xref: /linux/fs/libfs.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 
23 #include <linux/uaccess.h>
24 
25 #include "internal.h"
26 
27 int simple_getattr(const struct path *path, struct kstat *stat,
28 		   u32 request_mask, unsigned int query_flags)
29 {
30 	struct inode *inode = d_inode(path->dentry);
31 	generic_fillattr(inode, stat);
32 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
33 	return 0;
34 }
35 EXPORT_SYMBOL(simple_getattr);
36 
37 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
38 {
39 	buf->f_type = dentry->d_sb->s_magic;
40 	buf->f_bsize = PAGE_SIZE;
41 	buf->f_namelen = NAME_MAX;
42 	return 0;
43 }
44 EXPORT_SYMBOL(simple_statfs);
45 
46 /*
47  * Retaining negative dentries for an in-memory filesystem just wastes
48  * memory and lookup time: arrange for them to be deleted immediately.
49  */
50 int always_delete_dentry(const struct dentry *dentry)
51 {
52 	return 1;
53 }
54 EXPORT_SYMBOL(always_delete_dentry);
55 
56 const struct dentry_operations simple_dentry_operations = {
57 	.d_delete = always_delete_dentry,
58 };
59 EXPORT_SYMBOL(simple_dentry_operations);
60 
61 /*
62  * Lookup the data. This is trivial - if the dentry didn't already
63  * exist, we know it is negative.  Set d_op to delete negative dentries.
64  */
65 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
66 {
67 	if (dentry->d_name.len > NAME_MAX)
68 		return ERR_PTR(-ENAMETOOLONG);
69 	if (!dentry->d_sb->s_d_op)
70 		d_set_d_op(dentry, &simple_dentry_operations);
71 	d_add(dentry, NULL);
72 	return NULL;
73 }
74 EXPORT_SYMBOL(simple_lookup);
75 
76 int dcache_dir_open(struct inode *inode, struct file *file)
77 {
78 	file->private_data = d_alloc_cursor(file->f_path.dentry);
79 
80 	return file->private_data ? 0 : -ENOMEM;
81 }
82 EXPORT_SYMBOL(dcache_dir_open);
83 
84 int dcache_dir_close(struct inode *inode, struct file *file)
85 {
86 	dput(file->private_data);
87 	return 0;
88 }
89 EXPORT_SYMBOL(dcache_dir_close);
90 
91 /* parent is locked at least shared */
92 /*
93  * Returns an element of siblings' list.
94  * We are looking for <count>th positive after <p>; if
95  * found, dentry is grabbed and returned to caller.
96  * If no such element exists, NULL is returned.
97  */
98 static struct dentry *scan_positives(struct dentry *cursor,
99 					struct list_head *p,
100 					loff_t count,
101 					struct dentry *last)
102 {
103 	struct dentry *dentry = cursor->d_parent, *found = NULL;
104 
105 	spin_lock(&dentry->d_lock);
106 	while ((p = p->next) != &dentry->d_subdirs) {
107 		struct dentry *d = list_entry(p, struct dentry, d_child);
108 		// we must at least skip cursors, to avoid livelocks
109 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
110 			continue;
111 		if (simple_positive(d) && !--count) {
112 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
113 			if (simple_positive(d))
114 				found = dget_dlock(d);
115 			spin_unlock(&d->d_lock);
116 			if (likely(found))
117 				break;
118 			count = 1;
119 		}
120 		if (need_resched()) {
121 			list_move(&cursor->d_child, p);
122 			p = &cursor->d_child;
123 			spin_unlock(&dentry->d_lock);
124 			cond_resched();
125 			spin_lock(&dentry->d_lock);
126 		}
127 	}
128 	spin_unlock(&dentry->d_lock);
129 	dput(last);
130 	return found;
131 }
132 
133 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
134 {
135 	struct dentry *dentry = file->f_path.dentry;
136 	switch (whence) {
137 		case 1:
138 			offset += file->f_pos;
139 			/* fall through */
140 		case 0:
141 			if (offset >= 0)
142 				break;
143 			/* fall through */
144 		default:
145 			return -EINVAL;
146 	}
147 	if (offset != file->f_pos) {
148 		struct dentry *cursor = file->private_data;
149 		struct dentry *to = NULL;
150 
151 		inode_lock_shared(dentry->d_inode);
152 
153 		if (offset > 2)
154 			to = scan_positives(cursor, &dentry->d_subdirs,
155 					    offset - 2, NULL);
156 		spin_lock(&dentry->d_lock);
157 		if (to)
158 			list_move(&cursor->d_child, &to->d_child);
159 		else
160 			list_del_init(&cursor->d_child);
161 		spin_unlock(&dentry->d_lock);
162 		dput(to);
163 
164 		file->f_pos = offset;
165 
166 		inode_unlock_shared(dentry->d_inode);
167 	}
168 	return offset;
169 }
170 EXPORT_SYMBOL(dcache_dir_lseek);
171 
172 /* Relationship between i_mode and the DT_xxx types */
173 static inline unsigned char dt_type(struct inode *inode)
174 {
175 	return (inode->i_mode >> 12) & 15;
176 }
177 
178 /*
179  * Directory is locked and all positive dentries in it are safe, since
180  * for ramfs-type trees they can't go away without unlink() or rmdir(),
181  * both impossible due to the lock on directory.
182  */
183 
184 int dcache_readdir(struct file *file, struct dir_context *ctx)
185 {
186 	struct dentry *dentry = file->f_path.dentry;
187 	struct dentry *cursor = file->private_data;
188 	struct list_head *anchor = &dentry->d_subdirs;
189 	struct dentry *next = NULL;
190 	struct list_head *p;
191 
192 	if (!dir_emit_dots(file, ctx))
193 		return 0;
194 
195 	if (ctx->pos == 2)
196 		p = anchor;
197 	else if (!list_empty(&cursor->d_child))
198 		p = &cursor->d_child;
199 	else
200 		return 0;
201 
202 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
203 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
204 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
205 			break;
206 		ctx->pos++;
207 		p = &next->d_child;
208 	}
209 	spin_lock(&dentry->d_lock);
210 	if (next)
211 		list_move_tail(&cursor->d_child, &next->d_child);
212 	else
213 		list_del_init(&cursor->d_child);
214 	spin_unlock(&dentry->d_lock);
215 	dput(next);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220 
221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 	return -EISDIR;
224 }
225 EXPORT_SYMBOL(generic_read_dir);
226 
227 const struct file_operations simple_dir_operations = {
228 	.open		= dcache_dir_open,
229 	.release	= dcache_dir_close,
230 	.llseek		= dcache_dir_lseek,
231 	.read		= generic_read_dir,
232 	.iterate_shared	= dcache_readdir,
233 	.fsync		= noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236 
237 const struct inode_operations simple_dir_inode_operations = {
238 	.lookup		= simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241 
242 static const struct super_operations simple_super_operations = {
243 	.statfs		= simple_statfs,
244 };
245 
246 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
247 {
248 	struct pseudo_fs_context *ctx = fc->fs_private;
249 	struct inode *root;
250 
251 	s->s_maxbytes = MAX_LFS_FILESIZE;
252 	s->s_blocksize = PAGE_SIZE;
253 	s->s_blocksize_bits = PAGE_SHIFT;
254 	s->s_magic = ctx->magic;
255 	s->s_op = ctx->ops ?: &simple_super_operations;
256 	s->s_xattr = ctx->xattr;
257 	s->s_time_gran = 1;
258 	root = new_inode(s);
259 	if (!root)
260 		return -ENOMEM;
261 
262 	/*
263 	 * since this is the first inode, make it number 1. New inodes created
264 	 * after this must take care not to collide with it (by passing
265 	 * max_reserved of 1 to iunique).
266 	 */
267 	root->i_ino = 1;
268 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
269 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
270 	s->s_root = d_make_root(root);
271 	if (!s->s_root)
272 		return -ENOMEM;
273 	s->s_d_op = ctx->dops;
274 	return 0;
275 }
276 
277 static int pseudo_fs_get_tree(struct fs_context *fc)
278 {
279 	return get_tree_nodev(fc, pseudo_fs_fill_super);
280 }
281 
282 static void pseudo_fs_free(struct fs_context *fc)
283 {
284 	kfree(fc->fs_private);
285 }
286 
287 static const struct fs_context_operations pseudo_fs_context_ops = {
288 	.free		= pseudo_fs_free,
289 	.get_tree	= pseudo_fs_get_tree,
290 };
291 
292 /*
293  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
294  * will never be mountable)
295  */
296 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
297 					unsigned long magic)
298 {
299 	struct pseudo_fs_context *ctx;
300 
301 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
302 	if (likely(ctx)) {
303 		ctx->magic = magic;
304 		fc->fs_private = ctx;
305 		fc->ops = &pseudo_fs_context_ops;
306 		fc->sb_flags |= SB_NOUSER;
307 		fc->global = true;
308 	}
309 	return ctx;
310 }
311 EXPORT_SYMBOL(init_pseudo);
312 
313 int simple_open(struct inode *inode, struct file *file)
314 {
315 	if (inode->i_private)
316 		file->private_data = inode->i_private;
317 	return 0;
318 }
319 EXPORT_SYMBOL(simple_open);
320 
321 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
322 {
323 	struct inode *inode = d_inode(old_dentry);
324 
325 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
326 	inc_nlink(inode);
327 	ihold(inode);
328 	dget(dentry);
329 	d_instantiate(dentry, inode);
330 	return 0;
331 }
332 EXPORT_SYMBOL(simple_link);
333 
334 int simple_empty(struct dentry *dentry)
335 {
336 	struct dentry *child;
337 	int ret = 0;
338 
339 	spin_lock(&dentry->d_lock);
340 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
341 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
342 		if (simple_positive(child)) {
343 			spin_unlock(&child->d_lock);
344 			goto out;
345 		}
346 		spin_unlock(&child->d_lock);
347 	}
348 	ret = 1;
349 out:
350 	spin_unlock(&dentry->d_lock);
351 	return ret;
352 }
353 EXPORT_SYMBOL(simple_empty);
354 
355 int simple_unlink(struct inode *dir, struct dentry *dentry)
356 {
357 	struct inode *inode = d_inode(dentry);
358 
359 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
360 	drop_nlink(inode);
361 	dput(dentry);
362 	return 0;
363 }
364 EXPORT_SYMBOL(simple_unlink);
365 
366 int simple_rmdir(struct inode *dir, struct dentry *dentry)
367 {
368 	if (!simple_empty(dentry))
369 		return -ENOTEMPTY;
370 
371 	drop_nlink(d_inode(dentry));
372 	simple_unlink(dir, dentry);
373 	drop_nlink(dir);
374 	return 0;
375 }
376 EXPORT_SYMBOL(simple_rmdir);
377 
378 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
379 		  struct inode *new_dir, struct dentry *new_dentry,
380 		  unsigned int flags)
381 {
382 	struct inode *inode = d_inode(old_dentry);
383 	int they_are_dirs = d_is_dir(old_dentry);
384 
385 	if (flags & ~RENAME_NOREPLACE)
386 		return -EINVAL;
387 
388 	if (!simple_empty(new_dentry))
389 		return -ENOTEMPTY;
390 
391 	if (d_really_is_positive(new_dentry)) {
392 		simple_unlink(new_dir, new_dentry);
393 		if (they_are_dirs) {
394 			drop_nlink(d_inode(new_dentry));
395 			drop_nlink(old_dir);
396 		}
397 	} else if (they_are_dirs) {
398 		drop_nlink(old_dir);
399 		inc_nlink(new_dir);
400 	}
401 
402 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
403 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
404 
405 	return 0;
406 }
407 EXPORT_SYMBOL(simple_rename);
408 
409 /**
410  * simple_setattr - setattr for simple filesystem
411  * @dentry: dentry
412  * @iattr: iattr structure
413  *
414  * Returns 0 on success, -error on failure.
415  *
416  * simple_setattr is a simple ->setattr implementation without a proper
417  * implementation of size changes.
418  *
419  * It can either be used for in-memory filesystems or special files
420  * on simple regular filesystems.  Anything that needs to change on-disk
421  * or wire state on size changes needs its own setattr method.
422  */
423 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
424 {
425 	struct inode *inode = d_inode(dentry);
426 	int error;
427 
428 	error = setattr_prepare(dentry, iattr);
429 	if (error)
430 		return error;
431 
432 	if (iattr->ia_valid & ATTR_SIZE)
433 		truncate_setsize(inode, iattr->ia_size);
434 	setattr_copy(inode, iattr);
435 	mark_inode_dirty(inode);
436 	return 0;
437 }
438 EXPORT_SYMBOL(simple_setattr);
439 
440 int simple_readpage(struct file *file, struct page *page)
441 {
442 	clear_highpage(page);
443 	flush_dcache_page(page);
444 	SetPageUptodate(page);
445 	unlock_page(page);
446 	return 0;
447 }
448 EXPORT_SYMBOL(simple_readpage);
449 
450 int simple_write_begin(struct file *file, struct address_space *mapping,
451 			loff_t pos, unsigned len, unsigned flags,
452 			struct page **pagep, void **fsdata)
453 {
454 	struct page *page;
455 	pgoff_t index;
456 
457 	index = pos >> PAGE_SHIFT;
458 
459 	page = grab_cache_page_write_begin(mapping, index, flags);
460 	if (!page)
461 		return -ENOMEM;
462 
463 	*pagep = page;
464 
465 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
466 		unsigned from = pos & (PAGE_SIZE - 1);
467 
468 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
469 	}
470 	return 0;
471 }
472 EXPORT_SYMBOL(simple_write_begin);
473 
474 /**
475  * simple_write_end - .write_end helper for non-block-device FSes
476  * @available: See .write_end of address_space_operations
477  * @file: 		"
478  * @mapping: 		"
479  * @pos: 		"
480  * @len: 		"
481  * @copied: 		"
482  * @page: 		"
483  * @fsdata: 		"
484  *
485  * simple_write_end does the minimum needed for updating a page after writing is
486  * done. It has the same API signature as the .write_end of
487  * address_space_operations vector. So it can just be set onto .write_end for
488  * FSes that don't need any other processing. i_mutex is assumed to be held.
489  * Block based filesystems should use generic_write_end().
490  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
491  * is not called, so a filesystem that actually does store data in .write_inode
492  * should extend on what's done here with a call to mark_inode_dirty() in the
493  * case that i_size has changed.
494  *
495  * Use *ONLY* with simple_readpage()
496  */
497 int simple_write_end(struct file *file, struct address_space *mapping,
498 			loff_t pos, unsigned len, unsigned copied,
499 			struct page *page, void *fsdata)
500 {
501 	struct inode *inode = page->mapping->host;
502 	loff_t last_pos = pos + copied;
503 
504 	/* zero the stale part of the page if we did a short copy */
505 	if (!PageUptodate(page)) {
506 		if (copied < len) {
507 			unsigned from = pos & (PAGE_SIZE - 1);
508 
509 			zero_user(page, from + copied, len - copied);
510 		}
511 		SetPageUptodate(page);
512 	}
513 	/*
514 	 * No need to use i_size_read() here, the i_size
515 	 * cannot change under us because we hold the i_mutex.
516 	 */
517 	if (last_pos > inode->i_size)
518 		i_size_write(inode, last_pos);
519 
520 	set_page_dirty(page);
521 	unlock_page(page);
522 	put_page(page);
523 
524 	return copied;
525 }
526 EXPORT_SYMBOL(simple_write_end);
527 
528 /*
529  * the inodes created here are not hashed. If you use iunique to generate
530  * unique inode values later for this filesystem, then you must take care
531  * to pass it an appropriate max_reserved value to avoid collisions.
532  */
533 int simple_fill_super(struct super_block *s, unsigned long magic,
534 		      const struct tree_descr *files)
535 {
536 	struct inode *inode;
537 	struct dentry *root;
538 	struct dentry *dentry;
539 	int i;
540 
541 	s->s_blocksize = PAGE_SIZE;
542 	s->s_blocksize_bits = PAGE_SHIFT;
543 	s->s_magic = magic;
544 	s->s_op = &simple_super_operations;
545 	s->s_time_gran = 1;
546 
547 	inode = new_inode(s);
548 	if (!inode)
549 		return -ENOMEM;
550 	/*
551 	 * because the root inode is 1, the files array must not contain an
552 	 * entry at index 1
553 	 */
554 	inode->i_ino = 1;
555 	inode->i_mode = S_IFDIR | 0755;
556 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
557 	inode->i_op = &simple_dir_inode_operations;
558 	inode->i_fop = &simple_dir_operations;
559 	set_nlink(inode, 2);
560 	root = d_make_root(inode);
561 	if (!root)
562 		return -ENOMEM;
563 	for (i = 0; !files->name || files->name[0]; i++, files++) {
564 		if (!files->name)
565 			continue;
566 
567 		/* warn if it tries to conflict with the root inode */
568 		if (unlikely(i == 1))
569 			printk(KERN_WARNING "%s: %s passed in a files array"
570 				"with an index of 1!\n", __func__,
571 				s->s_type->name);
572 
573 		dentry = d_alloc_name(root, files->name);
574 		if (!dentry)
575 			goto out;
576 		inode = new_inode(s);
577 		if (!inode) {
578 			dput(dentry);
579 			goto out;
580 		}
581 		inode->i_mode = S_IFREG | files->mode;
582 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
583 		inode->i_fop = files->ops;
584 		inode->i_ino = i;
585 		d_add(dentry, inode);
586 	}
587 	s->s_root = root;
588 	return 0;
589 out:
590 	d_genocide(root);
591 	shrink_dcache_parent(root);
592 	dput(root);
593 	return -ENOMEM;
594 }
595 EXPORT_SYMBOL(simple_fill_super);
596 
597 static DEFINE_SPINLOCK(pin_fs_lock);
598 
599 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
600 {
601 	struct vfsmount *mnt = NULL;
602 	spin_lock(&pin_fs_lock);
603 	if (unlikely(!*mount)) {
604 		spin_unlock(&pin_fs_lock);
605 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
606 		if (IS_ERR(mnt))
607 			return PTR_ERR(mnt);
608 		spin_lock(&pin_fs_lock);
609 		if (!*mount)
610 			*mount = mnt;
611 	}
612 	mntget(*mount);
613 	++*count;
614 	spin_unlock(&pin_fs_lock);
615 	mntput(mnt);
616 	return 0;
617 }
618 EXPORT_SYMBOL(simple_pin_fs);
619 
620 void simple_release_fs(struct vfsmount **mount, int *count)
621 {
622 	struct vfsmount *mnt;
623 	spin_lock(&pin_fs_lock);
624 	mnt = *mount;
625 	if (!--*count)
626 		*mount = NULL;
627 	spin_unlock(&pin_fs_lock);
628 	mntput(mnt);
629 }
630 EXPORT_SYMBOL(simple_release_fs);
631 
632 /**
633  * simple_read_from_buffer - copy data from the buffer to user space
634  * @to: the user space buffer to read to
635  * @count: the maximum number of bytes to read
636  * @ppos: the current position in the buffer
637  * @from: the buffer to read from
638  * @available: the size of the buffer
639  *
640  * The simple_read_from_buffer() function reads up to @count bytes from the
641  * buffer @from at offset @ppos into the user space address starting at @to.
642  *
643  * On success, the number of bytes read is returned and the offset @ppos is
644  * advanced by this number, or negative value is returned on error.
645  **/
646 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
647 				const void *from, size_t available)
648 {
649 	loff_t pos = *ppos;
650 	size_t ret;
651 
652 	if (pos < 0)
653 		return -EINVAL;
654 	if (pos >= available || !count)
655 		return 0;
656 	if (count > available - pos)
657 		count = available - pos;
658 	ret = copy_to_user(to, from + pos, count);
659 	if (ret == count)
660 		return -EFAULT;
661 	count -= ret;
662 	*ppos = pos + count;
663 	return count;
664 }
665 EXPORT_SYMBOL(simple_read_from_buffer);
666 
667 /**
668  * simple_write_to_buffer - copy data from user space to the buffer
669  * @to: the buffer to write to
670  * @available: the size of the buffer
671  * @ppos: the current position in the buffer
672  * @from: the user space buffer to read from
673  * @count: the maximum number of bytes to read
674  *
675  * The simple_write_to_buffer() function reads up to @count bytes from the user
676  * space address starting at @from into the buffer @to at offset @ppos.
677  *
678  * On success, the number of bytes written is returned and the offset @ppos is
679  * advanced by this number, or negative value is returned on error.
680  **/
681 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
682 		const void __user *from, size_t count)
683 {
684 	loff_t pos = *ppos;
685 	size_t res;
686 
687 	if (pos < 0)
688 		return -EINVAL;
689 	if (pos >= available || !count)
690 		return 0;
691 	if (count > available - pos)
692 		count = available - pos;
693 	res = copy_from_user(to + pos, from, count);
694 	if (res == count)
695 		return -EFAULT;
696 	count -= res;
697 	*ppos = pos + count;
698 	return count;
699 }
700 EXPORT_SYMBOL(simple_write_to_buffer);
701 
702 /**
703  * memory_read_from_buffer - copy data from the buffer
704  * @to: the kernel space buffer to read to
705  * @count: the maximum number of bytes to read
706  * @ppos: the current position in the buffer
707  * @from: the buffer to read from
708  * @available: the size of the buffer
709  *
710  * The memory_read_from_buffer() function reads up to @count bytes from the
711  * buffer @from at offset @ppos into the kernel space address starting at @to.
712  *
713  * On success, the number of bytes read is returned and the offset @ppos is
714  * advanced by this number, or negative value is returned on error.
715  **/
716 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
717 				const void *from, size_t available)
718 {
719 	loff_t pos = *ppos;
720 
721 	if (pos < 0)
722 		return -EINVAL;
723 	if (pos >= available)
724 		return 0;
725 	if (count > available - pos)
726 		count = available - pos;
727 	memcpy(to, from + pos, count);
728 	*ppos = pos + count;
729 
730 	return count;
731 }
732 EXPORT_SYMBOL(memory_read_from_buffer);
733 
734 /*
735  * Transaction based IO.
736  * The file expects a single write which triggers the transaction, and then
737  * possibly a read which collects the result - which is stored in a
738  * file-local buffer.
739  */
740 
741 void simple_transaction_set(struct file *file, size_t n)
742 {
743 	struct simple_transaction_argresp *ar = file->private_data;
744 
745 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
746 
747 	/*
748 	 * The barrier ensures that ar->size will really remain zero until
749 	 * ar->data is ready for reading.
750 	 */
751 	smp_mb();
752 	ar->size = n;
753 }
754 EXPORT_SYMBOL(simple_transaction_set);
755 
756 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
757 {
758 	struct simple_transaction_argresp *ar;
759 	static DEFINE_SPINLOCK(simple_transaction_lock);
760 
761 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
762 		return ERR_PTR(-EFBIG);
763 
764 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
765 	if (!ar)
766 		return ERR_PTR(-ENOMEM);
767 
768 	spin_lock(&simple_transaction_lock);
769 
770 	/* only one write allowed per open */
771 	if (file->private_data) {
772 		spin_unlock(&simple_transaction_lock);
773 		free_page((unsigned long)ar);
774 		return ERR_PTR(-EBUSY);
775 	}
776 
777 	file->private_data = ar;
778 
779 	spin_unlock(&simple_transaction_lock);
780 
781 	if (copy_from_user(ar->data, buf, size))
782 		return ERR_PTR(-EFAULT);
783 
784 	return ar->data;
785 }
786 EXPORT_SYMBOL(simple_transaction_get);
787 
788 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
789 {
790 	struct simple_transaction_argresp *ar = file->private_data;
791 
792 	if (!ar)
793 		return 0;
794 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
795 }
796 EXPORT_SYMBOL(simple_transaction_read);
797 
798 int simple_transaction_release(struct inode *inode, struct file *file)
799 {
800 	free_page((unsigned long)file->private_data);
801 	return 0;
802 }
803 EXPORT_SYMBOL(simple_transaction_release);
804 
805 /* Simple attribute files */
806 
807 struct simple_attr {
808 	int (*get)(void *, u64 *);
809 	int (*set)(void *, u64);
810 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
811 	char set_buf[24];
812 	void *data;
813 	const char *fmt;	/* format for read operation */
814 	struct mutex mutex;	/* protects access to these buffers */
815 };
816 
817 /* simple_attr_open is called by an actual attribute open file operation
818  * to set the attribute specific access operations. */
819 int simple_attr_open(struct inode *inode, struct file *file,
820 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
821 		     const char *fmt)
822 {
823 	struct simple_attr *attr;
824 
825 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
826 	if (!attr)
827 		return -ENOMEM;
828 
829 	attr->get = get;
830 	attr->set = set;
831 	attr->data = inode->i_private;
832 	attr->fmt = fmt;
833 	mutex_init(&attr->mutex);
834 
835 	file->private_data = attr;
836 
837 	return nonseekable_open(inode, file);
838 }
839 EXPORT_SYMBOL_GPL(simple_attr_open);
840 
841 int simple_attr_release(struct inode *inode, struct file *file)
842 {
843 	kfree(file->private_data);
844 	return 0;
845 }
846 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
847 
848 /* read from the buffer that is filled with the get function */
849 ssize_t simple_attr_read(struct file *file, char __user *buf,
850 			 size_t len, loff_t *ppos)
851 {
852 	struct simple_attr *attr;
853 	size_t size;
854 	ssize_t ret;
855 
856 	attr = file->private_data;
857 
858 	if (!attr->get)
859 		return -EACCES;
860 
861 	ret = mutex_lock_interruptible(&attr->mutex);
862 	if (ret)
863 		return ret;
864 
865 	if (*ppos) {		/* continued read */
866 		size = strlen(attr->get_buf);
867 	} else {		/* first read */
868 		u64 val;
869 		ret = attr->get(attr->data, &val);
870 		if (ret)
871 			goto out;
872 
873 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
874 				 attr->fmt, (unsigned long long)val);
875 	}
876 
877 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
878 out:
879 	mutex_unlock(&attr->mutex);
880 	return ret;
881 }
882 EXPORT_SYMBOL_GPL(simple_attr_read);
883 
884 /* interpret the buffer as a number to call the set function with */
885 ssize_t simple_attr_write(struct file *file, const char __user *buf,
886 			  size_t len, loff_t *ppos)
887 {
888 	struct simple_attr *attr;
889 	u64 val;
890 	size_t size;
891 	ssize_t ret;
892 
893 	attr = file->private_data;
894 	if (!attr->set)
895 		return -EACCES;
896 
897 	ret = mutex_lock_interruptible(&attr->mutex);
898 	if (ret)
899 		return ret;
900 
901 	ret = -EFAULT;
902 	size = min(sizeof(attr->set_buf) - 1, len);
903 	if (copy_from_user(attr->set_buf, buf, size))
904 		goto out;
905 
906 	attr->set_buf[size] = '\0';
907 	val = simple_strtoll(attr->set_buf, NULL, 0);
908 	ret = attr->set(attr->data, val);
909 	if (ret == 0)
910 		ret = len; /* on success, claim we got the whole input */
911 out:
912 	mutex_unlock(&attr->mutex);
913 	return ret;
914 }
915 EXPORT_SYMBOL_GPL(simple_attr_write);
916 
917 /**
918  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
919  * @sb:		filesystem to do the file handle conversion on
920  * @fid:	file handle to convert
921  * @fh_len:	length of the file handle in bytes
922  * @fh_type:	type of file handle
923  * @get_inode:	filesystem callback to retrieve inode
924  *
925  * This function decodes @fid as long as it has one of the well-known
926  * Linux filehandle types and calls @get_inode on it to retrieve the
927  * inode for the object specified in the file handle.
928  */
929 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
930 		int fh_len, int fh_type, struct inode *(*get_inode)
931 			(struct super_block *sb, u64 ino, u32 gen))
932 {
933 	struct inode *inode = NULL;
934 
935 	if (fh_len < 2)
936 		return NULL;
937 
938 	switch (fh_type) {
939 	case FILEID_INO32_GEN:
940 	case FILEID_INO32_GEN_PARENT:
941 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
942 		break;
943 	}
944 
945 	return d_obtain_alias(inode);
946 }
947 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
948 
949 /**
950  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
951  * @sb:		filesystem to do the file handle conversion on
952  * @fid:	file handle to convert
953  * @fh_len:	length of the file handle in bytes
954  * @fh_type:	type of file handle
955  * @get_inode:	filesystem callback to retrieve inode
956  *
957  * This function decodes @fid as long as it has one of the well-known
958  * Linux filehandle types and calls @get_inode on it to retrieve the
959  * inode for the _parent_ object specified in the file handle if it
960  * is specified in the file handle, or NULL otherwise.
961  */
962 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
963 		int fh_len, int fh_type, struct inode *(*get_inode)
964 			(struct super_block *sb, u64 ino, u32 gen))
965 {
966 	struct inode *inode = NULL;
967 
968 	if (fh_len <= 2)
969 		return NULL;
970 
971 	switch (fh_type) {
972 	case FILEID_INO32_GEN_PARENT:
973 		inode = get_inode(sb, fid->i32.parent_ino,
974 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
975 		break;
976 	}
977 
978 	return d_obtain_alias(inode);
979 }
980 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
981 
982 /**
983  * __generic_file_fsync - generic fsync implementation for simple filesystems
984  *
985  * @file:	file to synchronize
986  * @start:	start offset in bytes
987  * @end:	end offset in bytes (inclusive)
988  * @datasync:	only synchronize essential metadata if true
989  *
990  * This is a generic implementation of the fsync method for simple
991  * filesystems which track all non-inode metadata in the buffers list
992  * hanging off the address_space structure.
993  */
994 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
995 				 int datasync)
996 {
997 	struct inode *inode = file->f_mapping->host;
998 	int err;
999 	int ret;
1000 
1001 	err = file_write_and_wait_range(file, start, end);
1002 	if (err)
1003 		return err;
1004 
1005 	inode_lock(inode);
1006 	ret = sync_mapping_buffers(inode->i_mapping);
1007 	if (!(inode->i_state & I_DIRTY_ALL))
1008 		goto out;
1009 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1010 		goto out;
1011 
1012 	err = sync_inode_metadata(inode, 1);
1013 	if (ret == 0)
1014 		ret = err;
1015 
1016 out:
1017 	inode_unlock(inode);
1018 	/* check and advance again to catch errors after syncing out buffers */
1019 	err = file_check_and_advance_wb_err(file);
1020 	if (ret == 0)
1021 		ret = err;
1022 	return ret;
1023 }
1024 EXPORT_SYMBOL(__generic_file_fsync);
1025 
1026 /**
1027  * generic_file_fsync - generic fsync implementation for simple filesystems
1028  *			with flush
1029  * @file:	file to synchronize
1030  * @start:	start offset in bytes
1031  * @end:	end offset in bytes (inclusive)
1032  * @datasync:	only synchronize essential metadata if true
1033  *
1034  */
1035 
1036 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1037 		       int datasync)
1038 {
1039 	struct inode *inode = file->f_mapping->host;
1040 	int err;
1041 
1042 	err = __generic_file_fsync(file, start, end, datasync);
1043 	if (err)
1044 		return err;
1045 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1046 }
1047 EXPORT_SYMBOL(generic_file_fsync);
1048 
1049 /**
1050  * generic_check_addressable - Check addressability of file system
1051  * @blocksize_bits:	log of file system block size
1052  * @num_blocks:		number of blocks in file system
1053  *
1054  * Determine whether a file system with @num_blocks blocks (and a
1055  * block size of 2**@blocksize_bits) is addressable by the sector_t
1056  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1057  */
1058 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1059 {
1060 	u64 last_fs_block = num_blocks - 1;
1061 	u64 last_fs_page =
1062 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1063 
1064 	if (unlikely(num_blocks == 0))
1065 		return 0;
1066 
1067 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1068 		return -EINVAL;
1069 
1070 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1071 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1072 		return -EFBIG;
1073 	}
1074 	return 0;
1075 }
1076 EXPORT_SYMBOL(generic_check_addressable);
1077 
1078 /*
1079  * No-op implementation of ->fsync for in-memory filesystems.
1080  */
1081 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1082 {
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL(noop_fsync);
1086 
1087 int noop_set_page_dirty(struct page *page)
1088 {
1089 	/*
1090 	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1091 	 * tracking in the page object, dax does all dirty tracking in
1092 	 * the inode address_space in response to mkwrite faults. In the
1093 	 * dax case we only need to worry about potentially dirty CPU
1094 	 * caches, not dirty page cache pages to write back.
1095 	 *
1096 	 * This callback is defined to prevent fallback to
1097 	 * __set_page_dirty_buffers() in set_page_dirty().
1098 	 */
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1102 
1103 void noop_invalidatepage(struct page *page, unsigned int offset,
1104 		unsigned int length)
1105 {
1106 	/*
1107 	 * There is no page cache to invalidate in the dax case, however
1108 	 * we need this callback defined to prevent falling back to
1109 	 * block_invalidatepage() in do_invalidatepage().
1110 	 */
1111 }
1112 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1113 
1114 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1115 {
1116 	/*
1117 	 * iomap based filesystems support direct I/O without need for
1118 	 * this callback. However, it still needs to be set in
1119 	 * inode->a_ops so that open/fcntl know that direct I/O is
1120 	 * generally supported.
1121 	 */
1122 	return -EINVAL;
1123 }
1124 EXPORT_SYMBOL_GPL(noop_direct_IO);
1125 
1126 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1127 void kfree_link(void *p)
1128 {
1129 	kfree(p);
1130 }
1131 EXPORT_SYMBOL(kfree_link);
1132 
1133 /*
1134  * nop .set_page_dirty method so that people can use .page_mkwrite on
1135  * anon inodes.
1136  */
1137 static int anon_set_page_dirty(struct page *page)
1138 {
1139 	return 0;
1140 };
1141 
1142 /*
1143  * A single inode exists for all anon_inode files. Contrary to pipes,
1144  * anon_inode inodes have no associated per-instance data, so we need
1145  * only allocate one of them.
1146  */
1147 struct inode *alloc_anon_inode(struct super_block *s)
1148 {
1149 	static const struct address_space_operations anon_aops = {
1150 		.set_page_dirty = anon_set_page_dirty,
1151 	};
1152 	struct inode *inode = new_inode_pseudo(s);
1153 
1154 	if (!inode)
1155 		return ERR_PTR(-ENOMEM);
1156 
1157 	inode->i_ino = get_next_ino();
1158 	inode->i_mapping->a_ops = &anon_aops;
1159 
1160 	/*
1161 	 * Mark the inode dirty from the very beginning,
1162 	 * that way it will never be moved to the dirty
1163 	 * list because mark_inode_dirty() will think
1164 	 * that it already _is_ on the dirty list.
1165 	 */
1166 	inode->i_state = I_DIRTY;
1167 	inode->i_mode = S_IRUSR | S_IWUSR;
1168 	inode->i_uid = current_fsuid();
1169 	inode->i_gid = current_fsgid();
1170 	inode->i_flags |= S_PRIVATE;
1171 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1172 	return inode;
1173 }
1174 EXPORT_SYMBOL(alloc_anon_inode);
1175 
1176 /**
1177  * simple_nosetlease - generic helper for prohibiting leases
1178  * @filp: file pointer
1179  * @arg: type of lease to obtain
1180  * @flp: new lease supplied for insertion
1181  * @priv: private data for lm_setup operation
1182  *
1183  * Generic helper for filesystems that do not wish to allow leases to be set.
1184  * All arguments are ignored and it just returns -EINVAL.
1185  */
1186 int
1187 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1188 		  void **priv)
1189 {
1190 	return -EINVAL;
1191 }
1192 EXPORT_SYMBOL(simple_nosetlease);
1193 
1194 /**
1195  * simple_get_link - generic helper to get the target of "fast" symlinks
1196  * @dentry: not used here
1197  * @inode: the symlink inode
1198  * @done: not used here
1199  *
1200  * Generic helper for filesystems to use for symlink inodes where a pointer to
1201  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1202  * since as an optimization the path lookup code uses any non-NULL ->i_link
1203  * directly, without calling ->get_link().  But ->get_link() still must be set,
1204  * to mark the inode_operations as being for a symlink.
1205  *
1206  * Return: the symlink target
1207  */
1208 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1209 			    struct delayed_call *done)
1210 {
1211 	return inode->i_link;
1212 }
1213 EXPORT_SYMBOL(simple_get_link);
1214 
1215 const struct inode_operations simple_symlink_inode_operations = {
1216 	.get_link = simple_get_link,
1217 };
1218 EXPORT_SYMBOL(simple_symlink_inode_operations);
1219 
1220 /*
1221  * Operations for a permanently empty directory.
1222  */
1223 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1224 {
1225 	return ERR_PTR(-ENOENT);
1226 }
1227 
1228 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1229 			     u32 request_mask, unsigned int query_flags)
1230 {
1231 	struct inode *inode = d_inode(path->dentry);
1232 	generic_fillattr(inode, stat);
1233 	return 0;
1234 }
1235 
1236 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1237 {
1238 	return -EPERM;
1239 }
1240 
1241 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1242 {
1243 	return -EOPNOTSUPP;
1244 }
1245 
1246 static const struct inode_operations empty_dir_inode_operations = {
1247 	.lookup		= empty_dir_lookup,
1248 	.permission	= generic_permission,
1249 	.setattr	= empty_dir_setattr,
1250 	.getattr	= empty_dir_getattr,
1251 	.listxattr	= empty_dir_listxattr,
1252 };
1253 
1254 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1255 {
1256 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1257 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1258 }
1259 
1260 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1261 {
1262 	dir_emit_dots(file, ctx);
1263 	return 0;
1264 }
1265 
1266 static const struct file_operations empty_dir_operations = {
1267 	.llseek		= empty_dir_llseek,
1268 	.read		= generic_read_dir,
1269 	.iterate_shared	= empty_dir_readdir,
1270 	.fsync		= noop_fsync,
1271 };
1272 
1273 
1274 void make_empty_dir_inode(struct inode *inode)
1275 {
1276 	set_nlink(inode, 2);
1277 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1278 	inode->i_uid = GLOBAL_ROOT_UID;
1279 	inode->i_gid = GLOBAL_ROOT_GID;
1280 	inode->i_rdev = 0;
1281 	inode->i_size = 0;
1282 	inode->i_blkbits = PAGE_SHIFT;
1283 	inode->i_blocks = 0;
1284 
1285 	inode->i_op = &empty_dir_inode_operations;
1286 	inode->i_opflags &= ~IOP_XATTR;
1287 	inode->i_fop = &empty_dir_operations;
1288 }
1289 
1290 bool is_empty_dir_inode(struct inode *inode)
1291 {
1292 	return (inode->i_fop == &empty_dir_operations) &&
1293 		(inode->i_op == &empty_dir_inode_operations);
1294 }
1295