1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 #include <linux/pidfs.h> 27 28 #include <linux/uaccess.h> 29 30 #include "internal.h" 31 32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 33 struct kstat *stat, u32 request_mask, 34 unsigned int query_flags) 35 { 36 struct inode *inode = d_inode(path->dentry); 37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 39 return 0; 40 } 41 EXPORT_SYMBOL(simple_getattr); 42 43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 44 { 45 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 46 47 buf->f_fsid = u64_to_fsid(id); 48 buf->f_type = dentry->d_sb->s_magic; 49 buf->f_bsize = PAGE_SIZE; 50 buf->f_namelen = NAME_MAX; 51 return 0; 52 } 53 EXPORT_SYMBOL(simple_statfs); 54 55 /* 56 * Retaining negative dentries for an in-memory filesystem just wastes 57 * memory and lookup time: arrange for them to be deleted immediately. 58 */ 59 int always_delete_dentry(const struct dentry *dentry) 60 { 61 return 1; 62 } 63 EXPORT_SYMBOL(always_delete_dentry); 64 65 /* 66 * Lookup the data. This is trivial - if the dentry didn't already 67 * exist, we know it is negative. Set d_op to delete negative dentries. 68 */ 69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 70 { 71 if (dentry->d_name.len > NAME_MAX) 72 return ERR_PTR(-ENAMETOOLONG); 73 if (!dentry->d_op && !(dentry->d_flags & DCACHE_DONTCACHE)) { 74 spin_lock(&dentry->d_lock); 75 dentry->d_flags |= DCACHE_DONTCACHE; 76 spin_unlock(&dentry->d_lock); 77 } 78 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 79 return NULL; 80 81 d_add(dentry, NULL); 82 return NULL; 83 } 84 EXPORT_SYMBOL(simple_lookup); 85 86 int dcache_dir_open(struct inode *inode, struct file *file) 87 { 88 file->private_data = d_alloc_cursor(file->f_path.dentry); 89 90 return file->private_data ? 0 : -ENOMEM; 91 } 92 EXPORT_SYMBOL(dcache_dir_open); 93 94 int dcache_dir_close(struct inode *inode, struct file *file) 95 { 96 dput(file->private_data); 97 return 0; 98 } 99 EXPORT_SYMBOL(dcache_dir_close); 100 101 /* parent is locked at least shared */ 102 /* 103 * Returns an element of siblings' list. 104 * We are looking for <count>th positive after <p>; if 105 * found, dentry is grabbed and returned to caller. 106 * If no such element exists, NULL is returned. 107 */ 108 static struct dentry *scan_positives(struct dentry *cursor, 109 struct hlist_node **p, 110 loff_t count, 111 struct dentry *last) 112 { 113 struct dentry *dentry = cursor->d_parent, *found = NULL; 114 115 spin_lock(&dentry->d_lock); 116 while (*p) { 117 struct dentry *d = hlist_entry(*p, struct dentry, d_sib); 118 p = &d->d_sib.next; 119 // we must at least skip cursors, to avoid livelocks 120 if (d->d_flags & DCACHE_DENTRY_CURSOR) 121 continue; 122 if (simple_positive(d) && !--count) { 123 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 124 if (simple_positive(d)) 125 found = dget_dlock(d); 126 spin_unlock(&d->d_lock); 127 if (likely(found)) 128 break; 129 count = 1; 130 } 131 if (need_resched()) { 132 if (!hlist_unhashed(&cursor->d_sib)) 133 __hlist_del(&cursor->d_sib); 134 hlist_add_behind(&cursor->d_sib, &d->d_sib); 135 p = &cursor->d_sib.next; 136 spin_unlock(&dentry->d_lock); 137 cond_resched(); 138 spin_lock(&dentry->d_lock); 139 } 140 } 141 spin_unlock(&dentry->d_lock); 142 dput(last); 143 return found; 144 } 145 146 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 147 { 148 struct dentry *dentry = file->f_path.dentry; 149 switch (whence) { 150 case 1: 151 offset += file->f_pos; 152 fallthrough; 153 case 0: 154 if (offset >= 0) 155 break; 156 fallthrough; 157 default: 158 return -EINVAL; 159 } 160 if (offset != file->f_pos) { 161 struct dentry *cursor = file->private_data; 162 struct dentry *to = NULL; 163 164 inode_lock_shared(dentry->d_inode); 165 166 if (offset > 2) 167 to = scan_positives(cursor, &dentry->d_children.first, 168 offset - 2, NULL); 169 spin_lock(&dentry->d_lock); 170 hlist_del_init(&cursor->d_sib); 171 if (to) 172 hlist_add_behind(&cursor->d_sib, &to->d_sib); 173 spin_unlock(&dentry->d_lock); 174 dput(to); 175 176 file->f_pos = offset; 177 178 inode_unlock_shared(dentry->d_inode); 179 } 180 return offset; 181 } 182 EXPORT_SYMBOL(dcache_dir_lseek); 183 184 /* 185 * Directory is locked and all positive dentries in it are safe, since 186 * for ramfs-type trees they can't go away without unlink() or rmdir(), 187 * both impossible due to the lock on directory. 188 */ 189 190 int dcache_readdir(struct file *file, struct dir_context *ctx) 191 { 192 struct dentry *dentry = file->f_path.dentry; 193 struct dentry *cursor = file->private_data; 194 struct dentry *next = NULL; 195 struct hlist_node **p; 196 197 if (!dir_emit_dots(file, ctx)) 198 return 0; 199 200 if (ctx->pos == 2) 201 p = &dentry->d_children.first; 202 else 203 p = &cursor->d_sib.next; 204 205 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 206 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 207 d_inode(next)->i_ino, 208 fs_umode_to_dtype(d_inode(next)->i_mode))) 209 break; 210 ctx->pos++; 211 p = &next->d_sib.next; 212 } 213 spin_lock(&dentry->d_lock); 214 hlist_del_init(&cursor->d_sib); 215 if (next) 216 hlist_add_before(&cursor->d_sib, &next->d_sib); 217 spin_unlock(&dentry->d_lock); 218 dput(next); 219 220 return 0; 221 } 222 EXPORT_SYMBOL(dcache_readdir); 223 224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 225 { 226 return -EISDIR; 227 } 228 EXPORT_SYMBOL(generic_read_dir); 229 230 const struct file_operations simple_dir_operations = { 231 .open = dcache_dir_open, 232 .release = dcache_dir_close, 233 .llseek = dcache_dir_lseek, 234 .read = generic_read_dir, 235 .iterate_shared = dcache_readdir, 236 .fsync = noop_fsync, 237 }; 238 EXPORT_SYMBOL(simple_dir_operations); 239 240 const struct inode_operations simple_dir_inode_operations = { 241 .lookup = simple_lookup, 242 }; 243 EXPORT_SYMBOL(simple_dir_inode_operations); 244 245 /* simple_offset_add() never assigns these to a dentry */ 246 enum { 247 DIR_OFFSET_FIRST = 2, /* Find first real entry */ 248 DIR_OFFSET_EOD = S32_MAX, 249 }; 250 251 /* simple_offset_add() allocation range */ 252 enum { 253 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1, 254 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1, 255 }; 256 257 static void offset_set(struct dentry *dentry, long offset) 258 { 259 dentry->d_fsdata = (void *)offset; 260 } 261 262 static long dentry2offset(struct dentry *dentry) 263 { 264 return (long)dentry->d_fsdata; 265 } 266 267 static struct lock_class_key simple_offset_lock_class; 268 269 /** 270 * simple_offset_init - initialize an offset_ctx 271 * @octx: directory offset map to be initialized 272 * 273 */ 274 void simple_offset_init(struct offset_ctx *octx) 275 { 276 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE); 277 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class); 278 octx->next_offset = DIR_OFFSET_MIN; 279 } 280 281 /** 282 * simple_offset_add - Add an entry to a directory's offset map 283 * @octx: directory offset ctx to be updated 284 * @dentry: new dentry being added 285 * 286 * Returns zero on success. @octx and the dentry's offset are updated. 287 * Otherwise, a negative errno value is returned. 288 */ 289 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 290 { 291 unsigned long offset; 292 int ret; 293 294 if (dentry2offset(dentry) != 0) 295 return -EBUSY; 296 297 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN, 298 DIR_OFFSET_MAX, &octx->next_offset, 299 GFP_KERNEL); 300 if (unlikely(ret < 0)) 301 return ret == -EBUSY ? -ENOSPC : ret; 302 303 offset_set(dentry, offset); 304 return 0; 305 } 306 307 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry, 308 long offset) 309 { 310 int ret; 311 312 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL); 313 if (ret) 314 return ret; 315 offset_set(dentry, offset); 316 return 0; 317 } 318 319 /** 320 * simple_offset_remove - Remove an entry to a directory's offset map 321 * @octx: directory offset ctx to be updated 322 * @dentry: dentry being removed 323 * 324 */ 325 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 326 { 327 long offset; 328 329 offset = dentry2offset(dentry); 330 if (offset == 0) 331 return; 332 333 mtree_erase(&octx->mt, offset); 334 offset_set(dentry, 0); 335 } 336 337 /** 338 * simple_offset_rename - handle directory offsets for rename 339 * @old_dir: parent directory of source entry 340 * @old_dentry: dentry of source entry 341 * @new_dir: parent_directory of destination entry 342 * @new_dentry: dentry of destination 343 * 344 * Caller provides appropriate serialization. 345 * 346 * User space expects the directory offset value of the replaced 347 * (new) directory entry to be unchanged after a rename. 348 * 349 * Returns zero on success, a negative errno value on failure. 350 */ 351 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 352 struct inode *new_dir, struct dentry *new_dentry) 353 { 354 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 355 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 356 long new_offset = dentry2offset(new_dentry); 357 358 simple_offset_remove(old_ctx, old_dentry); 359 360 if (new_offset) { 361 offset_set(new_dentry, 0); 362 return simple_offset_replace(new_ctx, old_dentry, new_offset); 363 } 364 return simple_offset_add(new_ctx, old_dentry); 365 } 366 367 /** 368 * simple_offset_rename_exchange - exchange rename with directory offsets 369 * @old_dir: parent of dentry being moved 370 * @old_dentry: dentry being moved 371 * @new_dir: destination parent 372 * @new_dentry: destination dentry 373 * 374 * This API preserves the directory offset values. Caller provides 375 * appropriate serialization. 376 * 377 * Returns zero on success. Otherwise a negative errno is returned and the 378 * rename is rolled back. 379 */ 380 int simple_offset_rename_exchange(struct inode *old_dir, 381 struct dentry *old_dentry, 382 struct inode *new_dir, 383 struct dentry *new_dentry) 384 { 385 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 386 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 387 long old_index = dentry2offset(old_dentry); 388 long new_index = dentry2offset(new_dentry); 389 int ret; 390 391 simple_offset_remove(old_ctx, old_dentry); 392 simple_offset_remove(new_ctx, new_dentry); 393 394 ret = simple_offset_replace(new_ctx, old_dentry, new_index); 395 if (ret) 396 goto out_restore; 397 398 ret = simple_offset_replace(old_ctx, new_dentry, old_index); 399 if (ret) { 400 simple_offset_remove(new_ctx, old_dentry); 401 goto out_restore; 402 } 403 404 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 405 if (ret) { 406 simple_offset_remove(new_ctx, old_dentry); 407 simple_offset_remove(old_ctx, new_dentry); 408 goto out_restore; 409 } 410 return 0; 411 412 out_restore: 413 (void)simple_offset_replace(old_ctx, old_dentry, old_index); 414 (void)simple_offset_replace(new_ctx, new_dentry, new_index); 415 return ret; 416 } 417 418 /** 419 * simple_offset_destroy - Release offset map 420 * @octx: directory offset ctx that is about to be destroyed 421 * 422 * During fs teardown (eg. umount), a directory's offset map might still 423 * contain entries. xa_destroy() cleans out anything that remains. 424 */ 425 void simple_offset_destroy(struct offset_ctx *octx) 426 { 427 mtree_destroy(&octx->mt); 428 } 429 430 /** 431 * offset_dir_llseek - Advance the read position of a directory descriptor 432 * @file: an open directory whose position is to be updated 433 * @offset: a byte offset 434 * @whence: enumerator describing the starting position for this update 435 * 436 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 437 * 438 * Returns the updated read position if successful; otherwise a 439 * negative errno is returned and the read position remains unchanged. 440 */ 441 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 442 { 443 switch (whence) { 444 case SEEK_CUR: 445 offset += file->f_pos; 446 fallthrough; 447 case SEEK_SET: 448 if (offset >= 0) 449 break; 450 fallthrough; 451 default: 452 return -EINVAL; 453 } 454 455 return vfs_setpos(file, offset, LONG_MAX); 456 } 457 458 static struct dentry *find_positive_dentry(struct dentry *parent, 459 struct dentry *dentry, 460 bool next) 461 { 462 struct dentry *found = NULL; 463 464 spin_lock(&parent->d_lock); 465 if (next) 466 dentry = d_next_sibling(dentry); 467 else if (!dentry) 468 dentry = d_first_child(parent); 469 hlist_for_each_entry_from(dentry, d_sib) { 470 if (!simple_positive(dentry)) 471 continue; 472 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 473 if (simple_positive(dentry)) 474 found = dget_dlock(dentry); 475 spin_unlock(&dentry->d_lock); 476 if (likely(found)) 477 break; 478 } 479 spin_unlock(&parent->d_lock); 480 return found; 481 } 482 483 static noinline_for_stack struct dentry * 484 offset_dir_lookup(struct dentry *parent, loff_t offset) 485 { 486 struct inode *inode = d_inode(parent); 487 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode); 488 struct dentry *child, *found = NULL; 489 490 MA_STATE(mas, &octx->mt, offset, offset); 491 492 if (offset == DIR_OFFSET_FIRST) 493 found = find_positive_dentry(parent, NULL, false); 494 else { 495 rcu_read_lock(); 496 child = mas_find_rev(&mas, DIR_OFFSET_MIN); 497 found = find_positive_dentry(parent, child, false); 498 rcu_read_unlock(); 499 } 500 return found; 501 } 502 503 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 504 { 505 struct inode *inode = d_inode(dentry); 506 507 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len, 508 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 509 } 510 511 static void offset_iterate_dir(struct file *file, struct dir_context *ctx) 512 { 513 struct dentry *dir = file->f_path.dentry; 514 struct dentry *dentry; 515 516 dentry = offset_dir_lookup(dir, ctx->pos); 517 if (!dentry) 518 goto out_eod; 519 while (true) { 520 struct dentry *next; 521 522 ctx->pos = dentry2offset(dentry); 523 if (!offset_dir_emit(ctx, dentry)) 524 break; 525 526 next = find_positive_dentry(dir, dentry, true); 527 dput(dentry); 528 529 if (!next) 530 goto out_eod; 531 dentry = next; 532 } 533 dput(dentry); 534 return; 535 536 out_eod: 537 ctx->pos = DIR_OFFSET_EOD; 538 } 539 540 /** 541 * offset_readdir - Emit entries starting at offset @ctx->pos 542 * @file: an open directory to iterate over 543 * @ctx: directory iteration context 544 * 545 * Caller must hold @file's i_rwsem to prevent insertion or removal of 546 * entries during this call. 547 * 548 * On entry, @ctx->pos contains an offset that represents the first entry 549 * to be read from the directory. 550 * 551 * The operation continues until there are no more entries to read, or 552 * until the ctx->actor indicates there is no more space in the caller's 553 * output buffer. 554 * 555 * On return, @ctx->pos contains an offset that will read the next entry 556 * in this directory when offset_readdir() is called again with @ctx. 557 * Caller places this value in the d_off field of the last entry in the 558 * user's buffer. 559 * 560 * Return values: 561 * %0 - Complete 562 */ 563 static int offset_readdir(struct file *file, struct dir_context *ctx) 564 { 565 struct dentry *dir = file->f_path.dentry; 566 567 lockdep_assert_held(&d_inode(dir)->i_rwsem); 568 569 if (!dir_emit_dots(file, ctx)) 570 return 0; 571 if (ctx->pos != DIR_OFFSET_EOD) 572 offset_iterate_dir(file, ctx); 573 return 0; 574 } 575 576 const struct file_operations simple_offset_dir_operations = { 577 .llseek = offset_dir_llseek, 578 .iterate_shared = offset_readdir, 579 .read = generic_read_dir, 580 .fsync = noop_fsync, 581 }; 582 583 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 584 { 585 struct dentry *child = NULL, *d; 586 587 spin_lock(&parent->d_lock); 588 d = prev ? d_next_sibling(prev) : d_first_child(parent); 589 hlist_for_each_entry_from(d, d_sib) { 590 if (simple_positive(d)) { 591 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 592 if (simple_positive(d)) 593 child = dget_dlock(d); 594 spin_unlock(&d->d_lock); 595 if (likely(child)) 596 break; 597 } 598 } 599 spin_unlock(&parent->d_lock); 600 dput(prev); 601 return child; 602 } 603 EXPORT_SYMBOL(find_next_child); 604 605 static void __simple_recursive_removal(struct dentry *dentry, 606 void (*callback)(struct dentry *), 607 bool locked) 608 { 609 struct dentry *this = dget(dentry); 610 while (true) { 611 struct dentry *victim = NULL, *child; 612 struct inode *inode = this->d_inode; 613 614 inode_lock_nested(inode, I_MUTEX_CHILD); 615 if (d_is_dir(this)) 616 inode->i_flags |= S_DEAD; 617 while ((child = find_next_child(this, victim)) == NULL) { 618 // kill and ascend 619 // update metadata while it's still locked 620 inode_set_ctime_current(inode); 621 clear_nlink(inode); 622 inode_unlock(inode); 623 victim = this; 624 this = this->d_parent; 625 inode = this->d_inode; 626 if (!locked || victim != dentry) 627 inode_lock_nested(inode, I_MUTEX_CHILD); 628 if (simple_positive(victim)) { 629 d_invalidate(victim); // avoid lost mounts 630 if (callback) 631 callback(victim); 632 fsnotify_delete(inode, d_inode(victim), victim); 633 dput(victim); // unpin it 634 } 635 if (victim == dentry) { 636 inode_set_mtime_to_ts(inode, 637 inode_set_ctime_current(inode)); 638 if (d_is_dir(dentry)) 639 drop_nlink(inode); 640 if (!locked) 641 inode_unlock(inode); 642 dput(dentry); 643 return; 644 } 645 } 646 inode_unlock(inode); 647 this = child; 648 } 649 } 650 651 void simple_recursive_removal(struct dentry *dentry, 652 void (*callback)(struct dentry *)) 653 { 654 return __simple_recursive_removal(dentry, callback, false); 655 } 656 EXPORT_SYMBOL(simple_recursive_removal); 657 658 /* caller holds parent directory with I_MUTEX_PARENT */ 659 void locked_recursive_removal(struct dentry *dentry, 660 void (*callback)(struct dentry *)) 661 { 662 return __simple_recursive_removal(dentry, callback, true); 663 } 664 EXPORT_SYMBOL(locked_recursive_removal); 665 666 static const struct super_operations simple_super_operations = { 667 .statfs = simple_statfs, 668 }; 669 670 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 671 { 672 struct pseudo_fs_context *ctx = fc->fs_private; 673 struct inode *root; 674 675 s->s_maxbytes = MAX_LFS_FILESIZE; 676 s->s_blocksize = PAGE_SIZE; 677 s->s_blocksize_bits = PAGE_SHIFT; 678 s->s_magic = ctx->magic; 679 s->s_op = ctx->ops ?: &simple_super_operations; 680 s->s_export_op = ctx->eops; 681 s->s_xattr = ctx->xattr; 682 s->s_time_gran = 1; 683 root = new_inode(s); 684 if (!root) 685 return -ENOMEM; 686 687 /* 688 * since this is the first inode, make it number 1. New inodes created 689 * after this must take care not to collide with it (by passing 690 * max_reserved of 1 to iunique). 691 */ 692 root->i_ino = 1; 693 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 694 simple_inode_init_ts(root); 695 s->s_root = d_make_root(root); 696 if (!s->s_root) 697 return -ENOMEM; 698 set_default_d_op(s, ctx->dops); 699 return 0; 700 } 701 702 static int pseudo_fs_get_tree(struct fs_context *fc) 703 { 704 return get_tree_nodev(fc, pseudo_fs_fill_super); 705 } 706 707 static void pseudo_fs_free(struct fs_context *fc) 708 { 709 kfree(fc->fs_private); 710 } 711 712 static const struct fs_context_operations pseudo_fs_context_ops = { 713 .free = pseudo_fs_free, 714 .get_tree = pseudo_fs_get_tree, 715 }; 716 717 /* 718 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 719 * will never be mountable) 720 */ 721 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 722 unsigned long magic) 723 { 724 struct pseudo_fs_context *ctx; 725 726 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 727 if (likely(ctx)) { 728 ctx->magic = magic; 729 fc->fs_private = ctx; 730 fc->ops = &pseudo_fs_context_ops; 731 fc->sb_flags |= SB_NOUSER; 732 fc->global = true; 733 } 734 return ctx; 735 } 736 EXPORT_SYMBOL(init_pseudo); 737 738 int simple_open(struct inode *inode, struct file *file) 739 { 740 if (inode->i_private) 741 file->private_data = inode->i_private; 742 return 0; 743 } 744 EXPORT_SYMBOL(simple_open); 745 746 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 747 { 748 struct inode *inode = d_inode(old_dentry); 749 750 inode_set_mtime_to_ts(dir, 751 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 752 inc_nlink(inode); 753 ihold(inode); 754 dget(dentry); 755 d_instantiate(dentry, inode); 756 return 0; 757 } 758 EXPORT_SYMBOL(simple_link); 759 760 int simple_empty(struct dentry *dentry) 761 { 762 struct dentry *child; 763 int ret = 0; 764 765 spin_lock(&dentry->d_lock); 766 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 767 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 768 if (simple_positive(child)) { 769 spin_unlock(&child->d_lock); 770 goto out; 771 } 772 spin_unlock(&child->d_lock); 773 } 774 ret = 1; 775 out: 776 spin_unlock(&dentry->d_lock); 777 return ret; 778 } 779 EXPORT_SYMBOL(simple_empty); 780 781 int simple_unlink(struct inode *dir, struct dentry *dentry) 782 { 783 struct inode *inode = d_inode(dentry); 784 785 inode_set_mtime_to_ts(dir, 786 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 787 drop_nlink(inode); 788 dput(dentry); 789 return 0; 790 } 791 EXPORT_SYMBOL(simple_unlink); 792 793 int simple_rmdir(struct inode *dir, struct dentry *dentry) 794 { 795 if (!simple_empty(dentry)) 796 return -ENOTEMPTY; 797 798 drop_nlink(d_inode(dentry)); 799 simple_unlink(dir, dentry); 800 drop_nlink(dir); 801 return 0; 802 } 803 EXPORT_SYMBOL(simple_rmdir); 804 805 /** 806 * simple_rename_timestamp - update the various inode timestamps for rename 807 * @old_dir: old parent directory 808 * @old_dentry: dentry that is being renamed 809 * @new_dir: new parent directory 810 * @new_dentry: target for rename 811 * 812 * POSIX mandates that the old and new parent directories have their ctime and 813 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 814 * their ctime updated. 815 */ 816 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 817 struct inode *new_dir, struct dentry *new_dentry) 818 { 819 struct inode *newino = d_inode(new_dentry); 820 821 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 822 if (new_dir != old_dir) 823 inode_set_mtime_to_ts(new_dir, 824 inode_set_ctime_current(new_dir)); 825 inode_set_ctime_current(d_inode(old_dentry)); 826 if (newino) 827 inode_set_ctime_current(newino); 828 } 829 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 830 831 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 832 struct inode *new_dir, struct dentry *new_dentry) 833 { 834 bool old_is_dir = d_is_dir(old_dentry); 835 bool new_is_dir = d_is_dir(new_dentry); 836 837 if (old_dir != new_dir && old_is_dir != new_is_dir) { 838 if (old_is_dir) { 839 drop_nlink(old_dir); 840 inc_nlink(new_dir); 841 } else { 842 drop_nlink(new_dir); 843 inc_nlink(old_dir); 844 } 845 } 846 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 847 return 0; 848 } 849 EXPORT_SYMBOL_GPL(simple_rename_exchange); 850 851 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 852 struct dentry *old_dentry, struct inode *new_dir, 853 struct dentry *new_dentry, unsigned int flags) 854 { 855 int they_are_dirs = d_is_dir(old_dentry); 856 857 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 858 return -EINVAL; 859 860 if (flags & RENAME_EXCHANGE) 861 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 862 863 if (!simple_empty(new_dentry)) 864 return -ENOTEMPTY; 865 866 if (d_really_is_positive(new_dentry)) { 867 simple_unlink(new_dir, new_dentry); 868 if (they_are_dirs) { 869 drop_nlink(d_inode(new_dentry)); 870 drop_nlink(old_dir); 871 } 872 } else if (they_are_dirs) { 873 drop_nlink(old_dir); 874 inc_nlink(new_dir); 875 } 876 877 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 878 return 0; 879 } 880 EXPORT_SYMBOL(simple_rename); 881 882 /** 883 * simple_setattr - setattr for simple filesystem 884 * @idmap: idmap of the target mount 885 * @dentry: dentry 886 * @iattr: iattr structure 887 * 888 * Returns 0 on success, -error on failure. 889 * 890 * simple_setattr is a simple ->setattr implementation without a proper 891 * implementation of size changes. 892 * 893 * It can either be used for in-memory filesystems or special files 894 * on simple regular filesystems. Anything that needs to change on-disk 895 * or wire state on size changes needs its own setattr method. 896 */ 897 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 898 struct iattr *iattr) 899 { 900 struct inode *inode = d_inode(dentry); 901 int error; 902 903 error = setattr_prepare(idmap, dentry, iattr); 904 if (error) 905 return error; 906 907 if (iattr->ia_valid & ATTR_SIZE) 908 truncate_setsize(inode, iattr->ia_size); 909 setattr_copy(idmap, inode, iattr); 910 mark_inode_dirty(inode); 911 return 0; 912 } 913 EXPORT_SYMBOL(simple_setattr); 914 915 static int simple_read_folio(struct file *file, struct folio *folio) 916 { 917 folio_zero_range(folio, 0, folio_size(folio)); 918 flush_dcache_folio(folio); 919 folio_mark_uptodate(folio); 920 folio_unlock(folio); 921 return 0; 922 } 923 924 int simple_write_begin(const struct kiocb *iocb, struct address_space *mapping, 925 loff_t pos, unsigned len, 926 struct folio **foliop, void **fsdata) 927 { 928 struct folio *folio; 929 930 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 931 mapping_gfp_mask(mapping)); 932 if (IS_ERR(folio)) 933 return PTR_ERR(folio); 934 935 *foliop = folio; 936 937 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 938 size_t from = offset_in_folio(folio, pos); 939 940 folio_zero_segments(folio, 0, from, 941 from + len, folio_size(folio)); 942 } 943 return 0; 944 } 945 EXPORT_SYMBOL(simple_write_begin); 946 947 /** 948 * simple_write_end - .write_end helper for non-block-device FSes 949 * @iocb: kernel I/O control block 950 * @mapping: " 951 * @pos: " 952 * @len: " 953 * @copied: " 954 * @folio: " 955 * @fsdata: " 956 * 957 * simple_write_end does the minimum needed for updating a folio after 958 * writing is done. It has the same API signature as the .write_end of 959 * address_space_operations vector. So it can just be set onto .write_end for 960 * FSes that don't need any other processing. i_rwsem is assumed to be held 961 * exclusively. 962 * Block based filesystems should use generic_write_end(). 963 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 964 * is not called, so a filesystem that actually does store data in .write_inode 965 * should extend on what's done here with a call to mark_inode_dirty() in the 966 * case that i_size has changed. 967 * 968 * Use *ONLY* with simple_read_folio() 969 */ 970 static int simple_write_end(const struct kiocb *iocb, 971 struct address_space *mapping, 972 loff_t pos, unsigned len, unsigned copied, 973 struct folio *folio, void *fsdata) 974 { 975 struct inode *inode = folio->mapping->host; 976 loff_t last_pos = pos + copied; 977 978 /* zero the stale part of the folio if we did a short copy */ 979 if (!folio_test_uptodate(folio)) { 980 if (copied < len) { 981 size_t from = offset_in_folio(folio, pos); 982 983 folio_zero_range(folio, from + copied, len - copied); 984 } 985 folio_mark_uptodate(folio); 986 } 987 /* 988 * No need to use i_size_read() here, the i_size 989 * cannot change under us because we hold the i_rwsem. 990 */ 991 if (last_pos > inode->i_size) 992 i_size_write(inode, last_pos); 993 994 folio_mark_dirty(folio); 995 folio_unlock(folio); 996 folio_put(folio); 997 998 return copied; 999 } 1000 1001 /* 1002 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 1003 */ 1004 const struct address_space_operations ram_aops = { 1005 .read_folio = simple_read_folio, 1006 .write_begin = simple_write_begin, 1007 .write_end = simple_write_end, 1008 .dirty_folio = noop_dirty_folio, 1009 }; 1010 EXPORT_SYMBOL(ram_aops); 1011 1012 /* 1013 * the inodes created here are not hashed. If you use iunique to generate 1014 * unique inode values later for this filesystem, then you must take care 1015 * to pass it an appropriate max_reserved value to avoid collisions. 1016 */ 1017 int simple_fill_super(struct super_block *s, unsigned long magic, 1018 const struct tree_descr *files) 1019 { 1020 struct inode *inode; 1021 struct dentry *dentry; 1022 int i; 1023 1024 s->s_blocksize = PAGE_SIZE; 1025 s->s_blocksize_bits = PAGE_SHIFT; 1026 s->s_magic = magic; 1027 s->s_op = &simple_super_operations; 1028 s->s_time_gran = 1; 1029 1030 inode = new_inode(s); 1031 if (!inode) 1032 return -ENOMEM; 1033 /* 1034 * because the root inode is 1, the files array must not contain an 1035 * entry at index 1 1036 */ 1037 inode->i_ino = 1; 1038 inode->i_mode = S_IFDIR | 0755; 1039 simple_inode_init_ts(inode); 1040 inode->i_op = &simple_dir_inode_operations; 1041 inode->i_fop = &simple_dir_operations; 1042 set_nlink(inode, 2); 1043 s->s_root = d_make_root(inode); 1044 if (!s->s_root) 1045 return -ENOMEM; 1046 for (i = 0; !files->name || files->name[0]; i++, files++) { 1047 if (!files->name) 1048 continue; 1049 1050 /* warn if it tries to conflict with the root inode */ 1051 if (unlikely(i == 1)) 1052 printk(KERN_WARNING "%s: %s passed in a files array" 1053 "with an index of 1!\n", __func__, 1054 s->s_type->name); 1055 1056 dentry = d_alloc_name(s->s_root, files->name); 1057 if (!dentry) 1058 return -ENOMEM; 1059 inode = new_inode(s); 1060 if (!inode) { 1061 dput(dentry); 1062 return -ENOMEM; 1063 } 1064 inode->i_mode = S_IFREG | files->mode; 1065 simple_inode_init_ts(inode); 1066 inode->i_fop = files->ops; 1067 inode->i_ino = i; 1068 d_add(dentry, inode); 1069 } 1070 return 0; 1071 } 1072 EXPORT_SYMBOL(simple_fill_super); 1073 1074 static DEFINE_SPINLOCK(pin_fs_lock); 1075 1076 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 1077 { 1078 struct vfsmount *mnt = NULL; 1079 spin_lock(&pin_fs_lock); 1080 if (unlikely(!*mount)) { 1081 spin_unlock(&pin_fs_lock); 1082 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 1083 if (IS_ERR(mnt)) 1084 return PTR_ERR(mnt); 1085 spin_lock(&pin_fs_lock); 1086 if (!*mount) 1087 *mount = mnt; 1088 } 1089 mntget(*mount); 1090 ++*count; 1091 spin_unlock(&pin_fs_lock); 1092 mntput(mnt); 1093 return 0; 1094 } 1095 EXPORT_SYMBOL(simple_pin_fs); 1096 1097 void simple_release_fs(struct vfsmount **mount, int *count) 1098 { 1099 struct vfsmount *mnt; 1100 spin_lock(&pin_fs_lock); 1101 mnt = *mount; 1102 if (!--*count) 1103 *mount = NULL; 1104 spin_unlock(&pin_fs_lock); 1105 mntput(mnt); 1106 } 1107 EXPORT_SYMBOL(simple_release_fs); 1108 1109 /** 1110 * simple_read_from_buffer - copy data from the buffer to user space 1111 * @to: the user space buffer to read to 1112 * @count: the maximum number of bytes to read 1113 * @ppos: the current position in the buffer 1114 * @from: the buffer to read from 1115 * @available: the size of the buffer 1116 * 1117 * The simple_read_from_buffer() function reads up to @count bytes from the 1118 * buffer @from at offset @ppos into the user space address starting at @to. 1119 * 1120 * On success, the number of bytes read is returned and the offset @ppos is 1121 * advanced by this number, or negative value is returned on error. 1122 **/ 1123 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1124 const void *from, size_t available) 1125 { 1126 loff_t pos = *ppos; 1127 size_t ret; 1128 1129 if (pos < 0) 1130 return -EINVAL; 1131 if (pos >= available || !count) 1132 return 0; 1133 if (count > available - pos) 1134 count = available - pos; 1135 ret = copy_to_user(to, from + pos, count); 1136 if (ret == count) 1137 return -EFAULT; 1138 count -= ret; 1139 *ppos = pos + count; 1140 return count; 1141 } 1142 EXPORT_SYMBOL(simple_read_from_buffer); 1143 1144 /** 1145 * simple_write_to_buffer - copy data from user space to the buffer 1146 * @to: the buffer to write to 1147 * @available: the size of the buffer 1148 * @ppos: the current position in the buffer 1149 * @from: the user space buffer to read from 1150 * @count: the maximum number of bytes to read 1151 * 1152 * The simple_write_to_buffer() function reads up to @count bytes from the user 1153 * space address starting at @from into the buffer @to at offset @ppos. 1154 * 1155 * On success, the number of bytes written is returned and the offset @ppos is 1156 * advanced by this number, or negative value is returned on error. 1157 **/ 1158 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1159 const void __user *from, size_t count) 1160 { 1161 loff_t pos = *ppos; 1162 size_t res; 1163 1164 if (pos < 0) 1165 return -EINVAL; 1166 if (pos >= available || !count) 1167 return 0; 1168 if (count > available - pos) 1169 count = available - pos; 1170 res = copy_from_user(to + pos, from, count); 1171 if (res == count) 1172 return -EFAULT; 1173 count -= res; 1174 *ppos = pos + count; 1175 return count; 1176 } 1177 EXPORT_SYMBOL(simple_write_to_buffer); 1178 1179 /** 1180 * memory_read_from_buffer - copy data from the buffer 1181 * @to: the kernel space buffer to read to 1182 * @count: the maximum number of bytes to read 1183 * @ppos: the current position in the buffer 1184 * @from: the buffer to read from 1185 * @available: the size of the buffer 1186 * 1187 * The memory_read_from_buffer() function reads up to @count bytes from the 1188 * buffer @from at offset @ppos into the kernel space address starting at @to. 1189 * 1190 * On success, the number of bytes read is returned and the offset @ppos is 1191 * advanced by this number, or negative value is returned on error. 1192 **/ 1193 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1194 const void *from, size_t available) 1195 { 1196 loff_t pos = *ppos; 1197 1198 if (pos < 0) 1199 return -EINVAL; 1200 if (pos >= available) 1201 return 0; 1202 if (count > available - pos) 1203 count = available - pos; 1204 memcpy(to, from + pos, count); 1205 *ppos = pos + count; 1206 1207 return count; 1208 } 1209 EXPORT_SYMBOL(memory_read_from_buffer); 1210 1211 /* 1212 * Transaction based IO. 1213 * The file expects a single write which triggers the transaction, and then 1214 * possibly a read which collects the result - which is stored in a 1215 * file-local buffer. 1216 */ 1217 1218 void simple_transaction_set(struct file *file, size_t n) 1219 { 1220 struct simple_transaction_argresp *ar = file->private_data; 1221 1222 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1223 1224 /* 1225 * The barrier ensures that ar->size will really remain zero until 1226 * ar->data is ready for reading. 1227 */ 1228 smp_mb(); 1229 ar->size = n; 1230 } 1231 EXPORT_SYMBOL(simple_transaction_set); 1232 1233 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1234 { 1235 struct simple_transaction_argresp *ar; 1236 static DEFINE_SPINLOCK(simple_transaction_lock); 1237 1238 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1239 return ERR_PTR(-EFBIG); 1240 1241 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1242 if (!ar) 1243 return ERR_PTR(-ENOMEM); 1244 1245 spin_lock(&simple_transaction_lock); 1246 1247 /* only one write allowed per open */ 1248 if (file->private_data) { 1249 spin_unlock(&simple_transaction_lock); 1250 free_page((unsigned long)ar); 1251 return ERR_PTR(-EBUSY); 1252 } 1253 1254 file->private_data = ar; 1255 1256 spin_unlock(&simple_transaction_lock); 1257 1258 if (copy_from_user(ar->data, buf, size)) 1259 return ERR_PTR(-EFAULT); 1260 1261 return ar->data; 1262 } 1263 EXPORT_SYMBOL(simple_transaction_get); 1264 1265 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1266 { 1267 struct simple_transaction_argresp *ar = file->private_data; 1268 1269 if (!ar) 1270 return 0; 1271 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1272 } 1273 EXPORT_SYMBOL(simple_transaction_read); 1274 1275 int simple_transaction_release(struct inode *inode, struct file *file) 1276 { 1277 free_page((unsigned long)file->private_data); 1278 return 0; 1279 } 1280 EXPORT_SYMBOL(simple_transaction_release); 1281 1282 /* Simple attribute files */ 1283 1284 struct simple_attr { 1285 int (*get)(void *, u64 *); 1286 int (*set)(void *, u64); 1287 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1288 char set_buf[24]; 1289 void *data; 1290 const char *fmt; /* format for read operation */ 1291 struct mutex mutex; /* protects access to these buffers */ 1292 }; 1293 1294 /* simple_attr_open is called by an actual attribute open file operation 1295 * to set the attribute specific access operations. */ 1296 int simple_attr_open(struct inode *inode, struct file *file, 1297 int (*get)(void *, u64 *), int (*set)(void *, u64), 1298 const char *fmt) 1299 { 1300 struct simple_attr *attr; 1301 1302 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1303 if (!attr) 1304 return -ENOMEM; 1305 1306 attr->get = get; 1307 attr->set = set; 1308 attr->data = inode->i_private; 1309 attr->fmt = fmt; 1310 mutex_init(&attr->mutex); 1311 1312 file->private_data = attr; 1313 1314 return nonseekable_open(inode, file); 1315 } 1316 EXPORT_SYMBOL_GPL(simple_attr_open); 1317 1318 int simple_attr_release(struct inode *inode, struct file *file) 1319 { 1320 kfree(file->private_data); 1321 return 0; 1322 } 1323 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1324 1325 /* read from the buffer that is filled with the get function */ 1326 ssize_t simple_attr_read(struct file *file, char __user *buf, 1327 size_t len, loff_t *ppos) 1328 { 1329 struct simple_attr *attr; 1330 size_t size; 1331 ssize_t ret; 1332 1333 attr = file->private_data; 1334 1335 if (!attr->get) 1336 return -EACCES; 1337 1338 ret = mutex_lock_interruptible(&attr->mutex); 1339 if (ret) 1340 return ret; 1341 1342 if (*ppos && attr->get_buf[0]) { 1343 /* continued read */ 1344 size = strlen(attr->get_buf); 1345 } else { 1346 /* first read */ 1347 u64 val; 1348 ret = attr->get(attr->data, &val); 1349 if (ret) 1350 goto out; 1351 1352 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1353 attr->fmt, (unsigned long long)val); 1354 } 1355 1356 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1357 out: 1358 mutex_unlock(&attr->mutex); 1359 return ret; 1360 } 1361 EXPORT_SYMBOL_GPL(simple_attr_read); 1362 1363 /* interpret the buffer as a number to call the set function with */ 1364 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1365 size_t len, loff_t *ppos, bool is_signed) 1366 { 1367 struct simple_attr *attr; 1368 unsigned long long val; 1369 size_t size; 1370 ssize_t ret; 1371 1372 attr = file->private_data; 1373 if (!attr->set) 1374 return -EACCES; 1375 1376 ret = mutex_lock_interruptible(&attr->mutex); 1377 if (ret) 1378 return ret; 1379 1380 ret = -EFAULT; 1381 size = min(sizeof(attr->set_buf) - 1, len); 1382 if (copy_from_user(attr->set_buf, buf, size)) 1383 goto out; 1384 1385 attr->set_buf[size] = '\0'; 1386 if (is_signed) 1387 ret = kstrtoll(attr->set_buf, 0, &val); 1388 else 1389 ret = kstrtoull(attr->set_buf, 0, &val); 1390 if (ret) 1391 goto out; 1392 ret = attr->set(attr->data, val); 1393 if (ret == 0) 1394 ret = len; /* on success, claim we got the whole input */ 1395 out: 1396 mutex_unlock(&attr->mutex); 1397 return ret; 1398 } 1399 1400 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1401 size_t len, loff_t *ppos) 1402 { 1403 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1404 } 1405 EXPORT_SYMBOL_GPL(simple_attr_write); 1406 1407 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1408 size_t len, loff_t *ppos) 1409 { 1410 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1411 } 1412 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1413 1414 /** 1415 * generic_encode_ino32_fh - generic export_operations->encode_fh function 1416 * @inode: the object to encode 1417 * @fh: where to store the file handle fragment 1418 * @max_len: maximum length to store there (in 4 byte units) 1419 * @parent: parent directory inode, if wanted 1420 * 1421 * This generic encode_fh function assumes that the 32 inode number 1422 * is suitable for locating an inode, and that the generation number 1423 * can be used to check that it is still valid. It places them in the 1424 * filehandle fragment where export_decode_fh expects to find them. 1425 */ 1426 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, 1427 struct inode *parent) 1428 { 1429 struct fid *fid = (void *)fh; 1430 int len = *max_len; 1431 int type = FILEID_INO32_GEN; 1432 1433 if (parent && (len < 4)) { 1434 *max_len = 4; 1435 return FILEID_INVALID; 1436 } else if (len < 2) { 1437 *max_len = 2; 1438 return FILEID_INVALID; 1439 } 1440 1441 len = 2; 1442 fid->i32.ino = inode->i_ino; 1443 fid->i32.gen = inode->i_generation; 1444 if (parent) { 1445 fid->i32.parent_ino = parent->i_ino; 1446 fid->i32.parent_gen = parent->i_generation; 1447 len = 4; 1448 type = FILEID_INO32_GEN_PARENT; 1449 } 1450 *max_len = len; 1451 return type; 1452 } 1453 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); 1454 1455 /** 1456 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1457 * @sb: filesystem to do the file handle conversion on 1458 * @fid: file handle to convert 1459 * @fh_len: length of the file handle in bytes 1460 * @fh_type: type of file handle 1461 * @get_inode: filesystem callback to retrieve inode 1462 * 1463 * This function decodes @fid as long as it has one of the well-known 1464 * Linux filehandle types and calls @get_inode on it to retrieve the 1465 * inode for the object specified in the file handle. 1466 */ 1467 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1468 int fh_len, int fh_type, struct inode *(*get_inode) 1469 (struct super_block *sb, u64 ino, u32 gen)) 1470 { 1471 struct inode *inode = NULL; 1472 1473 if (fh_len < 2) 1474 return NULL; 1475 1476 switch (fh_type) { 1477 case FILEID_INO32_GEN: 1478 case FILEID_INO32_GEN_PARENT: 1479 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1480 break; 1481 } 1482 1483 return d_obtain_alias(inode); 1484 } 1485 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1486 1487 /** 1488 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1489 * @sb: filesystem to do the file handle conversion on 1490 * @fid: file handle to convert 1491 * @fh_len: length of the file handle in bytes 1492 * @fh_type: type of file handle 1493 * @get_inode: filesystem callback to retrieve inode 1494 * 1495 * This function decodes @fid as long as it has one of the well-known 1496 * Linux filehandle types and calls @get_inode on it to retrieve the 1497 * inode for the _parent_ object specified in the file handle if it 1498 * is specified in the file handle, or NULL otherwise. 1499 */ 1500 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1501 int fh_len, int fh_type, struct inode *(*get_inode) 1502 (struct super_block *sb, u64 ino, u32 gen)) 1503 { 1504 struct inode *inode = NULL; 1505 1506 if (fh_len <= 2) 1507 return NULL; 1508 1509 switch (fh_type) { 1510 case FILEID_INO32_GEN_PARENT: 1511 inode = get_inode(sb, fid->i32.parent_ino, 1512 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1513 break; 1514 } 1515 1516 return d_obtain_alias(inode); 1517 } 1518 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1519 1520 /** 1521 * __generic_file_fsync - generic fsync implementation for simple filesystems 1522 * 1523 * @file: file to synchronize 1524 * @start: start offset in bytes 1525 * @end: end offset in bytes (inclusive) 1526 * @datasync: only synchronize essential metadata if true 1527 * 1528 * This is a generic implementation of the fsync method for simple 1529 * filesystems which track all non-inode metadata in the buffers list 1530 * hanging off the address_space structure. 1531 */ 1532 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1533 int datasync) 1534 { 1535 struct inode *inode = file->f_mapping->host; 1536 int err; 1537 int ret; 1538 1539 err = file_write_and_wait_range(file, start, end); 1540 if (err) 1541 return err; 1542 1543 inode_lock(inode); 1544 ret = sync_mapping_buffers(inode->i_mapping); 1545 if (!(inode->i_state & I_DIRTY_ALL)) 1546 goto out; 1547 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1548 goto out; 1549 1550 err = sync_inode_metadata(inode, 1); 1551 if (ret == 0) 1552 ret = err; 1553 1554 out: 1555 inode_unlock(inode); 1556 /* check and advance again to catch errors after syncing out buffers */ 1557 err = file_check_and_advance_wb_err(file); 1558 if (ret == 0) 1559 ret = err; 1560 return ret; 1561 } 1562 EXPORT_SYMBOL(__generic_file_fsync); 1563 1564 /** 1565 * generic_file_fsync - generic fsync implementation for simple filesystems 1566 * with flush 1567 * @file: file to synchronize 1568 * @start: start offset in bytes 1569 * @end: end offset in bytes (inclusive) 1570 * @datasync: only synchronize essential metadata if true 1571 * 1572 */ 1573 1574 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1575 int datasync) 1576 { 1577 struct inode *inode = file->f_mapping->host; 1578 int err; 1579 1580 err = __generic_file_fsync(file, start, end, datasync); 1581 if (err) 1582 return err; 1583 return blkdev_issue_flush(inode->i_sb->s_bdev); 1584 } 1585 EXPORT_SYMBOL(generic_file_fsync); 1586 1587 /** 1588 * generic_check_addressable - Check addressability of file system 1589 * @blocksize_bits: log of file system block size 1590 * @num_blocks: number of blocks in file system 1591 * 1592 * Determine whether a file system with @num_blocks blocks (and a 1593 * block size of 2**@blocksize_bits) is addressable by the sector_t 1594 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1595 */ 1596 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1597 { 1598 u64 last_fs_block = num_blocks - 1; 1599 u64 last_fs_page, max_bytes; 1600 1601 if (check_shl_overflow(num_blocks, blocksize_bits, &max_bytes)) 1602 return -EFBIG; 1603 1604 last_fs_page = (max_bytes >> PAGE_SHIFT) - 1; 1605 1606 if (unlikely(num_blocks == 0)) 1607 return 0; 1608 1609 if (blocksize_bits < 9) 1610 return -EINVAL; 1611 1612 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1613 (last_fs_page > (pgoff_t)(~0ULL))) { 1614 return -EFBIG; 1615 } 1616 return 0; 1617 } 1618 EXPORT_SYMBOL(generic_check_addressable); 1619 1620 /* 1621 * No-op implementation of ->fsync for in-memory filesystems. 1622 */ 1623 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1624 { 1625 return 0; 1626 } 1627 EXPORT_SYMBOL(noop_fsync); 1628 1629 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1630 { 1631 /* 1632 * iomap based filesystems support direct I/O without need for 1633 * this callback. However, it still needs to be set in 1634 * inode->a_ops so that open/fcntl know that direct I/O is 1635 * generally supported. 1636 */ 1637 return -EINVAL; 1638 } 1639 EXPORT_SYMBOL_GPL(noop_direct_IO); 1640 1641 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1642 void kfree_link(void *p) 1643 { 1644 kfree(p); 1645 } 1646 EXPORT_SYMBOL(kfree_link); 1647 1648 struct inode *alloc_anon_inode(struct super_block *s) 1649 { 1650 static const struct address_space_operations anon_aops = { 1651 .dirty_folio = noop_dirty_folio, 1652 }; 1653 struct inode *inode = new_inode_pseudo(s); 1654 1655 if (!inode) 1656 return ERR_PTR(-ENOMEM); 1657 1658 inode->i_ino = get_next_ino(); 1659 inode->i_mapping->a_ops = &anon_aops; 1660 1661 /* 1662 * Mark the inode dirty from the very beginning, 1663 * that way it will never be moved to the dirty 1664 * list because mark_inode_dirty() will think 1665 * that it already _is_ on the dirty list. 1666 */ 1667 inode->i_state = I_DIRTY; 1668 /* 1669 * Historically anonymous inodes don't have a type at all and 1670 * userspace has come to rely on this. 1671 */ 1672 inode->i_mode = S_IRUSR | S_IWUSR; 1673 inode->i_uid = current_fsuid(); 1674 inode->i_gid = current_fsgid(); 1675 inode->i_flags |= S_PRIVATE | S_ANON_INODE; 1676 simple_inode_init_ts(inode); 1677 return inode; 1678 } 1679 EXPORT_SYMBOL(alloc_anon_inode); 1680 1681 /** 1682 * simple_nosetlease - generic helper for prohibiting leases 1683 * @filp: file pointer 1684 * @arg: type of lease to obtain 1685 * @flp: new lease supplied for insertion 1686 * @priv: private data for lm_setup operation 1687 * 1688 * Generic helper for filesystems that do not wish to allow leases to be set. 1689 * All arguments are ignored and it just returns -EINVAL. 1690 */ 1691 int 1692 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp, 1693 void **priv) 1694 { 1695 return -EINVAL; 1696 } 1697 EXPORT_SYMBOL(simple_nosetlease); 1698 1699 /** 1700 * simple_get_link - generic helper to get the target of "fast" symlinks 1701 * @dentry: not used here 1702 * @inode: the symlink inode 1703 * @done: not used here 1704 * 1705 * Generic helper for filesystems to use for symlink inodes where a pointer to 1706 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1707 * since as an optimization the path lookup code uses any non-NULL ->i_link 1708 * directly, without calling ->get_link(). But ->get_link() still must be set, 1709 * to mark the inode_operations as being for a symlink. 1710 * 1711 * Return: the symlink target 1712 */ 1713 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1714 struct delayed_call *done) 1715 { 1716 return inode->i_link; 1717 } 1718 EXPORT_SYMBOL(simple_get_link); 1719 1720 const struct inode_operations simple_symlink_inode_operations = { 1721 .get_link = simple_get_link, 1722 }; 1723 EXPORT_SYMBOL(simple_symlink_inode_operations); 1724 1725 /* 1726 * Operations for a permanently empty directory. 1727 */ 1728 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1729 { 1730 return ERR_PTR(-ENOENT); 1731 } 1732 1733 static int empty_dir_setattr(struct mnt_idmap *idmap, 1734 struct dentry *dentry, struct iattr *attr) 1735 { 1736 return -EPERM; 1737 } 1738 1739 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1740 { 1741 return -EOPNOTSUPP; 1742 } 1743 1744 static const struct inode_operations empty_dir_inode_operations = { 1745 .lookup = empty_dir_lookup, 1746 .setattr = empty_dir_setattr, 1747 .listxattr = empty_dir_listxattr, 1748 }; 1749 1750 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1751 { 1752 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1753 return generic_file_llseek_size(file, offset, whence, 2, 2); 1754 } 1755 1756 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1757 { 1758 dir_emit_dots(file, ctx); 1759 return 0; 1760 } 1761 1762 static const struct file_operations empty_dir_operations = { 1763 .llseek = empty_dir_llseek, 1764 .read = generic_read_dir, 1765 .iterate_shared = empty_dir_readdir, 1766 .fsync = noop_fsync, 1767 }; 1768 1769 1770 void make_empty_dir_inode(struct inode *inode) 1771 { 1772 set_nlink(inode, 2); 1773 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1774 inode->i_uid = GLOBAL_ROOT_UID; 1775 inode->i_gid = GLOBAL_ROOT_GID; 1776 inode->i_rdev = 0; 1777 inode->i_size = 0; 1778 inode->i_blkbits = PAGE_SHIFT; 1779 inode->i_blocks = 0; 1780 1781 inode->i_op = &empty_dir_inode_operations; 1782 inode->i_opflags &= ~IOP_XATTR; 1783 inode->i_fop = &empty_dir_operations; 1784 } 1785 1786 bool is_empty_dir_inode(struct inode *inode) 1787 { 1788 return (inode->i_fop == &empty_dir_operations) && 1789 (inode->i_op == &empty_dir_inode_operations); 1790 } 1791 1792 #if IS_ENABLED(CONFIG_UNICODE) 1793 /** 1794 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1795 * @dentry: dentry whose name we are checking against 1796 * @len: len of name of dentry 1797 * @str: str pointer to name of dentry 1798 * @name: Name to compare against 1799 * 1800 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1801 */ 1802 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1803 const char *str, const struct qstr *name) 1804 { 1805 const struct dentry *parent; 1806 const struct inode *dir; 1807 union shortname_store strbuf; 1808 struct qstr qstr; 1809 1810 /* 1811 * Attempt a case-sensitive match first. It is cheaper and 1812 * should cover most lookups, including all the sane 1813 * applications that expect a case-sensitive filesystem. 1814 * 1815 * This comparison is safe under RCU because the caller 1816 * guarantees the consistency between str and len. See 1817 * __d_lookup_rcu_op_compare() for details. 1818 */ 1819 if (len == name->len && !memcmp(str, name->name, len)) 1820 return 0; 1821 1822 parent = READ_ONCE(dentry->d_parent); 1823 dir = READ_ONCE(parent->d_inode); 1824 if (!dir || !IS_CASEFOLDED(dir)) 1825 return 1; 1826 1827 qstr.len = len; 1828 qstr.name = str; 1829 /* 1830 * If the dentry name is stored in-line, then it may be concurrently 1831 * modified by a rename. If this happens, the VFS will eventually retry 1832 * the lookup, so it doesn't matter what ->d_compare() returns. 1833 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1834 * string. Therefore, we have to copy the name into a temporary buffer. 1835 * As above, len is guaranteed to match str, so the shortname case 1836 * is exactly when str points to ->d_shortname. 1837 */ 1838 if (qstr.name == dentry->d_shortname.string) { 1839 strbuf = dentry->d_shortname; // NUL is guaranteed to be in there 1840 qstr.name = strbuf.string; 1841 /* prevent compiler from optimizing out the temporary buffer */ 1842 barrier(); 1843 } 1844 1845 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr); 1846 } 1847 EXPORT_SYMBOL(generic_ci_d_compare); 1848 1849 /** 1850 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1851 * @dentry: dentry of the parent directory 1852 * @str: qstr of name whose hash we should fill in 1853 * 1854 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1855 */ 1856 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1857 { 1858 const struct inode *dir = READ_ONCE(dentry->d_inode); 1859 struct super_block *sb = dentry->d_sb; 1860 const struct unicode_map *um = sb->s_encoding; 1861 int ret; 1862 1863 if (!dir || !IS_CASEFOLDED(dir)) 1864 return 0; 1865 1866 ret = utf8_casefold_hash(um, dentry, str); 1867 if (ret < 0 && sb_has_strict_encoding(sb)) 1868 return -EINVAL; 1869 return 0; 1870 } 1871 EXPORT_SYMBOL(generic_ci_d_hash); 1872 1873 static const struct dentry_operations generic_ci_dentry_ops = { 1874 .d_hash = generic_ci_d_hash, 1875 .d_compare = generic_ci_d_compare, 1876 #ifdef CONFIG_FS_ENCRYPTION 1877 .d_revalidate = fscrypt_d_revalidate, 1878 #endif 1879 }; 1880 1881 /** 1882 * generic_ci_match() - Match a name (case-insensitively) with a dirent. 1883 * This is a filesystem helper for comparison with directory entries. 1884 * generic_ci_d_compare should be used in VFS' ->d_compare instead. 1885 * 1886 * @parent: Inode of the parent of the dirent under comparison 1887 * @name: name under lookup. 1888 * @folded_name: Optional pre-folded name under lookup 1889 * @de_name: Dirent name. 1890 * @de_name_len: dirent name length. 1891 * 1892 * Test whether a case-insensitive directory entry matches the filename 1893 * being searched. If @folded_name is provided, it is used instead of 1894 * recalculating the casefold of @name. 1895 * 1896 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or 1897 * < 0 on error. 1898 */ 1899 int generic_ci_match(const struct inode *parent, 1900 const struct qstr *name, 1901 const struct qstr *folded_name, 1902 const u8 *de_name, u32 de_name_len) 1903 { 1904 const struct super_block *sb = parent->i_sb; 1905 const struct unicode_map *um = sb->s_encoding; 1906 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len); 1907 struct qstr dirent = QSTR_INIT(de_name, de_name_len); 1908 int res = 0; 1909 1910 if (IS_ENCRYPTED(parent)) { 1911 const struct fscrypt_str encrypted_name = 1912 FSTR_INIT((u8 *) de_name, de_name_len); 1913 1914 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent))) 1915 return -EINVAL; 1916 1917 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL); 1918 if (!decrypted_name.name) 1919 return -ENOMEM; 1920 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name, 1921 &decrypted_name); 1922 if (res < 0) { 1923 kfree(decrypted_name.name); 1924 return res; 1925 } 1926 dirent.name = decrypted_name.name; 1927 dirent.len = decrypted_name.len; 1928 } 1929 1930 /* 1931 * Attempt a case-sensitive match first. It is cheaper and 1932 * should cover most lookups, including all the sane 1933 * applications that expect a case-sensitive filesystem. 1934 */ 1935 1936 if (dirent.len == name->len && 1937 !memcmp(name->name, dirent.name, dirent.len)) 1938 goto out; 1939 1940 if (folded_name->name) 1941 res = utf8_strncasecmp_folded(um, folded_name, &dirent); 1942 else 1943 res = utf8_strncasecmp(um, name, &dirent); 1944 1945 out: 1946 kfree(decrypted_name.name); 1947 if (res < 0 && sb_has_strict_encoding(sb)) { 1948 pr_err_ratelimited("Directory contains filename that is invalid UTF-8"); 1949 return 0; 1950 } 1951 return !res; 1952 } 1953 EXPORT_SYMBOL(generic_ci_match); 1954 #endif 1955 1956 #ifdef CONFIG_FS_ENCRYPTION 1957 static const struct dentry_operations generic_encrypted_dentry_ops = { 1958 .d_revalidate = fscrypt_d_revalidate, 1959 }; 1960 #endif 1961 1962 /** 1963 * generic_set_sb_d_ops - helper for choosing the set of 1964 * filesystem-wide dentry operations for the enabled features 1965 * @sb: superblock to be configured 1966 * 1967 * Filesystems supporting casefolding and/or fscrypt can call this 1968 * helper at mount-time to configure default dentry_operations to the 1969 * best set of dentry operations required for the enabled features. 1970 * The helper must be called after these have been configured, but 1971 * before the root dentry is created. 1972 */ 1973 void generic_set_sb_d_ops(struct super_block *sb) 1974 { 1975 #if IS_ENABLED(CONFIG_UNICODE) 1976 if (sb->s_encoding) { 1977 set_default_d_op(sb, &generic_ci_dentry_ops); 1978 return; 1979 } 1980 #endif 1981 #ifdef CONFIG_FS_ENCRYPTION 1982 if (sb->s_cop) { 1983 set_default_d_op(sb, &generic_encrypted_dentry_ops); 1984 return; 1985 } 1986 #endif 1987 } 1988 EXPORT_SYMBOL(generic_set_sb_d_ops); 1989 1990 /** 1991 * inode_maybe_inc_iversion - increments i_version 1992 * @inode: inode with the i_version that should be updated 1993 * @force: increment the counter even if it's not necessary? 1994 * 1995 * Every time the inode is modified, the i_version field must be seen to have 1996 * changed by any observer. 1997 * 1998 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1999 * the value, and clear the queried flag. 2000 * 2001 * In the common case where neither is set, then we can return "false" without 2002 * updating i_version. 2003 * 2004 * If this function returns false, and no other metadata has changed, then we 2005 * can avoid logging the metadata. 2006 */ 2007 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 2008 { 2009 u64 cur, new; 2010 2011 /* 2012 * The i_version field is not strictly ordered with any other inode 2013 * information, but the legacy inode_inc_iversion code used a spinlock 2014 * to serialize increments. 2015 * 2016 * We add a full memory barrier to ensure that any de facto ordering 2017 * with other state is preserved (either implicitly coming from cmpxchg 2018 * or explicitly from smp_mb if we don't know upfront if we will execute 2019 * the former). 2020 * 2021 * These barriers pair with inode_query_iversion(). 2022 */ 2023 cur = inode_peek_iversion_raw(inode); 2024 if (!force && !(cur & I_VERSION_QUERIED)) { 2025 smp_mb(); 2026 cur = inode_peek_iversion_raw(inode); 2027 } 2028 2029 do { 2030 /* If flag is clear then we needn't do anything */ 2031 if (!force && !(cur & I_VERSION_QUERIED)) 2032 return false; 2033 2034 /* Since lowest bit is flag, add 2 to avoid it */ 2035 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 2036 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 2037 return true; 2038 } 2039 EXPORT_SYMBOL(inode_maybe_inc_iversion); 2040 2041 /** 2042 * inode_query_iversion - read i_version for later use 2043 * @inode: inode from which i_version should be read 2044 * 2045 * Read the inode i_version counter. This should be used by callers that wish 2046 * to store the returned i_version for later comparison. This will guarantee 2047 * that a later query of the i_version will result in a different value if 2048 * anything has changed. 2049 * 2050 * In this implementation, we fetch the current value, set the QUERIED flag and 2051 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 2052 * that fails, we try again with the newly fetched value from the cmpxchg. 2053 */ 2054 u64 inode_query_iversion(struct inode *inode) 2055 { 2056 u64 cur, new; 2057 bool fenced = false; 2058 2059 /* 2060 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with 2061 * inode_maybe_inc_iversion(), see that routine for more details. 2062 */ 2063 cur = inode_peek_iversion_raw(inode); 2064 do { 2065 /* If flag is already set, then no need to swap */ 2066 if (cur & I_VERSION_QUERIED) { 2067 if (!fenced) 2068 smp_mb(); 2069 break; 2070 } 2071 2072 fenced = true; 2073 new = cur | I_VERSION_QUERIED; 2074 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 2075 return cur >> I_VERSION_QUERIED_SHIFT; 2076 } 2077 EXPORT_SYMBOL(inode_query_iversion); 2078 2079 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 2080 ssize_t direct_written, ssize_t buffered_written) 2081 { 2082 struct address_space *mapping = iocb->ki_filp->f_mapping; 2083 loff_t pos = iocb->ki_pos - buffered_written; 2084 loff_t end = iocb->ki_pos - 1; 2085 int err; 2086 2087 /* 2088 * If the buffered write fallback returned an error, we want to return 2089 * the number of bytes which were written by direct I/O, or the error 2090 * code if that was zero. 2091 * 2092 * Note that this differs from normal direct-io semantics, which will 2093 * return -EFOO even if some bytes were written. 2094 */ 2095 if (unlikely(buffered_written < 0)) { 2096 if (direct_written) 2097 return direct_written; 2098 return buffered_written; 2099 } 2100 2101 /* 2102 * We need to ensure that the page cache pages are written to disk and 2103 * invalidated to preserve the expected O_DIRECT semantics. 2104 */ 2105 err = filemap_write_and_wait_range(mapping, pos, end); 2106 if (err < 0) { 2107 /* 2108 * We don't know how much we wrote, so just return the number of 2109 * bytes which were direct-written 2110 */ 2111 iocb->ki_pos -= buffered_written; 2112 if (direct_written) 2113 return direct_written; 2114 return err; 2115 } 2116 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 2117 return direct_written + buffered_written; 2118 } 2119 EXPORT_SYMBOL_GPL(direct_write_fallback); 2120 2121 /** 2122 * simple_inode_init_ts - initialize the timestamps for a new inode 2123 * @inode: inode to be initialized 2124 * 2125 * When a new inode is created, most filesystems set the timestamps to the 2126 * current time. Add a helper to do this. 2127 */ 2128 struct timespec64 simple_inode_init_ts(struct inode *inode) 2129 { 2130 struct timespec64 ts = inode_set_ctime_current(inode); 2131 2132 inode_set_atime_to_ts(inode, ts); 2133 inode_set_mtime_to_ts(inode, ts); 2134 return ts; 2135 } 2136 EXPORT_SYMBOL(simple_inode_init_ts); 2137 2138 struct dentry *stashed_dentry_get(struct dentry **stashed) 2139 { 2140 struct dentry *dentry; 2141 2142 guard(rcu)(); 2143 dentry = rcu_dereference(*stashed); 2144 if (!dentry) 2145 return NULL; 2146 if (IS_ERR(dentry)) 2147 return dentry; 2148 if (!lockref_get_not_dead(&dentry->d_lockref)) 2149 return NULL; 2150 return dentry; 2151 } 2152 2153 static struct dentry *prepare_anon_dentry(struct dentry **stashed, 2154 struct super_block *sb, 2155 void *data) 2156 { 2157 struct dentry *dentry; 2158 struct inode *inode; 2159 const struct stashed_operations *sops = sb->s_fs_info; 2160 int ret; 2161 2162 inode = new_inode_pseudo(sb); 2163 if (!inode) { 2164 sops->put_data(data); 2165 return ERR_PTR(-ENOMEM); 2166 } 2167 2168 inode->i_flags |= S_IMMUTABLE; 2169 inode->i_mode = S_IFREG; 2170 simple_inode_init_ts(inode); 2171 2172 ret = sops->init_inode(inode, data); 2173 if (ret < 0) { 2174 iput(inode); 2175 return ERR_PTR(ret); 2176 } 2177 2178 /* Notice when this is changed. */ 2179 WARN_ON_ONCE(!S_ISREG(inode->i_mode)); 2180 2181 dentry = d_alloc_anon(sb); 2182 if (!dentry) { 2183 iput(inode); 2184 return ERR_PTR(-ENOMEM); 2185 } 2186 2187 /* Store address of location where dentry's supposed to be stashed. */ 2188 dentry->d_fsdata = stashed; 2189 2190 /* @data is now owned by the fs */ 2191 d_instantiate(dentry, inode); 2192 return dentry; 2193 } 2194 2195 struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry) 2196 { 2197 guard(rcu)(); 2198 for (;;) { 2199 struct dentry *old; 2200 2201 /* Assume any old dentry was cleared out. */ 2202 old = cmpxchg(stashed, NULL, dentry); 2203 if (likely(!old)) 2204 return dentry; 2205 2206 /* Check if somebody else installed a reusable dentry. */ 2207 if (lockref_get_not_dead(&old->d_lockref)) 2208 return old; 2209 2210 /* There's an old dead dentry there, try to take it over. */ 2211 if (likely(try_cmpxchg(stashed, &old, dentry))) 2212 return dentry; 2213 } 2214 } 2215 2216 /** 2217 * path_from_stashed - create path from stashed or new dentry 2218 * @stashed: where to retrieve or stash dentry 2219 * @mnt: mnt of the filesystems to use 2220 * @data: data to store in inode->i_private 2221 * @path: path to create 2222 * 2223 * The function tries to retrieve a stashed dentry from @stashed. If the dentry 2224 * is still valid then it will be reused. If the dentry isn't able the function 2225 * will allocate a new dentry and inode. It will then check again whether it 2226 * can reuse an existing dentry in case one has been added in the meantime or 2227 * update @stashed with the newly added dentry. 2228 * 2229 * Special-purpose helper for nsfs and pidfs. 2230 * 2231 * Return: On success zero and on failure a negative error is returned. 2232 */ 2233 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data, 2234 struct path *path) 2235 { 2236 struct dentry *dentry, *res; 2237 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info; 2238 2239 /* See if dentry can be reused. */ 2240 res = stashed_dentry_get(stashed); 2241 if (IS_ERR(res)) 2242 return PTR_ERR(res); 2243 if (res) { 2244 sops->put_data(data); 2245 goto make_path; 2246 } 2247 2248 /* Allocate a new dentry. */ 2249 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data); 2250 if (IS_ERR(dentry)) 2251 return PTR_ERR(dentry); 2252 2253 /* Added a new dentry. @data is now owned by the filesystem. */ 2254 if (sops->stash_dentry) 2255 res = sops->stash_dentry(stashed, dentry); 2256 else 2257 res = stash_dentry(stashed, dentry); 2258 if (IS_ERR(res)) { 2259 dput(dentry); 2260 return PTR_ERR(res); 2261 } 2262 if (res != dentry) 2263 dput(dentry); 2264 2265 make_path: 2266 path->dentry = res; 2267 path->mnt = mntget(mnt); 2268 VFS_WARN_ON_ONCE(path->dentry->d_fsdata != stashed); 2269 VFS_WARN_ON_ONCE(d_inode(path->dentry)->i_private != data); 2270 return 0; 2271 } 2272 2273 void stashed_dentry_prune(struct dentry *dentry) 2274 { 2275 struct dentry **stashed = dentry->d_fsdata; 2276 struct inode *inode = d_inode(dentry); 2277 2278 if (WARN_ON_ONCE(!stashed)) 2279 return; 2280 2281 if (!inode) 2282 return; 2283 2284 /* 2285 * Only replace our own @dentry as someone else might've 2286 * already cleared out @dentry and stashed their own 2287 * dentry in there. 2288 */ 2289 cmpxchg(stashed, dentry, NULL); 2290 } 2291 2292 /* parent must be held exclusive */ 2293 struct dentry *simple_start_creating(struct dentry *parent, const char *name) 2294 { 2295 struct dentry *dentry; 2296 struct inode *dir = d_inode(parent); 2297 2298 inode_lock(dir); 2299 if (unlikely(IS_DEADDIR(dir))) { 2300 inode_unlock(dir); 2301 return ERR_PTR(-ENOENT); 2302 } 2303 dentry = lookup_noperm(&QSTR(name), parent); 2304 if (IS_ERR(dentry)) { 2305 inode_unlock(dir); 2306 return dentry; 2307 } 2308 if (dentry->d_inode) { 2309 dput(dentry); 2310 inode_unlock(dir); 2311 return ERR_PTR(-EEXIST); 2312 } 2313 return dentry; 2314 } 2315 EXPORT_SYMBOL(simple_start_creating); 2316