1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 32 struct kstat *stat, u32 request_mask, 33 unsigned int query_flags) 34 { 35 struct inode *inode = d_inode(path->dentry); 36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 38 return 0; 39 } 40 EXPORT_SYMBOL(simple_getattr); 41 42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 43 { 44 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 45 46 buf->f_fsid = u64_to_fsid(id); 47 buf->f_type = dentry->d_sb->s_magic; 48 buf->f_bsize = PAGE_SIZE; 49 buf->f_namelen = NAME_MAX; 50 return 0; 51 } 52 EXPORT_SYMBOL(simple_statfs); 53 54 /* 55 * Retaining negative dentries for an in-memory filesystem just wastes 56 * memory and lookup time: arrange for them to be deleted immediately. 57 */ 58 int always_delete_dentry(const struct dentry *dentry) 59 { 60 return 1; 61 } 62 EXPORT_SYMBOL(always_delete_dentry); 63 64 const struct dentry_operations simple_dentry_operations = { 65 .d_delete = always_delete_dentry, 66 }; 67 EXPORT_SYMBOL(simple_dentry_operations); 68 69 /* 70 * Lookup the data. This is trivial - if the dentry didn't already 71 * exist, we know it is negative. Set d_op to delete negative dentries. 72 */ 73 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 74 { 75 if (dentry->d_name.len > NAME_MAX) 76 return ERR_PTR(-ENAMETOOLONG); 77 if (!dentry->d_sb->s_d_op) 78 d_set_d_op(dentry, &simple_dentry_operations); 79 d_add(dentry, NULL); 80 return NULL; 81 } 82 EXPORT_SYMBOL(simple_lookup); 83 84 int dcache_dir_open(struct inode *inode, struct file *file) 85 { 86 file->private_data = d_alloc_cursor(file->f_path.dentry); 87 88 return file->private_data ? 0 : -ENOMEM; 89 } 90 EXPORT_SYMBOL(dcache_dir_open); 91 92 int dcache_dir_close(struct inode *inode, struct file *file) 93 { 94 dput(file->private_data); 95 return 0; 96 } 97 EXPORT_SYMBOL(dcache_dir_close); 98 99 /* parent is locked at least shared */ 100 /* 101 * Returns an element of siblings' list. 102 * We are looking for <count>th positive after <p>; if 103 * found, dentry is grabbed and returned to caller. 104 * If no such element exists, NULL is returned. 105 */ 106 static struct dentry *scan_positives(struct dentry *cursor, 107 struct list_head *p, 108 loff_t count, 109 struct dentry *last) 110 { 111 struct dentry *dentry = cursor->d_parent, *found = NULL; 112 113 spin_lock(&dentry->d_lock); 114 while ((p = p->next) != &dentry->d_subdirs) { 115 struct dentry *d = list_entry(p, struct dentry, d_child); 116 // we must at least skip cursors, to avoid livelocks 117 if (d->d_flags & DCACHE_DENTRY_CURSOR) 118 continue; 119 if (simple_positive(d) && !--count) { 120 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 121 if (simple_positive(d)) 122 found = dget_dlock(d); 123 spin_unlock(&d->d_lock); 124 if (likely(found)) 125 break; 126 count = 1; 127 } 128 if (need_resched()) { 129 list_move(&cursor->d_child, p); 130 p = &cursor->d_child; 131 spin_unlock(&dentry->d_lock); 132 cond_resched(); 133 spin_lock(&dentry->d_lock); 134 } 135 } 136 spin_unlock(&dentry->d_lock); 137 dput(last); 138 return found; 139 } 140 141 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 142 { 143 struct dentry *dentry = file->f_path.dentry; 144 switch (whence) { 145 case 1: 146 offset += file->f_pos; 147 fallthrough; 148 case 0: 149 if (offset >= 0) 150 break; 151 fallthrough; 152 default: 153 return -EINVAL; 154 } 155 if (offset != file->f_pos) { 156 struct dentry *cursor = file->private_data; 157 struct dentry *to = NULL; 158 159 inode_lock_shared(dentry->d_inode); 160 161 if (offset > 2) 162 to = scan_positives(cursor, &dentry->d_subdirs, 163 offset - 2, NULL); 164 spin_lock(&dentry->d_lock); 165 if (to) 166 list_move(&cursor->d_child, &to->d_child); 167 else 168 list_del_init(&cursor->d_child); 169 spin_unlock(&dentry->d_lock); 170 dput(to); 171 172 file->f_pos = offset; 173 174 inode_unlock_shared(dentry->d_inode); 175 } 176 return offset; 177 } 178 EXPORT_SYMBOL(dcache_dir_lseek); 179 180 /* 181 * Directory is locked and all positive dentries in it are safe, since 182 * for ramfs-type trees they can't go away without unlink() or rmdir(), 183 * both impossible due to the lock on directory. 184 */ 185 186 int dcache_readdir(struct file *file, struct dir_context *ctx) 187 { 188 struct dentry *dentry = file->f_path.dentry; 189 struct dentry *cursor = file->private_data; 190 struct list_head *anchor = &dentry->d_subdirs; 191 struct dentry *next = NULL; 192 struct list_head *p; 193 194 if (!dir_emit_dots(file, ctx)) 195 return 0; 196 197 if (ctx->pos == 2) 198 p = anchor; 199 else if (!list_empty(&cursor->d_child)) 200 p = &cursor->d_child; 201 else 202 return 0; 203 204 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 205 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 206 d_inode(next)->i_ino, 207 fs_umode_to_dtype(d_inode(next)->i_mode))) 208 break; 209 ctx->pos++; 210 p = &next->d_child; 211 } 212 spin_lock(&dentry->d_lock); 213 if (next) 214 list_move_tail(&cursor->d_child, &next->d_child); 215 else 216 list_del_init(&cursor->d_child); 217 spin_unlock(&dentry->d_lock); 218 dput(next); 219 220 return 0; 221 } 222 EXPORT_SYMBOL(dcache_readdir); 223 224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 225 { 226 return -EISDIR; 227 } 228 EXPORT_SYMBOL(generic_read_dir); 229 230 const struct file_operations simple_dir_operations = { 231 .open = dcache_dir_open, 232 .release = dcache_dir_close, 233 .llseek = dcache_dir_lseek, 234 .read = generic_read_dir, 235 .iterate_shared = dcache_readdir, 236 .fsync = noop_fsync, 237 }; 238 EXPORT_SYMBOL(simple_dir_operations); 239 240 const struct inode_operations simple_dir_inode_operations = { 241 .lookup = simple_lookup, 242 }; 243 EXPORT_SYMBOL(simple_dir_inode_operations); 244 245 static void offset_set(struct dentry *dentry, u32 offset) 246 { 247 dentry->d_fsdata = (void *)((uintptr_t)(offset)); 248 } 249 250 static u32 dentry2offset(struct dentry *dentry) 251 { 252 return (u32)((uintptr_t)(dentry->d_fsdata)); 253 } 254 255 static struct lock_class_key simple_offset_xa_lock; 256 257 /** 258 * simple_offset_init - initialize an offset_ctx 259 * @octx: directory offset map to be initialized 260 * 261 */ 262 void simple_offset_init(struct offset_ctx *octx) 263 { 264 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1); 265 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock); 266 267 /* 0 is '.', 1 is '..', so always start with offset 2 */ 268 octx->next_offset = 2; 269 } 270 271 /** 272 * simple_offset_add - Add an entry to a directory's offset map 273 * @octx: directory offset ctx to be updated 274 * @dentry: new dentry being added 275 * 276 * Returns zero on success. @so_ctx and the dentry offset are updated. 277 * Otherwise, a negative errno value is returned. 278 */ 279 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 280 { 281 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX); 282 u32 offset; 283 int ret; 284 285 if (dentry2offset(dentry) != 0) 286 return -EBUSY; 287 288 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit, 289 &octx->next_offset, GFP_KERNEL); 290 if (ret < 0) 291 return ret; 292 293 offset_set(dentry, offset); 294 return 0; 295 } 296 297 /** 298 * simple_offset_remove - Remove an entry to a directory's offset map 299 * @octx: directory offset ctx to be updated 300 * @dentry: dentry being removed 301 * 302 */ 303 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 304 { 305 u32 offset; 306 307 offset = dentry2offset(dentry); 308 if (offset == 0) 309 return; 310 311 xa_erase(&octx->xa, offset); 312 offset_set(dentry, 0); 313 } 314 315 /** 316 * simple_offset_rename_exchange - exchange rename with directory offsets 317 * @old_dir: parent of dentry being moved 318 * @old_dentry: dentry being moved 319 * @new_dir: destination parent 320 * @new_dentry: destination dentry 321 * 322 * Returns zero on success. Otherwise a negative errno is returned and the 323 * rename is rolled back. 324 */ 325 int simple_offset_rename_exchange(struct inode *old_dir, 326 struct dentry *old_dentry, 327 struct inode *new_dir, 328 struct dentry *new_dentry) 329 { 330 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 331 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 332 u32 old_index = dentry2offset(old_dentry); 333 u32 new_index = dentry2offset(new_dentry); 334 int ret; 335 336 simple_offset_remove(old_ctx, old_dentry); 337 simple_offset_remove(new_ctx, new_dentry); 338 339 ret = simple_offset_add(new_ctx, old_dentry); 340 if (ret) 341 goto out_restore; 342 343 ret = simple_offset_add(old_ctx, new_dentry); 344 if (ret) { 345 simple_offset_remove(new_ctx, old_dentry); 346 goto out_restore; 347 } 348 349 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 350 if (ret) { 351 simple_offset_remove(new_ctx, old_dentry); 352 simple_offset_remove(old_ctx, new_dentry); 353 goto out_restore; 354 } 355 return 0; 356 357 out_restore: 358 offset_set(old_dentry, old_index); 359 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL); 360 offset_set(new_dentry, new_index); 361 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL); 362 return ret; 363 } 364 365 /** 366 * simple_offset_destroy - Release offset map 367 * @octx: directory offset ctx that is about to be destroyed 368 * 369 * During fs teardown (eg. umount), a directory's offset map might still 370 * contain entries. xa_destroy() cleans out anything that remains. 371 */ 372 void simple_offset_destroy(struct offset_ctx *octx) 373 { 374 xa_destroy(&octx->xa); 375 } 376 377 /** 378 * offset_dir_llseek - Advance the read position of a directory descriptor 379 * @file: an open directory whose position is to be updated 380 * @offset: a byte offset 381 * @whence: enumerator describing the starting position for this update 382 * 383 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 384 * 385 * Returns the updated read position if successful; otherwise a 386 * negative errno is returned and the read position remains unchanged. 387 */ 388 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 389 { 390 switch (whence) { 391 case SEEK_CUR: 392 offset += file->f_pos; 393 fallthrough; 394 case SEEK_SET: 395 if (offset >= 0) 396 break; 397 fallthrough; 398 default: 399 return -EINVAL; 400 } 401 402 return vfs_setpos(file, offset, U32_MAX); 403 } 404 405 static struct dentry *offset_find_next(struct xa_state *xas) 406 { 407 struct dentry *child, *found = NULL; 408 409 rcu_read_lock(); 410 child = xas_next_entry(xas, U32_MAX); 411 if (!child) 412 goto out; 413 spin_lock(&child->d_lock); 414 if (simple_positive(child)) 415 found = dget_dlock(child); 416 spin_unlock(&child->d_lock); 417 out: 418 rcu_read_unlock(); 419 return found; 420 } 421 422 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 423 { 424 u32 offset = dentry2offset(dentry); 425 struct inode *inode = d_inode(dentry); 426 427 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 428 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 429 } 430 431 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx) 432 { 433 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode); 434 XA_STATE(xas, &so_ctx->xa, ctx->pos); 435 struct dentry *dentry; 436 437 while (true) { 438 dentry = offset_find_next(&xas); 439 if (!dentry) 440 break; 441 442 if (!offset_dir_emit(ctx, dentry)) { 443 dput(dentry); 444 break; 445 } 446 447 dput(dentry); 448 ctx->pos = xas.xa_index + 1; 449 } 450 } 451 452 /** 453 * offset_readdir - Emit entries starting at offset @ctx->pos 454 * @file: an open directory to iterate over 455 * @ctx: directory iteration context 456 * 457 * Caller must hold @file's i_rwsem to prevent insertion or removal of 458 * entries during this call. 459 * 460 * On entry, @ctx->pos contains an offset that represents the first entry 461 * to be read from the directory. 462 * 463 * The operation continues until there are no more entries to read, or 464 * until the ctx->actor indicates there is no more space in the caller's 465 * output buffer. 466 * 467 * On return, @ctx->pos contains an offset that will read the next entry 468 * in this directory when offset_readdir() is called again with @ctx. 469 * 470 * Return values: 471 * %0 - Complete 472 */ 473 static int offset_readdir(struct file *file, struct dir_context *ctx) 474 { 475 struct dentry *dir = file->f_path.dentry; 476 477 lockdep_assert_held(&d_inode(dir)->i_rwsem); 478 479 if (!dir_emit_dots(file, ctx)) 480 return 0; 481 482 offset_iterate_dir(d_inode(dir), ctx); 483 return 0; 484 } 485 486 const struct file_operations simple_offset_dir_operations = { 487 .llseek = offset_dir_llseek, 488 .iterate_shared = offset_readdir, 489 .read = generic_read_dir, 490 .fsync = noop_fsync, 491 }; 492 493 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 494 { 495 struct dentry *child = NULL; 496 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; 497 498 spin_lock(&parent->d_lock); 499 while ((p = p->next) != &parent->d_subdirs) { 500 struct dentry *d = container_of(p, struct dentry, d_child); 501 if (simple_positive(d)) { 502 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 503 if (simple_positive(d)) 504 child = dget_dlock(d); 505 spin_unlock(&d->d_lock); 506 if (likely(child)) 507 break; 508 } 509 } 510 spin_unlock(&parent->d_lock); 511 dput(prev); 512 return child; 513 } 514 515 void simple_recursive_removal(struct dentry *dentry, 516 void (*callback)(struct dentry *)) 517 { 518 struct dentry *this = dget(dentry); 519 while (true) { 520 struct dentry *victim = NULL, *child; 521 struct inode *inode = this->d_inode; 522 523 inode_lock(inode); 524 if (d_is_dir(this)) 525 inode->i_flags |= S_DEAD; 526 while ((child = find_next_child(this, victim)) == NULL) { 527 // kill and ascend 528 // update metadata while it's still locked 529 inode_set_ctime_current(inode); 530 clear_nlink(inode); 531 inode_unlock(inode); 532 victim = this; 533 this = this->d_parent; 534 inode = this->d_inode; 535 inode_lock(inode); 536 if (simple_positive(victim)) { 537 d_invalidate(victim); // avoid lost mounts 538 if (d_is_dir(victim)) 539 fsnotify_rmdir(inode, victim); 540 else 541 fsnotify_unlink(inode, victim); 542 if (callback) 543 callback(victim); 544 dput(victim); // unpin it 545 } 546 if (victim == dentry) { 547 inode_set_mtime_to_ts(inode, 548 inode_set_ctime_current(inode)); 549 if (d_is_dir(dentry)) 550 drop_nlink(inode); 551 inode_unlock(inode); 552 dput(dentry); 553 return; 554 } 555 } 556 inode_unlock(inode); 557 this = child; 558 } 559 } 560 EXPORT_SYMBOL(simple_recursive_removal); 561 562 static const struct super_operations simple_super_operations = { 563 .statfs = simple_statfs, 564 }; 565 566 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 567 { 568 struct pseudo_fs_context *ctx = fc->fs_private; 569 struct inode *root; 570 571 s->s_maxbytes = MAX_LFS_FILESIZE; 572 s->s_blocksize = PAGE_SIZE; 573 s->s_blocksize_bits = PAGE_SHIFT; 574 s->s_magic = ctx->magic; 575 s->s_op = ctx->ops ?: &simple_super_operations; 576 s->s_xattr = ctx->xattr; 577 s->s_time_gran = 1; 578 root = new_inode(s); 579 if (!root) 580 return -ENOMEM; 581 582 /* 583 * since this is the first inode, make it number 1. New inodes created 584 * after this must take care not to collide with it (by passing 585 * max_reserved of 1 to iunique). 586 */ 587 root->i_ino = 1; 588 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 589 simple_inode_init_ts(root); 590 s->s_root = d_make_root(root); 591 if (!s->s_root) 592 return -ENOMEM; 593 s->s_d_op = ctx->dops; 594 return 0; 595 } 596 597 static int pseudo_fs_get_tree(struct fs_context *fc) 598 { 599 return get_tree_nodev(fc, pseudo_fs_fill_super); 600 } 601 602 static void pseudo_fs_free(struct fs_context *fc) 603 { 604 kfree(fc->fs_private); 605 } 606 607 static const struct fs_context_operations pseudo_fs_context_ops = { 608 .free = pseudo_fs_free, 609 .get_tree = pseudo_fs_get_tree, 610 }; 611 612 /* 613 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 614 * will never be mountable) 615 */ 616 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 617 unsigned long magic) 618 { 619 struct pseudo_fs_context *ctx; 620 621 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 622 if (likely(ctx)) { 623 ctx->magic = magic; 624 fc->fs_private = ctx; 625 fc->ops = &pseudo_fs_context_ops; 626 fc->sb_flags |= SB_NOUSER; 627 fc->global = true; 628 } 629 return ctx; 630 } 631 EXPORT_SYMBOL(init_pseudo); 632 633 int simple_open(struct inode *inode, struct file *file) 634 { 635 if (inode->i_private) 636 file->private_data = inode->i_private; 637 return 0; 638 } 639 EXPORT_SYMBOL(simple_open); 640 641 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 642 { 643 struct inode *inode = d_inode(old_dentry); 644 645 inode_set_mtime_to_ts(dir, 646 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 647 inc_nlink(inode); 648 ihold(inode); 649 dget(dentry); 650 d_instantiate(dentry, inode); 651 return 0; 652 } 653 EXPORT_SYMBOL(simple_link); 654 655 int simple_empty(struct dentry *dentry) 656 { 657 struct dentry *child; 658 int ret = 0; 659 660 spin_lock(&dentry->d_lock); 661 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 662 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 663 if (simple_positive(child)) { 664 spin_unlock(&child->d_lock); 665 goto out; 666 } 667 spin_unlock(&child->d_lock); 668 } 669 ret = 1; 670 out: 671 spin_unlock(&dentry->d_lock); 672 return ret; 673 } 674 EXPORT_SYMBOL(simple_empty); 675 676 int simple_unlink(struct inode *dir, struct dentry *dentry) 677 { 678 struct inode *inode = d_inode(dentry); 679 680 inode_set_mtime_to_ts(dir, 681 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 682 drop_nlink(inode); 683 dput(dentry); 684 return 0; 685 } 686 EXPORT_SYMBOL(simple_unlink); 687 688 int simple_rmdir(struct inode *dir, struct dentry *dentry) 689 { 690 if (!simple_empty(dentry)) 691 return -ENOTEMPTY; 692 693 drop_nlink(d_inode(dentry)); 694 simple_unlink(dir, dentry); 695 drop_nlink(dir); 696 return 0; 697 } 698 EXPORT_SYMBOL(simple_rmdir); 699 700 /** 701 * simple_rename_timestamp - update the various inode timestamps for rename 702 * @old_dir: old parent directory 703 * @old_dentry: dentry that is being renamed 704 * @new_dir: new parent directory 705 * @new_dentry: target for rename 706 * 707 * POSIX mandates that the old and new parent directories have their ctime and 708 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 709 * their ctime updated. 710 */ 711 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 712 struct inode *new_dir, struct dentry *new_dentry) 713 { 714 struct inode *newino = d_inode(new_dentry); 715 716 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 717 if (new_dir != old_dir) 718 inode_set_mtime_to_ts(new_dir, 719 inode_set_ctime_current(new_dir)); 720 inode_set_ctime_current(d_inode(old_dentry)); 721 if (newino) 722 inode_set_ctime_current(newino); 723 } 724 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 725 726 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 727 struct inode *new_dir, struct dentry *new_dentry) 728 { 729 bool old_is_dir = d_is_dir(old_dentry); 730 bool new_is_dir = d_is_dir(new_dentry); 731 732 if (old_dir != new_dir && old_is_dir != new_is_dir) { 733 if (old_is_dir) { 734 drop_nlink(old_dir); 735 inc_nlink(new_dir); 736 } else { 737 drop_nlink(new_dir); 738 inc_nlink(old_dir); 739 } 740 } 741 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 742 return 0; 743 } 744 EXPORT_SYMBOL_GPL(simple_rename_exchange); 745 746 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 747 struct dentry *old_dentry, struct inode *new_dir, 748 struct dentry *new_dentry, unsigned int flags) 749 { 750 int they_are_dirs = d_is_dir(old_dentry); 751 752 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 753 return -EINVAL; 754 755 if (flags & RENAME_EXCHANGE) 756 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 757 758 if (!simple_empty(new_dentry)) 759 return -ENOTEMPTY; 760 761 if (d_really_is_positive(new_dentry)) { 762 simple_unlink(new_dir, new_dentry); 763 if (they_are_dirs) { 764 drop_nlink(d_inode(new_dentry)); 765 drop_nlink(old_dir); 766 } 767 } else if (they_are_dirs) { 768 drop_nlink(old_dir); 769 inc_nlink(new_dir); 770 } 771 772 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 773 return 0; 774 } 775 EXPORT_SYMBOL(simple_rename); 776 777 /** 778 * simple_setattr - setattr for simple filesystem 779 * @idmap: idmap of the target mount 780 * @dentry: dentry 781 * @iattr: iattr structure 782 * 783 * Returns 0 on success, -error on failure. 784 * 785 * simple_setattr is a simple ->setattr implementation without a proper 786 * implementation of size changes. 787 * 788 * It can either be used for in-memory filesystems or special files 789 * on simple regular filesystems. Anything that needs to change on-disk 790 * or wire state on size changes needs its own setattr method. 791 */ 792 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 793 struct iattr *iattr) 794 { 795 struct inode *inode = d_inode(dentry); 796 int error; 797 798 error = setattr_prepare(idmap, dentry, iattr); 799 if (error) 800 return error; 801 802 if (iattr->ia_valid & ATTR_SIZE) 803 truncate_setsize(inode, iattr->ia_size); 804 setattr_copy(idmap, inode, iattr); 805 mark_inode_dirty(inode); 806 return 0; 807 } 808 EXPORT_SYMBOL(simple_setattr); 809 810 static int simple_read_folio(struct file *file, struct folio *folio) 811 { 812 folio_zero_range(folio, 0, folio_size(folio)); 813 flush_dcache_folio(folio); 814 folio_mark_uptodate(folio); 815 folio_unlock(folio); 816 return 0; 817 } 818 819 int simple_write_begin(struct file *file, struct address_space *mapping, 820 loff_t pos, unsigned len, 821 struct page **pagep, void **fsdata) 822 { 823 struct folio *folio; 824 825 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 826 mapping_gfp_mask(mapping)); 827 if (IS_ERR(folio)) 828 return PTR_ERR(folio); 829 830 *pagep = &folio->page; 831 832 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 833 size_t from = offset_in_folio(folio, pos); 834 835 folio_zero_segments(folio, 0, from, 836 from + len, folio_size(folio)); 837 } 838 return 0; 839 } 840 EXPORT_SYMBOL(simple_write_begin); 841 842 /** 843 * simple_write_end - .write_end helper for non-block-device FSes 844 * @file: See .write_end of address_space_operations 845 * @mapping: " 846 * @pos: " 847 * @len: " 848 * @copied: " 849 * @page: " 850 * @fsdata: " 851 * 852 * simple_write_end does the minimum needed for updating a page after writing is 853 * done. It has the same API signature as the .write_end of 854 * address_space_operations vector. So it can just be set onto .write_end for 855 * FSes that don't need any other processing. i_mutex is assumed to be held. 856 * Block based filesystems should use generic_write_end(). 857 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 858 * is not called, so a filesystem that actually does store data in .write_inode 859 * should extend on what's done here with a call to mark_inode_dirty() in the 860 * case that i_size has changed. 861 * 862 * Use *ONLY* with simple_read_folio() 863 */ 864 static int simple_write_end(struct file *file, struct address_space *mapping, 865 loff_t pos, unsigned len, unsigned copied, 866 struct page *page, void *fsdata) 867 { 868 struct folio *folio = page_folio(page); 869 struct inode *inode = folio->mapping->host; 870 loff_t last_pos = pos + copied; 871 872 /* zero the stale part of the folio if we did a short copy */ 873 if (!folio_test_uptodate(folio)) { 874 if (copied < len) { 875 size_t from = offset_in_folio(folio, pos); 876 877 folio_zero_range(folio, from + copied, len - copied); 878 } 879 folio_mark_uptodate(folio); 880 } 881 /* 882 * No need to use i_size_read() here, the i_size 883 * cannot change under us because we hold the i_mutex. 884 */ 885 if (last_pos > inode->i_size) 886 i_size_write(inode, last_pos); 887 888 folio_mark_dirty(folio); 889 folio_unlock(folio); 890 folio_put(folio); 891 892 return copied; 893 } 894 895 /* 896 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 897 */ 898 const struct address_space_operations ram_aops = { 899 .read_folio = simple_read_folio, 900 .write_begin = simple_write_begin, 901 .write_end = simple_write_end, 902 .dirty_folio = noop_dirty_folio, 903 }; 904 EXPORT_SYMBOL(ram_aops); 905 906 /* 907 * the inodes created here are not hashed. If you use iunique to generate 908 * unique inode values later for this filesystem, then you must take care 909 * to pass it an appropriate max_reserved value to avoid collisions. 910 */ 911 int simple_fill_super(struct super_block *s, unsigned long magic, 912 const struct tree_descr *files) 913 { 914 struct inode *inode; 915 struct dentry *root; 916 struct dentry *dentry; 917 int i; 918 919 s->s_blocksize = PAGE_SIZE; 920 s->s_blocksize_bits = PAGE_SHIFT; 921 s->s_magic = magic; 922 s->s_op = &simple_super_operations; 923 s->s_time_gran = 1; 924 925 inode = new_inode(s); 926 if (!inode) 927 return -ENOMEM; 928 /* 929 * because the root inode is 1, the files array must not contain an 930 * entry at index 1 931 */ 932 inode->i_ino = 1; 933 inode->i_mode = S_IFDIR | 0755; 934 simple_inode_init_ts(inode); 935 inode->i_op = &simple_dir_inode_operations; 936 inode->i_fop = &simple_dir_operations; 937 set_nlink(inode, 2); 938 root = d_make_root(inode); 939 if (!root) 940 return -ENOMEM; 941 for (i = 0; !files->name || files->name[0]; i++, files++) { 942 if (!files->name) 943 continue; 944 945 /* warn if it tries to conflict with the root inode */ 946 if (unlikely(i == 1)) 947 printk(KERN_WARNING "%s: %s passed in a files array" 948 "with an index of 1!\n", __func__, 949 s->s_type->name); 950 951 dentry = d_alloc_name(root, files->name); 952 if (!dentry) 953 goto out; 954 inode = new_inode(s); 955 if (!inode) { 956 dput(dentry); 957 goto out; 958 } 959 inode->i_mode = S_IFREG | files->mode; 960 simple_inode_init_ts(inode); 961 inode->i_fop = files->ops; 962 inode->i_ino = i; 963 d_add(dentry, inode); 964 } 965 s->s_root = root; 966 return 0; 967 out: 968 d_genocide(root); 969 shrink_dcache_parent(root); 970 dput(root); 971 return -ENOMEM; 972 } 973 EXPORT_SYMBOL(simple_fill_super); 974 975 static DEFINE_SPINLOCK(pin_fs_lock); 976 977 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 978 { 979 struct vfsmount *mnt = NULL; 980 spin_lock(&pin_fs_lock); 981 if (unlikely(!*mount)) { 982 spin_unlock(&pin_fs_lock); 983 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 984 if (IS_ERR(mnt)) 985 return PTR_ERR(mnt); 986 spin_lock(&pin_fs_lock); 987 if (!*mount) 988 *mount = mnt; 989 } 990 mntget(*mount); 991 ++*count; 992 spin_unlock(&pin_fs_lock); 993 mntput(mnt); 994 return 0; 995 } 996 EXPORT_SYMBOL(simple_pin_fs); 997 998 void simple_release_fs(struct vfsmount **mount, int *count) 999 { 1000 struct vfsmount *mnt; 1001 spin_lock(&pin_fs_lock); 1002 mnt = *mount; 1003 if (!--*count) 1004 *mount = NULL; 1005 spin_unlock(&pin_fs_lock); 1006 mntput(mnt); 1007 } 1008 EXPORT_SYMBOL(simple_release_fs); 1009 1010 /** 1011 * simple_read_from_buffer - copy data from the buffer to user space 1012 * @to: the user space buffer to read to 1013 * @count: the maximum number of bytes to read 1014 * @ppos: the current position in the buffer 1015 * @from: the buffer to read from 1016 * @available: the size of the buffer 1017 * 1018 * The simple_read_from_buffer() function reads up to @count bytes from the 1019 * buffer @from at offset @ppos into the user space address starting at @to. 1020 * 1021 * On success, the number of bytes read is returned and the offset @ppos is 1022 * advanced by this number, or negative value is returned on error. 1023 **/ 1024 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1025 const void *from, size_t available) 1026 { 1027 loff_t pos = *ppos; 1028 size_t ret; 1029 1030 if (pos < 0) 1031 return -EINVAL; 1032 if (pos >= available || !count) 1033 return 0; 1034 if (count > available - pos) 1035 count = available - pos; 1036 ret = copy_to_user(to, from + pos, count); 1037 if (ret == count) 1038 return -EFAULT; 1039 count -= ret; 1040 *ppos = pos + count; 1041 return count; 1042 } 1043 EXPORT_SYMBOL(simple_read_from_buffer); 1044 1045 /** 1046 * simple_write_to_buffer - copy data from user space to the buffer 1047 * @to: the buffer to write to 1048 * @available: the size of the buffer 1049 * @ppos: the current position in the buffer 1050 * @from: the user space buffer to read from 1051 * @count: the maximum number of bytes to read 1052 * 1053 * The simple_write_to_buffer() function reads up to @count bytes from the user 1054 * space address starting at @from into the buffer @to at offset @ppos. 1055 * 1056 * On success, the number of bytes written is returned and the offset @ppos is 1057 * advanced by this number, or negative value is returned on error. 1058 **/ 1059 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1060 const void __user *from, size_t count) 1061 { 1062 loff_t pos = *ppos; 1063 size_t res; 1064 1065 if (pos < 0) 1066 return -EINVAL; 1067 if (pos >= available || !count) 1068 return 0; 1069 if (count > available - pos) 1070 count = available - pos; 1071 res = copy_from_user(to + pos, from, count); 1072 if (res == count) 1073 return -EFAULT; 1074 count -= res; 1075 *ppos = pos + count; 1076 return count; 1077 } 1078 EXPORT_SYMBOL(simple_write_to_buffer); 1079 1080 /** 1081 * memory_read_from_buffer - copy data from the buffer 1082 * @to: the kernel space buffer to read to 1083 * @count: the maximum number of bytes to read 1084 * @ppos: the current position in the buffer 1085 * @from: the buffer to read from 1086 * @available: the size of the buffer 1087 * 1088 * The memory_read_from_buffer() function reads up to @count bytes from the 1089 * buffer @from at offset @ppos into the kernel space address starting at @to. 1090 * 1091 * On success, the number of bytes read is returned and the offset @ppos is 1092 * advanced by this number, or negative value is returned on error. 1093 **/ 1094 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1095 const void *from, size_t available) 1096 { 1097 loff_t pos = *ppos; 1098 1099 if (pos < 0) 1100 return -EINVAL; 1101 if (pos >= available) 1102 return 0; 1103 if (count > available - pos) 1104 count = available - pos; 1105 memcpy(to, from + pos, count); 1106 *ppos = pos + count; 1107 1108 return count; 1109 } 1110 EXPORT_SYMBOL(memory_read_from_buffer); 1111 1112 /* 1113 * Transaction based IO. 1114 * The file expects a single write which triggers the transaction, and then 1115 * possibly a read which collects the result - which is stored in a 1116 * file-local buffer. 1117 */ 1118 1119 void simple_transaction_set(struct file *file, size_t n) 1120 { 1121 struct simple_transaction_argresp *ar = file->private_data; 1122 1123 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1124 1125 /* 1126 * The barrier ensures that ar->size will really remain zero until 1127 * ar->data is ready for reading. 1128 */ 1129 smp_mb(); 1130 ar->size = n; 1131 } 1132 EXPORT_SYMBOL(simple_transaction_set); 1133 1134 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1135 { 1136 struct simple_transaction_argresp *ar; 1137 static DEFINE_SPINLOCK(simple_transaction_lock); 1138 1139 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1140 return ERR_PTR(-EFBIG); 1141 1142 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1143 if (!ar) 1144 return ERR_PTR(-ENOMEM); 1145 1146 spin_lock(&simple_transaction_lock); 1147 1148 /* only one write allowed per open */ 1149 if (file->private_data) { 1150 spin_unlock(&simple_transaction_lock); 1151 free_page((unsigned long)ar); 1152 return ERR_PTR(-EBUSY); 1153 } 1154 1155 file->private_data = ar; 1156 1157 spin_unlock(&simple_transaction_lock); 1158 1159 if (copy_from_user(ar->data, buf, size)) 1160 return ERR_PTR(-EFAULT); 1161 1162 return ar->data; 1163 } 1164 EXPORT_SYMBOL(simple_transaction_get); 1165 1166 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1167 { 1168 struct simple_transaction_argresp *ar = file->private_data; 1169 1170 if (!ar) 1171 return 0; 1172 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1173 } 1174 EXPORT_SYMBOL(simple_transaction_read); 1175 1176 int simple_transaction_release(struct inode *inode, struct file *file) 1177 { 1178 free_page((unsigned long)file->private_data); 1179 return 0; 1180 } 1181 EXPORT_SYMBOL(simple_transaction_release); 1182 1183 /* Simple attribute files */ 1184 1185 struct simple_attr { 1186 int (*get)(void *, u64 *); 1187 int (*set)(void *, u64); 1188 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1189 char set_buf[24]; 1190 void *data; 1191 const char *fmt; /* format for read operation */ 1192 struct mutex mutex; /* protects access to these buffers */ 1193 }; 1194 1195 /* simple_attr_open is called by an actual attribute open file operation 1196 * to set the attribute specific access operations. */ 1197 int simple_attr_open(struct inode *inode, struct file *file, 1198 int (*get)(void *, u64 *), int (*set)(void *, u64), 1199 const char *fmt) 1200 { 1201 struct simple_attr *attr; 1202 1203 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1204 if (!attr) 1205 return -ENOMEM; 1206 1207 attr->get = get; 1208 attr->set = set; 1209 attr->data = inode->i_private; 1210 attr->fmt = fmt; 1211 mutex_init(&attr->mutex); 1212 1213 file->private_data = attr; 1214 1215 return nonseekable_open(inode, file); 1216 } 1217 EXPORT_SYMBOL_GPL(simple_attr_open); 1218 1219 int simple_attr_release(struct inode *inode, struct file *file) 1220 { 1221 kfree(file->private_data); 1222 return 0; 1223 } 1224 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1225 1226 /* read from the buffer that is filled with the get function */ 1227 ssize_t simple_attr_read(struct file *file, char __user *buf, 1228 size_t len, loff_t *ppos) 1229 { 1230 struct simple_attr *attr; 1231 size_t size; 1232 ssize_t ret; 1233 1234 attr = file->private_data; 1235 1236 if (!attr->get) 1237 return -EACCES; 1238 1239 ret = mutex_lock_interruptible(&attr->mutex); 1240 if (ret) 1241 return ret; 1242 1243 if (*ppos && attr->get_buf[0]) { 1244 /* continued read */ 1245 size = strlen(attr->get_buf); 1246 } else { 1247 /* first read */ 1248 u64 val; 1249 ret = attr->get(attr->data, &val); 1250 if (ret) 1251 goto out; 1252 1253 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1254 attr->fmt, (unsigned long long)val); 1255 } 1256 1257 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1258 out: 1259 mutex_unlock(&attr->mutex); 1260 return ret; 1261 } 1262 EXPORT_SYMBOL_GPL(simple_attr_read); 1263 1264 /* interpret the buffer as a number to call the set function with */ 1265 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1266 size_t len, loff_t *ppos, bool is_signed) 1267 { 1268 struct simple_attr *attr; 1269 unsigned long long val; 1270 size_t size; 1271 ssize_t ret; 1272 1273 attr = file->private_data; 1274 if (!attr->set) 1275 return -EACCES; 1276 1277 ret = mutex_lock_interruptible(&attr->mutex); 1278 if (ret) 1279 return ret; 1280 1281 ret = -EFAULT; 1282 size = min(sizeof(attr->set_buf) - 1, len); 1283 if (copy_from_user(attr->set_buf, buf, size)) 1284 goto out; 1285 1286 attr->set_buf[size] = '\0'; 1287 if (is_signed) 1288 ret = kstrtoll(attr->set_buf, 0, &val); 1289 else 1290 ret = kstrtoull(attr->set_buf, 0, &val); 1291 if (ret) 1292 goto out; 1293 ret = attr->set(attr->data, val); 1294 if (ret == 0) 1295 ret = len; /* on success, claim we got the whole input */ 1296 out: 1297 mutex_unlock(&attr->mutex); 1298 return ret; 1299 } 1300 1301 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1302 size_t len, loff_t *ppos) 1303 { 1304 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1305 } 1306 EXPORT_SYMBOL_GPL(simple_attr_write); 1307 1308 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1309 size_t len, loff_t *ppos) 1310 { 1311 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1312 } 1313 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1314 1315 /** 1316 * generic_encode_ino32_fh - generic export_operations->encode_fh function 1317 * @inode: the object to encode 1318 * @fh: where to store the file handle fragment 1319 * @max_len: maximum length to store there (in 4 byte units) 1320 * @parent: parent directory inode, if wanted 1321 * 1322 * This generic encode_fh function assumes that the 32 inode number 1323 * is suitable for locating an inode, and that the generation number 1324 * can be used to check that it is still valid. It places them in the 1325 * filehandle fragment where export_decode_fh expects to find them. 1326 */ 1327 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, 1328 struct inode *parent) 1329 { 1330 struct fid *fid = (void *)fh; 1331 int len = *max_len; 1332 int type = FILEID_INO32_GEN; 1333 1334 if (parent && (len < 4)) { 1335 *max_len = 4; 1336 return FILEID_INVALID; 1337 } else if (len < 2) { 1338 *max_len = 2; 1339 return FILEID_INVALID; 1340 } 1341 1342 len = 2; 1343 fid->i32.ino = inode->i_ino; 1344 fid->i32.gen = inode->i_generation; 1345 if (parent) { 1346 fid->i32.parent_ino = parent->i_ino; 1347 fid->i32.parent_gen = parent->i_generation; 1348 len = 4; 1349 type = FILEID_INO32_GEN_PARENT; 1350 } 1351 *max_len = len; 1352 return type; 1353 } 1354 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); 1355 1356 /** 1357 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1358 * @sb: filesystem to do the file handle conversion on 1359 * @fid: file handle to convert 1360 * @fh_len: length of the file handle in bytes 1361 * @fh_type: type of file handle 1362 * @get_inode: filesystem callback to retrieve inode 1363 * 1364 * This function decodes @fid as long as it has one of the well-known 1365 * Linux filehandle types and calls @get_inode on it to retrieve the 1366 * inode for the object specified in the file handle. 1367 */ 1368 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1369 int fh_len, int fh_type, struct inode *(*get_inode) 1370 (struct super_block *sb, u64 ino, u32 gen)) 1371 { 1372 struct inode *inode = NULL; 1373 1374 if (fh_len < 2) 1375 return NULL; 1376 1377 switch (fh_type) { 1378 case FILEID_INO32_GEN: 1379 case FILEID_INO32_GEN_PARENT: 1380 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1381 break; 1382 } 1383 1384 return d_obtain_alias(inode); 1385 } 1386 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1387 1388 /** 1389 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1390 * @sb: filesystem to do the file handle conversion on 1391 * @fid: file handle to convert 1392 * @fh_len: length of the file handle in bytes 1393 * @fh_type: type of file handle 1394 * @get_inode: filesystem callback to retrieve inode 1395 * 1396 * This function decodes @fid as long as it has one of the well-known 1397 * Linux filehandle types and calls @get_inode on it to retrieve the 1398 * inode for the _parent_ object specified in the file handle if it 1399 * is specified in the file handle, or NULL otherwise. 1400 */ 1401 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1402 int fh_len, int fh_type, struct inode *(*get_inode) 1403 (struct super_block *sb, u64 ino, u32 gen)) 1404 { 1405 struct inode *inode = NULL; 1406 1407 if (fh_len <= 2) 1408 return NULL; 1409 1410 switch (fh_type) { 1411 case FILEID_INO32_GEN_PARENT: 1412 inode = get_inode(sb, fid->i32.parent_ino, 1413 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1414 break; 1415 } 1416 1417 return d_obtain_alias(inode); 1418 } 1419 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1420 1421 /** 1422 * __generic_file_fsync - generic fsync implementation for simple filesystems 1423 * 1424 * @file: file to synchronize 1425 * @start: start offset in bytes 1426 * @end: end offset in bytes (inclusive) 1427 * @datasync: only synchronize essential metadata if true 1428 * 1429 * This is a generic implementation of the fsync method for simple 1430 * filesystems which track all non-inode metadata in the buffers list 1431 * hanging off the address_space structure. 1432 */ 1433 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1434 int datasync) 1435 { 1436 struct inode *inode = file->f_mapping->host; 1437 int err; 1438 int ret; 1439 1440 err = file_write_and_wait_range(file, start, end); 1441 if (err) 1442 return err; 1443 1444 inode_lock(inode); 1445 ret = sync_mapping_buffers(inode->i_mapping); 1446 if (!(inode->i_state & I_DIRTY_ALL)) 1447 goto out; 1448 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1449 goto out; 1450 1451 err = sync_inode_metadata(inode, 1); 1452 if (ret == 0) 1453 ret = err; 1454 1455 out: 1456 inode_unlock(inode); 1457 /* check and advance again to catch errors after syncing out buffers */ 1458 err = file_check_and_advance_wb_err(file); 1459 if (ret == 0) 1460 ret = err; 1461 return ret; 1462 } 1463 EXPORT_SYMBOL(__generic_file_fsync); 1464 1465 /** 1466 * generic_file_fsync - generic fsync implementation for simple filesystems 1467 * with flush 1468 * @file: file to synchronize 1469 * @start: start offset in bytes 1470 * @end: end offset in bytes (inclusive) 1471 * @datasync: only synchronize essential metadata if true 1472 * 1473 */ 1474 1475 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1476 int datasync) 1477 { 1478 struct inode *inode = file->f_mapping->host; 1479 int err; 1480 1481 err = __generic_file_fsync(file, start, end, datasync); 1482 if (err) 1483 return err; 1484 return blkdev_issue_flush(inode->i_sb->s_bdev); 1485 } 1486 EXPORT_SYMBOL(generic_file_fsync); 1487 1488 /** 1489 * generic_check_addressable - Check addressability of file system 1490 * @blocksize_bits: log of file system block size 1491 * @num_blocks: number of blocks in file system 1492 * 1493 * Determine whether a file system with @num_blocks blocks (and a 1494 * block size of 2**@blocksize_bits) is addressable by the sector_t 1495 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1496 */ 1497 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1498 { 1499 u64 last_fs_block = num_blocks - 1; 1500 u64 last_fs_page = 1501 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1502 1503 if (unlikely(num_blocks == 0)) 1504 return 0; 1505 1506 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1507 return -EINVAL; 1508 1509 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1510 (last_fs_page > (pgoff_t)(~0ULL))) { 1511 return -EFBIG; 1512 } 1513 return 0; 1514 } 1515 EXPORT_SYMBOL(generic_check_addressable); 1516 1517 /* 1518 * No-op implementation of ->fsync for in-memory filesystems. 1519 */ 1520 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1521 { 1522 return 0; 1523 } 1524 EXPORT_SYMBOL(noop_fsync); 1525 1526 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1527 { 1528 /* 1529 * iomap based filesystems support direct I/O without need for 1530 * this callback. However, it still needs to be set in 1531 * inode->a_ops so that open/fcntl know that direct I/O is 1532 * generally supported. 1533 */ 1534 return -EINVAL; 1535 } 1536 EXPORT_SYMBOL_GPL(noop_direct_IO); 1537 1538 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1539 void kfree_link(void *p) 1540 { 1541 kfree(p); 1542 } 1543 EXPORT_SYMBOL(kfree_link); 1544 1545 struct inode *alloc_anon_inode(struct super_block *s) 1546 { 1547 static const struct address_space_operations anon_aops = { 1548 .dirty_folio = noop_dirty_folio, 1549 }; 1550 struct inode *inode = new_inode_pseudo(s); 1551 1552 if (!inode) 1553 return ERR_PTR(-ENOMEM); 1554 1555 inode->i_ino = get_next_ino(); 1556 inode->i_mapping->a_ops = &anon_aops; 1557 1558 /* 1559 * Mark the inode dirty from the very beginning, 1560 * that way it will never be moved to the dirty 1561 * list because mark_inode_dirty() will think 1562 * that it already _is_ on the dirty list. 1563 */ 1564 inode->i_state = I_DIRTY; 1565 inode->i_mode = S_IRUSR | S_IWUSR; 1566 inode->i_uid = current_fsuid(); 1567 inode->i_gid = current_fsgid(); 1568 inode->i_flags |= S_PRIVATE; 1569 simple_inode_init_ts(inode); 1570 return inode; 1571 } 1572 EXPORT_SYMBOL(alloc_anon_inode); 1573 1574 /** 1575 * simple_nosetlease - generic helper for prohibiting leases 1576 * @filp: file pointer 1577 * @arg: type of lease to obtain 1578 * @flp: new lease supplied for insertion 1579 * @priv: private data for lm_setup operation 1580 * 1581 * Generic helper for filesystems that do not wish to allow leases to be set. 1582 * All arguments are ignored and it just returns -EINVAL. 1583 */ 1584 int 1585 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp, 1586 void **priv) 1587 { 1588 return -EINVAL; 1589 } 1590 EXPORT_SYMBOL(simple_nosetlease); 1591 1592 /** 1593 * simple_get_link - generic helper to get the target of "fast" symlinks 1594 * @dentry: not used here 1595 * @inode: the symlink inode 1596 * @done: not used here 1597 * 1598 * Generic helper for filesystems to use for symlink inodes where a pointer to 1599 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1600 * since as an optimization the path lookup code uses any non-NULL ->i_link 1601 * directly, without calling ->get_link(). But ->get_link() still must be set, 1602 * to mark the inode_operations as being for a symlink. 1603 * 1604 * Return: the symlink target 1605 */ 1606 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1607 struct delayed_call *done) 1608 { 1609 return inode->i_link; 1610 } 1611 EXPORT_SYMBOL(simple_get_link); 1612 1613 const struct inode_operations simple_symlink_inode_operations = { 1614 .get_link = simple_get_link, 1615 }; 1616 EXPORT_SYMBOL(simple_symlink_inode_operations); 1617 1618 /* 1619 * Operations for a permanently empty directory. 1620 */ 1621 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1622 { 1623 return ERR_PTR(-ENOENT); 1624 } 1625 1626 static int empty_dir_getattr(struct mnt_idmap *idmap, 1627 const struct path *path, struct kstat *stat, 1628 u32 request_mask, unsigned int query_flags) 1629 { 1630 struct inode *inode = d_inode(path->dentry); 1631 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1632 return 0; 1633 } 1634 1635 static int empty_dir_setattr(struct mnt_idmap *idmap, 1636 struct dentry *dentry, struct iattr *attr) 1637 { 1638 return -EPERM; 1639 } 1640 1641 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1642 { 1643 return -EOPNOTSUPP; 1644 } 1645 1646 static const struct inode_operations empty_dir_inode_operations = { 1647 .lookup = empty_dir_lookup, 1648 .permission = generic_permission, 1649 .setattr = empty_dir_setattr, 1650 .getattr = empty_dir_getattr, 1651 .listxattr = empty_dir_listxattr, 1652 }; 1653 1654 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1655 { 1656 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1657 return generic_file_llseek_size(file, offset, whence, 2, 2); 1658 } 1659 1660 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1661 { 1662 dir_emit_dots(file, ctx); 1663 return 0; 1664 } 1665 1666 static const struct file_operations empty_dir_operations = { 1667 .llseek = empty_dir_llseek, 1668 .read = generic_read_dir, 1669 .iterate_shared = empty_dir_readdir, 1670 .fsync = noop_fsync, 1671 }; 1672 1673 1674 void make_empty_dir_inode(struct inode *inode) 1675 { 1676 set_nlink(inode, 2); 1677 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1678 inode->i_uid = GLOBAL_ROOT_UID; 1679 inode->i_gid = GLOBAL_ROOT_GID; 1680 inode->i_rdev = 0; 1681 inode->i_size = 0; 1682 inode->i_blkbits = PAGE_SHIFT; 1683 inode->i_blocks = 0; 1684 1685 inode->i_op = &empty_dir_inode_operations; 1686 inode->i_opflags &= ~IOP_XATTR; 1687 inode->i_fop = &empty_dir_operations; 1688 } 1689 1690 bool is_empty_dir_inode(struct inode *inode) 1691 { 1692 return (inode->i_fop == &empty_dir_operations) && 1693 (inode->i_op == &empty_dir_inode_operations); 1694 } 1695 1696 #if IS_ENABLED(CONFIG_UNICODE) 1697 /** 1698 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1699 * @dentry: dentry whose name we are checking against 1700 * @len: len of name of dentry 1701 * @str: str pointer to name of dentry 1702 * @name: Name to compare against 1703 * 1704 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1705 */ 1706 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1707 const char *str, const struct qstr *name) 1708 { 1709 const struct dentry *parent = READ_ONCE(dentry->d_parent); 1710 const struct inode *dir = READ_ONCE(parent->d_inode); 1711 const struct super_block *sb = dentry->d_sb; 1712 const struct unicode_map *um = sb->s_encoding; 1713 struct qstr qstr = QSTR_INIT(str, len); 1714 char strbuf[DNAME_INLINE_LEN]; 1715 int ret; 1716 1717 if (!dir || !IS_CASEFOLDED(dir)) 1718 goto fallback; 1719 /* 1720 * If the dentry name is stored in-line, then it may be concurrently 1721 * modified by a rename. If this happens, the VFS will eventually retry 1722 * the lookup, so it doesn't matter what ->d_compare() returns. 1723 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1724 * string. Therefore, we have to copy the name into a temporary buffer. 1725 */ 1726 if (len <= DNAME_INLINE_LEN - 1) { 1727 memcpy(strbuf, str, len); 1728 strbuf[len] = 0; 1729 qstr.name = strbuf; 1730 /* prevent compiler from optimizing out the temporary buffer */ 1731 barrier(); 1732 } 1733 ret = utf8_strncasecmp(um, name, &qstr); 1734 if (ret >= 0) 1735 return ret; 1736 1737 if (sb_has_strict_encoding(sb)) 1738 return -EINVAL; 1739 fallback: 1740 if (len != name->len) 1741 return 1; 1742 return !!memcmp(str, name->name, len); 1743 } 1744 1745 /** 1746 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1747 * @dentry: dentry of the parent directory 1748 * @str: qstr of name whose hash we should fill in 1749 * 1750 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1751 */ 1752 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1753 { 1754 const struct inode *dir = READ_ONCE(dentry->d_inode); 1755 struct super_block *sb = dentry->d_sb; 1756 const struct unicode_map *um = sb->s_encoding; 1757 int ret = 0; 1758 1759 if (!dir || !IS_CASEFOLDED(dir)) 1760 return 0; 1761 1762 ret = utf8_casefold_hash(um, dentry, str); 1763 if (ret < 0 && sb_has_strict_encoding(sb)) 1764 return -EINVAL; 1765 return 0; 1766 } 1767 1768 static const struct dentry_operations generic_ci_dentry_ops = { 1769 .d_hash = generic_ci_d_hash, 1770 .d_compare = generic_ci_d_compare, 1771 }; 1772 #endif 1773 1774 #ifdef CONFIG_FS_ENCRYPTION 1775 static const struct dentry_operations generic_encrypted_dentry_ops = { 1776 .d_revalidate = fscrypt_d_revalidate, 1777 }; 1778 #endif 1779 1780 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1781 static const struct dentry_operations generic_encrypted_ci_dentry_ops = { 1782 .d_hash = generic_ci_d_hash, 1783 .d_compare = generic_ci_d_compare, 1784 .d_revalidate = fscrypt_d_revalidate, 1785 }; 1786 #endif 1787 1788 /** 1789 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry 1790 * @dentry: dentry to set ops on 1791 * 1792 * Casefolded directories need d_hash and d_compare set, so that the dentries 1793 * contained in them are handled case-insensitively. Note that these operations 1794 * are needed on the parent directory rather than on the dentries in it, and 1795 * while the casefolding flag can be toggled on and off on an empty directory, 1796 * dentry_operations can't be changed later. As a result, if the filesystem has 1797 * casefolding support enabled at all, we have to give all dentries the 1798 * casefolding operations even if their inode doesn't have the casefolding flag 1799 * currently (and thus the casefolding ops would be no-ops for now). 1800 * 1801 * Encryption works differently in that the only dentry operation it needs is 1802 * d_revalidate, which it only needs on dentries that have the no-key name flag. 1803 * The no-key flag can't be set "later", so we don't have to worry about that. 1804 * 1805 * Finally, to maximize compatibility with overlayfs (which isn't compatible 1806 * with certain dentry operations) and to avoid taking an unnecessary 1807 * performance hit, we use custom dentry_operations for each possible 1808 * combination rather than always installing all operations. 1809 */ 1810 void generic_set_encrypted_ci_d_ops(struct dentry *dentry) 1811 { 1812 #ifdef CONFIG_FS_ENCRYPTION 1813 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; 1814 #endif 1815 #if IS_ENABLED(CONFIG_UNICODE) 1816 bool needs_ci_ops = dentry->d_sb->s_encoding; 1817 #endif 1818 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1819 if (needs_encrypt_ops && needs_ci_ops) { 1820 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); 1821 return; 1822 } 1823 #endif 1824 #ifdef CONFIG_FS_ENCRYPTION 1825 if (needs_encrypt_ops) { 1826 d_set_d_op(dentry, &generic_encrypted_dentry_ops); 1827 return; 1828 } 1829 #endif 1830 #if IS_ENABLED(CONFIG_UNICODE) 1831 if (needs_ci_ops) { 1832 d_set_d_op(dentry, &generic_ci_dentry_ops); 1833 return; 1834 } 1835 #endif 1836 } 1837 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops); 1838 1839 /** 1840 * inode_maybe_inc_iversion - increments i_version 1841 * @inode: inode with the i_version that should be updated 1842 * @force: increment the counter even if it's not necessary? 1843 * 1844 * Every time the inode is modified, the i_version field must be seen to have 1845 * changed by any observer. 1846 * 1847 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1848 * the value, and clear the queried flag. 1849 * 1850 * In the common case where neither is set, then we can return "false" without 1851 * updating i_version. 1852 * 1853 * If this function returns false, and no other metadata has changed, then we 1854 * can avoid logging the metadata. 1855 */ 1856 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1857 { 1858 u64 cur, new; 1859 1860 /* 1861 * The i_version field is not strictly ordered with any other inode 1862 * information, but the legacy inode_inc_iversion code used a spinlock 1863 * to serialize increments. 1864 * 1865 * Here, we add full memory barriers to ensure that any de-facto 1866 * ordering with other info is preserved. 1867 * 1868 * This barrier pairs with the barrier in inode_query_iversion() 1869 */ 1870 smp_mb(); 1871 cur = inode_peek_iversion_raw(inode); 1872 do { 1873 /* If flag is clear then we needn't do anything */ 1874 if (!force && !(cur & I_VERSION_QUERIED)) 1875 return false; 1876 1877 /* Since lowest bit is flag, add 2 to avoid it */ 1878 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 1879 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1880 return true; 1881 } 1882 EXPORT_SYMBOL(inode_maybe_inc_iversion); 1883 1884 /** 1885 * inode_query_iversion - read i_version for later use 1886 * @inode: inode from which i_version should be read 1887 * 1888 * Read the inode i_version counter. This should be used by callers that wish 1889 * to store the returned i_version for later comparison. This will guarantee 1890 * that a later query of the i_version will result in a different value if 1891 * anything has changed. 1892 * 1893 * In this implementation, we fetch the current value, set the QUERIED flag and 1894 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 1895 * that fails, we try again with the newly fetched value from the cmpxchg. 1896 */ 1897 u64 inode_query_iversion(struct inode *inode) 1898 { 1899 u64 cur, new; 1900 1901 cur = inode_peek_iversion_raw(inode); 1902 do { 1903 /* If flag is already set, then no need to swap */ 1904 if (cur & I_VERSION_QUERIED) { 1905 /* 1906 * This barrier (and the implicit barrier in the 1907 * cmpxchg below) pairs with the barrier in 1908 * inode_maybe_inc_iversion(). 1909 */ 1910 smp_mb(); 1911 break; 1912 } 1913 1914 new = cur | I_VERSION_QUERIED; 1915 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1916 return cur >> I_VERSION_QUERIED_SHIFT; 1917 } 1918 EXPORT_SYMBOL(inode_query_iversion); 1919 1920 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 1921 ssize_t direct_written, ssize_t buffered_written) 1922 { 1923 struct address_space *mapping = iocb->ki_filp->f_mapping; 1924 loff_t pos = iocb->ki_pos - buffered_written; 1925 loff_t end = iocb->ki_pos - 1; 1926 int err; 1927 1928 /* 1929 * If the buffered write fallback returned an error, we want to return 1930 * the number of bytes which were written by direct I/O, or the error 1931 * code if that was zero. 1932 * 1933 * Note that this differs from normal direct-io semantics, which will 1934 * return -EFOO even if some bytes were written. 1935 */ 1936 if (unlikely(buffered_written < 0)) { 1937 if (direct_written) 1938 return direct_written; 1939 return buffered_written; 1940 } 1941 1942 /* 1943 * We need to ensure that the page cache pages are written to disk and 1944 * invalidated to preserve the expected O_DIRECT semantics. 1945 */ 1946 err = filemap_write_and_wait_range(mapping, pos, end); 1947 if (err < 0) { 1948 /* 1949 * We don't know how much we wrote, so just return the number of 1950 * bytes which were direct-written 1951 */ 1952 iocb->ki_pos -= buffered_written; 1953 if (direct_written) 1954 return direct_written; 1955 return err; 1956 } 1957 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 1958 return direct_written + buffered_written; 1959 } 1960 EXPORT_SYMBOL_GPL(direct_write_fallback); 1961 1962 /** 1963 * simple_inode_init_ts - initialize the timestamps for a new inode 1964 * @inode: inode to be initialized 1965 * 1966 * When a new inode is created, most filesystems set the timestamps to the 1967 * current time. Add a helper to do this. 1968 */ 1969 struct timespec64 simple_inode_init_ts(struct inode *inode) 1970 { 1971 struct timespec64 ts = inode_set_ctime_current(inode); 1972 1973 inode_set_atime_to_ts(inode, ts); 1974 inode_set_mtime_to_ts(inode, ts); 1975 return ts; 1976 } 1977 EXPORT_SYMBOL(simple_inode_init_ts); 1978