOL(simple_get_link); 1214 1215 const struct inode_operations simple_symlink_inode_operations = { 1216 .get_link = simple_get_link, 1217 }; 1218 EXPORT_SYMBOL(simple_symlink_inode_operations); 1219 1220 /* 1221 * Operations for a permanently empty directory. 1222 */ 1223 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1224 { 1225 return ERR_PTR(-ENOENT); 1226 } 1227 1228 static int empty_dir_getattr(const struct path *path, struct kstat *stat, 1229 u32 request_mask, unsigned int query_flags) 1230 { 1231 struct inode *inode = d_inode(path->dentry); 1232 generic_fillattr(inode, stat); 1233 return 0; 1234 } 1235 1236 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr) 1237 { 1238 return -EPERM; 1239 } 1240 1241 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1242 { 1243 return -EOPNOTSUPP; 1244 } 1245 1246 static const struct inode_operations empty_dir_inode_operations = { 1247 .lookup = empty_dir_lookup, 1248 .permission = generic_permission, 1249 .setattr = empty_dir_setattr, 1250 .getattr = empty_dir_getattr, 1251 .listxattr = empty_dir_listxattr, 1252 }; 1253 1254 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1255 { 1256 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1257 return generic_file_llseek_size(file, offset, whence, 2, 2); 1258 } 1259 1260 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1261 { 1262 dir_emit_dots(file, ctx); 1263 return 0; 1264 } 1265 1266 static const struct file_operations empty_dir_operations = { 1267 .llseek = empty_dir_llseek, 1268 .read = generic_read_dir, 1269 .iterate_shared = empty_dir_readdir, 1270 .fsync = noop_fsync, 1271 }; 1272 1273 1274 void make_empty_dir_inode(struct inode *inode) 1275 { 1276 set_nlink(inode, 2); 1277 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1278 inode->i_uid = GLOBAL_ROOT_UID; 1279 inode->i_gid = GLOBAL_ROOT_GID; 1280 inode->i_rdev = 0; 1281 inode->i_size = 0; 1282 inode->i_blkbits = PAGE_SHIFT; 1283 inode->i_blocks = 0; 1284 1285 inode->i_op = &empty_dir_inode_operations; 1286 inode->i_opflags &= ~IOP_XATTR; 1287 inode->i_fop = &empty_dir_operations; 1288 } 1289 1290 bool is_empty_dir_inode(struct inode *inode) 1291 { 1292 return (inode->i_fop == &empty_dir_operations) && 1293 (inode->i_op == &empty_dir_inode_operations); 1294 } 1295