1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 32 struct kstat *stat, u32 request_mask, 33 unsigned int query_flags) 34 { 35 struct inode *inode = d_inode(path->dentry); 36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 38 return 0; 39 } 40 EXPORT_SYMBOL(simple_getattr); 41 42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 43 { 44 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 45 46 buf->f_fsid = u64_to_fsid(id); 47 buf->f_type = dentry->d_sb->s_magic; 48 buf->f_bsize = PAGE_SIZE; 49 buf->f_namelen = NAME_MAX; 50 return 0; 51 } 52 EXPORT_SYMBOL(simple_statfs); 53 54 /* 55 * Retaining negative dentries for an in-memory filesystem just wastes 56 * memory and lookup time: arrange for them to be deleted immediately. 57 */ 58 int always_delete_dentry(const struct dentry *dentry) 59 { 60 return 1; 61 } 62 EXPORT_SYMBOL(always_delete_dentry); 63 64 const struct dentry_operations simple_dentry_operations = { 65 .d_delete = always_delete_dentry, 66 }; 67 EXPORT_SYMBOL(simple_dentry_operations); 68 69 /* 70 * Lookup the data. This is trivial - if the dentry didn't already 71 * exist, we know it is negative. Set d_op to delete negative dentries. 72 */ 73 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 74 { 75 if (dentry->d_name.len > NAME_MAX) 76 return ERR_PTR(-ENAMETOOLONG); 77 if (!dentry->d_sb->s_d_op) 78 d_set_d_op(dentry, &simple_dentry_operations); 79 d_add(dentry, NULL); 80 return NULL; 81 } 82 EXPORT_SYMBOL(simple_lookup); 83 84 int dcache_dir_open(struct inode *inode, struct file *file) 85 { 86 file->private_data = d_alloc_cursor(file->f_path.dentry); 87 88 return file->private_data ? 0 : -ENOMEM; 89 } 90 EXPORT_SYMBOL(dcache_dir_open); 91 92 int dcache_dir_close(struct inode *inode, struct file *file) 93 { 94 dput(file->private_data); 95 return 0; 96 } 97 EXPORT_SYMBOL(dcache_dir_close); 98 99 /* parent is locked at least shared */ 100 /* 101 * Returns an element of siblings' list. 102 * We are looking for <count>th positive after <p>; if 103 * found, dentry is grabbed and returned to caller. 104 * If no such element exists, NULL is returned. 105 */ 106 static struct dentry *scan_positives(struct dentry *cursor, 107 struct list_head *p, 108 loff_t count, 109 struct dentry *last) 110 { 111 struct dentry *dentry = cursor->d_parent, *found = NULL; 112 113 spin_lock(&dentry->d_lock); 114 while ((p = p->next) != &dentry->d_subdirs) { 115 struct dentry *d = list_entry(p, struct dentry, d_child); 116 // we must at least skip cursors, to avoid livelocks 117 if (d->d_flags & DCACHE_DENTRY_CURSOR) 118 continue; 119 if (simple_positive(d) && !--count) { 120 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 121 if (simple_positive(d)) 122 found = dget_dlock(d); 123 spin_unlock(&d->d_lock); 124 if (likely(found)) 125 break; 126 count = 1; 127 } 128 if (need_resched()) { 129 list_move(&cursor->d_child, p); 130 p = &cursor->d_child; 131 spin_unlock(&dentry->d_lock); 132 cond_resched(); 133 spin_lock(&dentry->d_lock); 134 } 135 } 136 spin_unlock(&dentry->d_lock); 137 dput(last); 138 return found; 139 } 140 141 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 142 { 143 struct dentry *dentry = file->f_path.dentry; 144 switch (whence) { 145 case 1: 146 offset += file->f_pos; 147 fallthrough; 148 case 0: 149 if (offset >= 0) 150 break; 151 fallthrough; 152 default: 153 return -EINVAL; 154 } 155 if (offset != file->f_pos) { 156 struct dentry *cursor = file->private_data; 157 struct dentry *to = NULL; 158 159 inode_lock_shared(dentry->d_inode); 160 161 if (offset > 2) 162 to = scan_positives(cursor, &dentry->d_subdirs, 163 offset - 2, NULL); 164 spin_lock(&dentry->d_lock); 165 if (to) 166 list_move(&cursor->d_child, &to->d_child); 167 else 168 list_del_init(&cursor->d_child); 169 spin_unlock(&dentry->d_lock); 170 dput(to); 171 172 file->f_pos = offset; 173 174 inode_unlock_shared(dentry->d_inode); 175 } 176 return offset; 177 } 178 EXPORT_SYMBOL(dcache_dir_lseek); 179 180 /* 181 * Directory is locked and all positive dentries in it are safe, since 182 * for ramfs-type trees they can't go away without unlink() or rmdir(), 183 * both impossible due to the lock on directory. 184 */ 185 186 int dcache_readdir(struct file *file, struct dir_context *ctx) 187 { 188 struct dentry *dentry = file->f_path.dentry; 189 struct dentry *cursor = file->private_data; 190 struct list_head *anchor = &dentry->d_subdirs; 191 struct dentry *next = NULL; 192 struct list_head *p; 193 194 if (!dir_emit_dots(file, ctx)) 195 return 0; 196 197 if (ctx->pos == 2) 198 p = anchor; 199 else if (!list_empty(&cursor->d_child)) 200 p = &cursor->d_child; 201 else 202 return 0; 203 204 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 205 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 206 d_inode(next)->i_ino, 207 fs_umode_to_dtype(d_inode(next)->i_mode))) 208 break; 209 ctx->pos++; 210 p = &next->d_child; 211 } 212 spin_lock(&dentry->d_lock); 213 if (next) 214 list_move_tail(&cursor->d_child, &next->d_child); 215 else 216 list_del_init(&cursor->d_child); 217 spin_unlock(&dentry->d_lock); 218 dput(next); 219 220 return 0; 221 } 222 EXPORT_SYMBOL(dcache_readdir); 223 224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 225 { 226 return -EISDIR; 227 } 228 EXPORT_SYMBOL(generic_read_dir); 229 230 const struct file_operations simple_dir_operations = { 231 .open = dcache_dir_open, 232 .release = dcache_dir_close, 233 .llseek = dcache_dir_lseek, 234 .read = generic_read_dir, 235 .iterate_shared = dcache_readdir, 236 .fsync = noop_fsync, 237 }; 238 EXPORT_SYMBOL(simple_dir_operations); 239 240 const struct inode_operations simple_dir_inode_operations = { 241 .lookup = simple_lookup, 242 }; 243 EXPORT_SYMBOL(simple_dir_inode_operations); 244 245 static void offset_set(struct dentry *dentry, u32 offset) 246 { 247 dentry->d_fsdata = (void *)((uintptr_t)(offset)); 248 } 249 250 static u32 dentry2offset(struct dentry *dentry) 251 { 252 return (u32)((uintptr_t)(dentry->d_fsdata)); 253 } 254 255 static struct lock_class_key simple_offset_xa_lock; 256 257 /** 258 * simple_offset_init - initialize an offset_ctx 259 * @octx: directory offset map to be initialized 260 * 261 */ 262 void simple_offset_init(struct offset_ctx *octx) 263 { 264 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1); 265 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock); 266 267 /* 0 is '.', 1 is '..', so always start with offset 2 */ 268 octx->next_offset = 2; 269 } 270 271 /** 272 * simple_offset_add - Add an entry to a directory's offset map 273 * @octx: directory offset ctx to be updated 274 * @dentry: new dentry being added 275 * 276 * Returns zero on success. @so_ctx and the dentry offset are updated. 277 * Otherwise, a negative errno value is returned. 278 */ 279 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 280 { 281 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX); 282 u32 offset; 283 int ret; 284 285 if (dentry2offset(dentry) != 0) 286 return -EBUSY; 287 288 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit, 289 &octx->next_offset, GFP_KERNEL); 290 if (ret < 0) 291 return ret; 292 293 offset_set(dentry, offset); 294 return 0; 295 } 296 297 /** 298 * simple_offset_remove - Remove an entry to a directory's offset map 299 * @octx: directory offset ctx to be updated 300 * @dentry: dentry being removed 301 * 302 */ 303 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 304 { 305 u32 offset; 306 307 offset = dentry2offset(dentry); 308 if (offset == 0) 309 return; 310 311 xa_erase(&octx->xa, offset); 312 offset_set(dentry, 0); 313 } 314 315 /** 316 * simple_offset_rename_exchange - exchange rename with directory offsets 317 * @old_dir: parent of dentry being moved 318 * @old_dentry: dentry being moved 319 * @new_dir: destination parent 320 * @new_dentry: destination dentry 321 * 322 * Returns zero on success. Otherwise a negative errno is returned and the 323 * rename is rolled back. 324 */ 325 int simple_offset_rename_exchange(struct inode *old_dir, 326 struct dentry *old_dentry, 327 struct inode *new_dir, 328 struct dentry *new_dentry) 329 { 330 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 331 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 332 u32 old_index = dentry2offset(old_dentry); 333 u32 new_index = dentry2offset(new_dentry); 334 int ret; 335 336 simple_offset_remove(old_ctx, old_dentry); 337 simple_offset_remove(new_ctx, new_dentry); 338 339 ret = simple_offset_add(new_ctx, old_dentry); 340 if (ret) 341 goto out_restore; 342 343 ret = simple_offset_add(old_ctx, new_dentry); 344 if (ret) { 345 simple_offset_remove(new_ctx, old_dentry); 346 goto out_restore; 347 } 348 349 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 350 if (ret) { 351 simple_offset_remove(new_ctx, old_dentry); 352 simple_offset_remove(old_ctx, new_dentry); 353 goto out_restore; 354 } 355 return 0; 356 357 out_restore: 358 offset_set(old_dentry, old_index); 359 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL); 360 offset_set(new_dentry, new_index); 361 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL); 362 return ret; 363 } 364 365 /** 366 * simple_offset_destroy - Release offset map 367 * @octx: directory offset ctx that is about to be destroyed 368 * 369 * During fs teardown (eg. umount), a directory's offset map might still 370 * contain entries. xa_destroy() cleans out anything that remains. 371 */ 372 void simple_offset_destroy(struct offset_ctx *octx) 373 { 374 xa_destroy(&octx->xa); 375 } 376 377 /** 378 * offset_dir_llseek - Advance the read position of a directory descriptor 379 * @file: an open directory whose position is to be updated 380 * @offset: a byte offset 381 * @whence: enumerator describing the starting position for this update 382 * 383 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 384 * 385 * Returns the updated read position if successful; otherwise a 386 * negative errno is returned and the read position remains unchanged. 387 */ 388 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 389 { 390 switch (whence) { 391 case SEEK_CUR: 392 offset += file->f_pos; 393 fallthrough; 394 case SEEK_SET: 395 if (offset >= 0) 396 break; 397 fallthrough; 398 default: 399 return -EINVAL; 400 } 401 402 /* In this case, ->private_data is protected by f_pos_lock */ 403 file->private_data = NULL; 404 return vfs_setpos(file, offset, U32_MAX); 405 } 406 407 static struct dentry *offset_find_next(struct xa_state *xas) 408 { 409 struct dentry *child, *found = NULL; 410 411 rcu_read_lock(); 412 child = xas_next_entry(xas, U32_MAX); 413 if (!child) 414 goto out; 415 spin_lock(&child->d_lock); 416 if (simple_positive(child)) 417 found = dget_dlock(child); 418 spin_unlock(&child->d_lock); 419 out: 420 rcu_read_unlock(); 421 return found; 422 } 423 424 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 425 { 426 u32 offset = dentry2offset(dentry); 427 struct inode *inode = d_inode(dentry); 428 429 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 430 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 431 } 432 433 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx) 434 { 435 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode); 436 XA_STATE(xas, &so_ctx->xa, ctx->pos); 437 struct dentry *dentry; 438 439 while (true) { 440 dentry = offset_find_next(&xas); 441 if (!dentry) 442 return ERR_PTR(-ENOENT); 443 444 if (!offset_dir_emit(ctx, dentry)) { 445 dput(dentry); 446 break; 447 } 448 449 dput(dentry); 450 ctx->pos = xas.xa_index + 1; 451 } 452 return NULL; 453 } 454 455 /** 456 * offset_readdir - Emit entries starting at offset @ctx->pos 457 * @file: an open directory to iterate over 458 * @ctx: directory iteration context 459 * 460 * Caller must hold @file's i_rwsem to prevent insertion or removal of 461 * entries during this call. 462 * 463 * On entry, @ctx->pos contains an offset that represents the first entry 464 * to be read from the directory. 465 * 466 * The operation continues until there are no more entries to read, or 467 * until the ctx->actor indicates there is no more space in the caller's 468 * output buffer. 469 * 470 * On return, @ctx->pos contains an offset that will read the next entry 471 * in this directory when offset_readdir() is called again with @ctx. 472 * 473 * Return values: 474 * %0 - Complete 475 */ 476 static int offset_readdir(struct file *file, struct dir_context *ctx) 477 { 478 struct dentry *dir = file->f_path.dentry; 479 480 lockdep_assert_held(&d_inode(dir)->i_rwsem); 481 482 if (!dir_emit_dots(file, ctx)) 483 return 0; 484 485 /* In this case, ->private_data is protected by f_pos_lock */ 486 if (ctx->pos == 2) 487 file->private_data = NULL; 488 else if (file->private_data == ERR_PTR(-ENOENT)) 489 return 0; 490 file->private_data = offset_iterate_dir(d_inode(dir), ctx); 491 return 0; 492 } 493 494 const struct file_operations simple_offset_dir_operations = { 495 .llseek = offset_dir_llseek, 496 .iterate_shared = offset_readdir, 497 .read = generic_read_dir, 498 .fsync = noop_fsync, 499 }; 500 501 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 502 { 503 struct dentry *child = NULL; 504 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; 505 506 spin_lock(&parent->d_lock); 507 while ((p = p->next) != &parent->d_subdirs) { 508 struct dentry *d = container_of(p, struct dentry, d_child); 509 if (simple_positive(d)) { 510 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 511 if (simple_positive(d)) 512 child = dget_dlock(d); 513 spin_unlock(&d->d_lock); 514 if (likely(child)) 515 break; 516 } 517 } 518 spin_unlock(&parent->d_lock); 519 dput(prev); 520 return child; 521 } 522 523 void simple_recursive_removal(struct dentry *dentry, 524 void (*callback)(struct dentry *)) 525 { 526 struct dentry *this = dget(dentry); 527 while (true) { 528 struct dentry *victim = NULL, *child; 529 struct inode *inode = this->d_inode; 530 531 inode_lock(inode); 532 if (d_is_dir(this)) 533 inode->i_flags |= S_DEAD; 534 while ((child = find_next_child(this, victim)) == NULL) { 535 // kill and ascend 536 // update metadata while it's still locked 537 inode_set_ctime_current(inode); 538 clear_nlink(inode); 539 inode_unlock(inode); 540 victim = this; 541 this = this->d_parent; 542 inode = this->d_inode; 543 inode_lock(inode); 544 if (simple_positive(victim)) { 545 d_invalidate(victim); // avoid lost mounts 546 if (d_is_dir(victim)) 547 fsnotify_rmdir(inode, victim); 548 else 549 fsnotify_unlink(inode, victim); 550 if (callback) 551 callback(victim); 552 dput(victim); // unpin it 553 } 554 if (victim == dentry) { 555 inode_set_mtime_to_ts(inode, 556 inode_set_ctime_current(inode)); 557 if (d_is_dir(dentry)) 558 drop_nlink(inode); 559 inode_unlock(inode); 560 dput(dentry); 561 return; 562 } 563 } 564 inode_unlock(inode); 565 this = child; 566 } 567 } 568 EXPORT_SYMBOL(simple_recursive_removal); 569 570 static const struct super_operations simple_super_operations = { 571 .statfs = simple_statfs, 572 }; 573 574 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 575 { 576 struct pseudo_fs_context *ctx = fc->fs_private; 577 struct inode *root; 578 579 s->s_maxbytes = MAX_LFS_FILESIZE; 580 s->s_blocksize = PAGE_SIZE; 581 s->s_blocksize_bits = PAGE_SHIFT; 582 s->s_magic = ctx->magic; 583 s->s_op = ctx->ops ?: &simple_super_operations; 584 s->s_xattr = ctx->xattr; 585 s->s_time_gran = 1; 586 root = new_inode(s); 587 if (!root) 588 return -ENOMEM; 589 590 /* 591 * since this is the first inode, make it number 1. New inodes created 592 * after this must take care not to collide with it (by passing 593 * max_reserved of 1 to iunique). 594 */ 595 root->i_ino = 1; 596 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 597 simple_inode_init_ts(root); 598 s->s_root = d_make_root(root); 599 if (!s->s_root) 600 return -ENOMEM; 601 s->s_d_op = ctx->dops; 602 return 0; 603 } 604 605 static int pseudo_fs_get_tree(struct fs_context *fc) 606 { 607 return get_tree_nodev(fc, pseudo_fs_fill_super); 608 } 609 610 static void pseudo_fs_free(struct fs_context *fc) 611 { 612 kfree(fc->fs_private); 613 } 614 615 static const struct fs_context_operations pseudo_fs_context_ops = { 616 .free = pseudo_fs_free, 617 .get_tree = pseudo_fs_get_tree, 618 }; 619 620 /* 621 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 622 * will never be mountable) 623 */ 624 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 625 unsigned long magic) 626 { 627 struct pseudo_fs_context *ctx; 628 629 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 630 if (likely(ctx)) { 631 ctx->magic = magic; 632 fc->fs_private = ctx; 633 fc->ops = &pseudo_fs_context_ops; 634 fc->sb_flags |= SB_NOUSER; 635 fc->global = true; 636 } 637 return ctx; 638 } 639 EXPORT_SYMBOL(init_pseudo); 640 641 int simple_open(struct inode *inode, struct file *file) 642 { 643 if (inode->i_private) 644 file->private_data = inode->i_private; 645 return 0; 646 } 647 EXPORT_SYMBOL(simple_open); 648 649 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 650 { 651 struct inode *inode = d_inode(old_dentry); 652 653 inode_set_mtime_to_ts(dir, 654 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 655 inc_nlink(inode); 656 ihold(inode); 657 dget(dentry); 658 d_instantiate(dentry, inode); 659 return 0; 660 } 661 EXPORT_SYMBOL(simple_link); 662 663 int simple_empty(struct dentry *dentry) 664 { 665 struct dentry *child; 666 int ret = 0; 667 668 spin_lock(&dentry->d_lock); 669 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 670 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 671 if (simple_positive(child)) { 672 spin_unlock(&child->d_lock); 673 goto out; 674 } 675 spin_unlock(&child->d_lock); 676 } 677 ret = 1; 678 out: 679 spin_unlock(&dentry->d_lock); 680 return ret; 681 } 682 EXPORT_SYMBOL(simple_empty); 683 684 int simple_unlink(struct inode *dir, struct dentry *dentry) 685 { 686 struct inode *inode = d_inode(dentry); 687 688 inode_set_mtime_to_ts(dir, 689 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 690 drop_nlink(inode); 691 dput(dentry); 692 return 0; 693 } 694 EXPORT_SYMBOL(simple_unlink); 695 696 int simple_rmdir(struct inode *dir, struct dentry *dentry) 697 { 698 if (!simple_empty(dentry)) 699 return -ENOTEMPTY; 700 701 drop_nlink(d_inode(dentry)); 702 simple_unlink(dir, dentry); 703 drop_nlink(dir); 704 return 0; 705 } 706 EXPORT_SYMBOL(simple_rmdir); 707 708 /** 709 * simple_rename_timestamp - update the various inode timestamps for rename 710 * @old_dir: old parent directory 711 * @old_dentry: dentry that is being renamed 712 * @new_dir: new parent directory 713 * @new_dentry: target for rename 714 * 715 * POSIX mandates that the old and new parent directories have their ctime and 716 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 717 * their ctime updated. 718 */ 719 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 720 struct inode *new_dir, struct dentry *new_dentry) 721 { 722 struct inode *newino = d_inode(new_dentry); 723 724 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 725 if (new_dir != old_dir) 726 inode_set_mtime_to_ts(new_dir, 727 inode_set_ctime_current(new_dir)); 728 inode_set_ctime_current(d_inode(old_dentry)); 729 if (newino) 730 inode_set_ctime_current(newino); 731 } 732 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 733 734 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 735 struct inode *new_dir, struct dentry *new_dentry) 736 { 737 bool old_is_dir = d_is_dir(old_dentry); 738 bool new_is_dir = d_is_dir(new_dentry); 739 740 if (old_dir != new_dir && old_is_dir != new_is_dir) { 741 if (old_is_dir) { 742 drop_nlink(old_dir); 743 inc_nlink(new_dir); 744 } else { 745 drop_nlink(new_dir); 746 inc_nlink(old_dir); 747 } 748 } 749 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(simple_rename_exchange); 753 754 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 755 struct dentry *old_dentry, struct inode *new_dir, 756 struct dentry *new_dentry, unsigned int flags) 757 { 758 int they_are_dirs = d_is_dir(old_dentry); 759 760 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 761 return -EINVAL; 762 763 if (flags & RENAME_EXCHANGE) 764 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 765 766 if (!simple_empty(new_dentry)) 767 return -ENOTEMPTY; 768 769 if (d_really_is_positive(new_dentry)) { 770 simple_unlink(new_dir, new_dentry); 771 if (they_are_dirs) { 772 drop_nlink(d_inode(new_dentry)); 773 drop_nlink(old_dir); 774 } 775 } else if (they_are_dirs) { 776 drop_nlink(old_dir); 777 inc_nlink(new_dir); 778 } 779 780 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 781 return 0; 782 } 783 EXPORT_SYMBOL(simple_rename); 784 785 /** 786 * simple_setattr - setattr for simple filesystem 787 * @idmap: idmap of the target mount 788 * @dentry: dentry 789 * @iattr: iattr structure 790 * 791 * Returns 0 on success, -error on failure. 792 * 793 * simple_setattr is a simple ->setattr implementation without a proper 794 * implementation of size changes. 795 * 796 * It can either be used for in-memory filesystems or special files 797 * on simple regular filesystems. Anything that needs to change on-disk 798 * or wire state on size changes needs its own setattr method. 799 */ 800 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 801 struct iattr *iattr) 802 { 803 struct inode *inode = d_inode(dentry); 804 int error; 805 806 error = setattr_prepare(idmap, dentry, iattr); 807 if (error) 808 return error; 809 810 if (iattr->ia_valid & ATTR_SIZE) 811 truncate_setsize(inode, iattr->ia_size); 812 setattr_copy(idmap, inode, iattr); 813 mark_inode_dirty(inode); 814 return 0; 815 } 816 EXPORT_SYMBOL(simple_setattr); 817 818 static int simple_read_folio(struct file *file, struct folio *folio) 819 { 820 folio_zero_range(folio, 0, folio_size(folio)); 821 flush_dcache_folio(folio); 822 folio_mark_uptodate(folio); 823 folio_unlock(folio); 824 return 0; 825 } 826 827 int simple_write_begin(struct file *file, struct address_space *mapping, 828 loff_t pos, unsigned len, 829 struct page **pagep, void **fsdata) 830 { 831 struct folio *folio; 832 833 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 834 mapping_gfp_mask(mapping)); 835 if (IS_ERR(folio)) 836 return PTR_ERR(folio); 837 838 *pagep = &folio->page; 839 840 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 841 size_t from = offset_in_folio(folio, pos); 842 843 folio_zero_segments(folio, 0, from, 844 from + len, folio_size(folio)); 845 } 846 return 0; 847 } 848 EXPORT_SYMBOL(simple_write_begin); 849 850 /** 851 * simple_write_end - .write_end helper for non-block-device FSes 852 * @file: See .write_end of address_space_operations 853 * @mapping: " 854 * @pos: " 855 * @len: " 856 * @copied: " 857 * @page: " 858 * @fsdata: " 859 * 860 * simple_write_end does the minimum needed for updating a page after writing is 861 * done. It has the same API signature as the .write_end of 862 * address_space_operations vector. So it can just be set onto .write_end for 863 * FSes that don't need any other processing. i_mutex is assumed to be held. 864 * Block based filesystems should use generic_write_end(). 865 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 866 * is not called, so a filesystem that actually does store data in .write_inode 867 * should extend on what's done here with a call to mark_inode_dirty() in the 868 * case that i_size has changed. 869 * 870 * Use *ONLY* with simple_read_folio() 871 */ 872 static int simple_write_end(struct file *file, struct address_space *mapping, 873 loff_t pos, unsigned len, unsigned copied, 874 struct page *page, void *fsdata) 875 { 876 struct folio *folio = page_folio(page); 877 struct inode *inode = folio->mapping->host; 878 loff_t last_pos = pos + copied; 879 880 /* zero the stale part of the folio if we did a short copy */ 881 if (!folio_test_uptodate(folio)) { 882 if (copied < len) { 883 size_t from = offset_in_folio(folio, pos); 884 885 folio_zero_range(folio, from + copied, len - copied); 886 } 887 folio_mark_uptodate(folio); 888 } 889 /* 890 * No need to use i_size_read() here, the i_size 891 * cannot change under us because we hold the i_mutex. 892 */ 893 if (last_pos > inode->i_size) 894 i_size_write(inode, last_pos); 895 896 folio_mark_dirty(folio); 897 folio_unlock(folio); 898 folio_put(folio); 899 900 return copied; 901 } 902 903 /* 904 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 905 */ 906 const struct address_space_operations ram_aops = { 907 .read_folio = simple_read_folio, 908 .write_begin = simple_write_begin, 909 .write_end = simple_write_end, 910 .dirty_folio = noop_dirty_folio, 911 }; 912 EXPORT_SYMBOL(ram_aops); 913 914 /* 915 * the inodes created here are not hashed. If you use iunique to generate 916 * unique inode values later for this filesystem, then you must take care 917 * to pass it an appropriate max_reserved value to avoid collisions. 918 */ 919 int simple_fill_super(struct super_block *s, unsigned long magic, 920 const struct tree_descr *files) 921 { 922 struct inode *inode; 923 struct dentry *root; 924 struct dentry *dentry; 925 int i; 926 927 s->s_blocksize = PAGE_SIZE; 928 s->s_blocksize_bits = PAGE_SHIFT; 929 s->s_magic = magic; 930 s->s_op = &simple_super_operations; 931 s->s_time_gran = 1; 932 933 inode = new_inode(s); 934 if (!inode) 935 return -ENOMEM; 936 /* 937 * because the root inode is 1, the files array must not contain an 938 * entry at index 1 939 */ 940 inode->i_ino = 1; 941 inode->i_mode = S_IFDIR | 0755; 942 simple_inode_init_ts(inode); 943 inode->i_op = &simple_dir_inode_operations; 944 inode->i_fop = &simple_dir_operations; 945 set_nlink(inode, 2); 946 root = d_make_root(inode); 947 if (!root) 948 return -ENOMEM; 949 for (i = 0; !files->name || files->name[0]; i++, files++) { 950 if (!files->name) 951 continue; 952 953 /* warn if it tries to conflict with the root inode */ 954 if (unlikely(i == 1)) 955 printk(KERN_WARNING "%s: %s passed in a files array" 956 "with an index of 1!\n", __func__, 957 s->s_type->name); 958 959 dentry = d_alloc_name(root, files->name); 960 if (!dentry) 961 goto out; 962 inode = new_inode(s); 963 if (!inode) { 964 dput(dentry); 965 goto out; 966 } 967 inode->i_mode = S_IFREG | files->mode; 968 simple_inode_init_ts(inode); 969 inode->i_fop = files->ops; 970 inode->i_ino = i; 971 d_add(dentry, inode); 972 } 973 s->s_root = root; 974 return 0; 975 out: 976 d_genocide(root); 977 shrink_dcache_parent(root); 978 dput(root); 979 return -ENOMEM; 980 } 981 EXPORT_SYMBOL(simple_fill_super); 982 983 static DEFINE_SPINLOCK(pin_fs_lock); 984 985 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 986 { 987 struct vfsmount *mnt = NULL; 988 spin_lock(&pin_fs_lock); 989 if (unlikely(!*mount)) { 990 spin_unlock(&pin_fs_lock); 991 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 992 if (IS_ERR(mnt)) 993 return PTR_ERR(mnt); 994 spin_lock(&pin_fs_lock); 995 if (!*mount) 996 *mount = mnt; 997 } 998 mntget(*mount); 999 ++*count; 1000 spin_unlock(&pin_fs_lock); 1001 mntput(mnt); 1002 return 0; 1003 } 1004 EXPORT_SYMBOL(simple_pin_fs); 1005 1006 void simple_release_fs(struct vfsmount **mount, int *count) 1007 { 1008 struct vfsmount *mnt; 1009 spin_lock(&pin_fs_lock); 1010 mnt = *mount; 1011 if (!--*count) 1012 *mount = NULL; 1013 spin_unlock(&pin_fs_lock); 1014 mntput(mnt); 1015 } 1016 EXPORT_SYMBOL(simple_release_fs); 1017 1018 /** 1019 * simple_read_from_buffer - copy data from the buffer to user space 1020 * @to: the user space buffer to read to 1021 * @count: the maximum number of bytes to read 1022 * @ppos: the current position in the buffer 1023 * @from: the buffer to read from 1024 * @available: the size of the buffer 1025 * 1026 * The simple_read_from_buffer() function reads up to @count bytes from the 1027 * buffer @from at offset @ppos into the user space address starting at @to. 1028 * 1029 * On success, the number of bytes read is returned and the offset @ppos is 1030 * advanced by this number, or negative value is returned on error. 1031 **/ 1032 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1033 const void *from, size_t available) 1034 { 1035 loff_t pos = *ppos; 1036 size_t ret; 1037 1038 if (pos < 0) 1039 return -EINVAL; 1040 if (pos >= available || !count) 1041 return 0; 1042 if (count > available - pos) 1043 count = available - pos; 1044 ret = copy_to_user(to, from + pos, count); 1045 if (ret == count) 1046 return -EFAULT; 1047 count -= ret; 1048 *ppos = pos + count; 1049 return count; 1050 } 1051 EXPORT_SYMBOL(simple_read_from_buffer); 1052 1053 /** 1054 * simple_write_to_buffer - copy data from user space to the buffer 1055 * @to: the buffer to write to 1056 * @available: the size of the buffer 1057 * @ppos: the current position in the buffer 1058 * @from: the user space buffer to read from 1059 * @count: the maximum number of bytes to read 1060 * 1061 * The simple_write_to_buffer() function reads up to @count bytes from the user 1062 * space address starting at @from into the buffer @to at offset @ppos. 1063 * 1064 * On success, the number of bytes written is returned and the offset @ppos is 1065 * advanced by this number, or negative value is returned on error. 1066 **/ 1067 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1068 const void __user *from, size_t count) 1069 { 1070 loff_t pos = *ppos; 1071 size_t res; 1072 1073 if (pos < 0) 1074 return -EINVAL; 1075 if (pos >= available || !count) 1076 return 0; 1077 if (count > available - pos) 1078 count = available - pos; 1079 res = copy_from_user(to + pos, from, count); 1080 if (res == count) 1081 return -EFAULT; 1082 count -= res; 1083 *ppos = pos + count; 1084 return count; 1085 } 1086 EXPORT_SYMBOL(simple_write_to_buffer); 1087 1088 /** 1089 * memory_read_from_buffer - copy data from the buffer 1090 * @to: the kernel space buffer to read to 1091 * @count: the maximum number of bytes to read 1092 * @ppos: the current position in the buffer 1093 * @from: the buffer to read from 1094 * @available: the size of the buffer 1095 * 1096 * The memory_read_from_buffer() function reads up to @count bytes from the 1097 * buffer @from at offset @ppos into the kernel space address starting at @to. 1098 * 1099 * On success, the number of bytes read is returned and the offset @ppos is 1100 * advanced by this number, or negative value is returned on error. 1101 **/ 1102 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1103 const void *from, size_t available) 1104 { 1105 loff_t pos = *ppos; 1106 1107 if (pos < 0) 1108 return -EINVAL; 1109 if (pos >= available) 1110 return 0; 1111 if (count > available - pos) 1112 count = available - pos; 1113 memcpy(to, from + pos, count); 1114 *ppos = pos + count; 1115 1116 return count; 1117 } 1118 EXPORT_SYMBOL(memory_read_from_buffer); 1119 1120 /* 1121 * Transaction based IO. 1122 * The file expects a single write which triggers the transaction, and then 1123 * possibly a read which collects the result - which is stored in a 1124 * file-local buffer. 1125 */ 1126 1127 void simple_transaction_set(struct file *file, size_t n) 1128 { 1129 struct simple_transaction_argresp *ar = file->private_data; 1130 1131 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1132 1133 /* 1134 * The barrier ensures that ar->size will really remain zero until 1135 * ar->data is ready for reading. 1136 */ 1137 smp_mb(); 1138 ar->size = n; 1139 } 1140 EXPORT_SYMBOL(simple_transaction_set); 1141 1142 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1143 { 1144 struct simple_transaction_argresp *ar; 1145 static DEFINE_SPINLOCK(simple_transaction_lock); 1146 1147 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1148 return ERR_PTR(-EFBIG); 1149 1150 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1151 if (!ar) 1152 return ERR_PTR(-ENOMEM); 1153 1154 spin_lock(&simple_transaction_lock); 1155 1156 /* only one write allowed per open */ 1157 if (file->private_data) { 1158 spin_unlock(&simple_transaction_lock); 1159 free_page((unsigned long)ar); 1160 return ERR_PTR(-EBUSY); 1161 } 1162 1163 file->private_data = ar; 1164 1165 spin_unlock(&simple_transaction_lock); 1166 1167 if (copy_from_user(ar->data, buf, size)) 1168 return ERR_PTR(-EFAULT); 1169 1170 return ar->data; 1171 } 1172 EXPORT_SYMBOL(simple_transaction_get); 1173 1174 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1175 { 1176 struct simple_transaction_argresp *ar = file->private_data; 1177 1178 if (!ar) 1179 return 0; 1180 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1181 } 1182 EXPORT_SYMBOL(simple_transaction_read); 1183 1184 int simple_transaction_release(struct inode *inode, struct file *file) 1185 { 1186 free_page((unsigned long)file->private_data); 1187 return 0; 1188 } 1189 EXPORT_SYMBOL(simple_transaction_release); 1190 1191 /* Simple attribute files */ 1192 1193 struct simple_attr { 1194 int (*get)(void *, u64 *); 1195 int (*set)(void *, u64); 1196 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1197 char set_buf[24]; 1198 void *data; 1199 const char *fmt; /* format for read operation */ 1200 struct mutex mutex; /* protects access to these buffers */ 1201 }; 1202 1203 /* simple_attr_open is called by an actual attribute open file operation 1204 * to set the attribute specific access operations. */ 1205 int simple_attr_open(struct inode *inode, struct file *file, 1206 int (*get)(void *, u64 *), int (*set)(void *, u64), 1207 const char *fmt) 1208 { 1209 struct simple_attr *attr; 1210 1211 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1212 if (!attr) 1213 return -ENOMEM; 1214 1215 attr->get = get; 1216 attr->set = set; 1217 attr->data = inode->i_private; 1218 attr->fmt = fmt; 1219 mutex_init(&attr->mutex); 1220 1221 file->private_data = attr; 1222 1223 return nonseekable_open(inode, file); 1224 } 1225 EXPORT_SYMBOL_GPL(simple_attr_open); 1226 1227 int simple_attr_release(struct inode *inode, struct file *file) 1228 { 1229 kfree(file->private_data); 1230 return 0; 1231 } 1232 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1233 1234 /* read from the buffer that is filled with the get function */ 1235 ssize_t simple_attr_read(struct file *file, char __user *buf, 1236 size_t len, loff_t *ppos) 1237 { 1238 struct simple_attr *attr; 1239 size_t size; 1240 ssize_t ret; 1241 1242 attr = file->private_data; 1243 1244 if (!attr->get) 1245 return -EACCES; 1246 1247 ret = mutex_lock_interruptible(&attr->mutex); 1248 if (ret) 1249 return ret; 1250 1251 if (*ppos && attr->get_buf[0]) { 1252 /* continued read */ 1253 size = strlen(attr->get_buf); 1254 } else { 1255 /* first read */ 1256 u64 val; 1257 ret = attr->get(attr->data, &val); 1258 if (ret) 1259 goto out; 1260 1261 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1262 attr->fmt, (unsigned long long)val); 1263 } 1264 1265 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1266 out: 1267 mutex_unlock(&attr->mutex); 1268 return ret; 1269 } 1270 EXPORT_SYMBOL_GPL(simple_attr_read); 1271 1272 /* interpret the buffer as a number to call the set function with */ 1273 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1274 size_t len, loff_t *ppos, bool is_signed) 1275 { 1276 struct simple_attr *attr; 1277 unsigned long long val; 1278 size_t size; 1279 ssize_t ret; 1280 1281 attr = file->private_data; 1282 if (!attr->set) 1283 return -EACCES; 1284 1285 ret = mutex_lock_interruptible(&attr->mutex); 1286 if (ret) 1287 return ret; 1288 1289 ret = -EFAULT; 1290 size = min(sizeof(attr->set_buf) - 1, len); 1291 if (copy_from_user(attr->set_buf, buf, size)) 1292 goto out; 1293 1294 attr->set_buf[size] = '\0'; 1295 if (is_signed) 1296 ret = kstrtoll(attr->set_buf, 0, &val); 1297 else 1298 ret = kstrtoull(attr->set_buf, 0, &val); 1299 if (ret) 1300 goto out; 1301 ret = attr->set(attr->data, val); 1302 if (ret == 0) 1303 ret = len; /* on success, claim we got the whole input */ 1304 out: 1305 mutex_unlock(&attr->mutex); 1306 return ret; 1307 } 1308 1309 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1310 size_t len, loff_t *ppos) 1311 { 1312 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1313 } 1314 EXPORT_SYMBOL_GPL(simple_attr_write); 1315 1316 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1317 size_t len, loff_t *ppos) 1318 { 1319 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1320 } 1321 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1322 1323 /** 1324 * generic_encode_ino32_fh - generic export_operations->encode_fh function 1325 * @inode: the object to encode 1326 * @fh: where to store the file handle fragment 1327 * @max_len: maximum length to store there (in 4 byte units) 1328 * @parent: parent directory inode, if wanted 1329 * 1330 * This generic encode_fh function assumes that the 32 inode number 1331 * is suitable for locating an inode, and that the generation number 1332 * can be used to check that it is still valid. It places them in the 1333 * filehandle fragment where export_decode_fh expects to find them. 1334 */ 1335 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, 1336 struct inode *parent) 1337 { 1338 struct fid *fid = (void *)fh; 1339 int len = *max_len; 1340 int type = FILEID_INO32_GEN; 1341 1342 if (parent && (len < 4)) { 1343 *max_len = 4; 1344 return FILEID_INVALID; 1345 } else if (len < 2) { 1346 *max_len = 2; 1347 return FILEID_INVALID; 1348 } 1349 1350 len = 2; 1351 fid->i32.ino = inode->i_ino; 1352 fid->i32.gen = inode->i_generation; 1353 if (parent) { 1354 fid->i32.parent_ino = parent->i_ino; 1355 fid->i32.parent_gen = parent->i_generation; 1356 len = 4; 1357 type = FILEID_INO32_GEN_PARENT; 1358 } 1359 *max_len = len; 1360 return type; 1361 } 1362 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); 1363 1364 /** 1365 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1366 * @sb: filesystem to do the file handle conversion on 1367 * @fid: file handle to convert 1368 * @fh_len: length of the file handle in bytes 1369 * @fh_type: type of file handle 1370 * @get_inode: filesystem callback to retrieve inode 1371 * 1372 * This function decodes @fid as long as it has one of the well-known 1373 * Linux filehandle types and calls @get_inode on it to retrieve the 1374 * inode for the object specified in the file handle. 1375 */ 1376 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1377 int fh_len, int fh_type, struct inode *(*get_inode) 1378 (struct super_block *sb, u64 ino, u32 gen)) 1379 { 1380 struct inode *inode = NULL; 1381 1382 if (fh_len < 2) 1383 return NULL; 1384 1385 switch (fh_type) { 1386 case FILEID_INO32_GEN: 1387 case FILEID_INO32_GEN_PARENT: 1388 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1389 break; 1390 } 1391 1392 return d_obtain_alias(inode); 1393 } 1394 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1395 1396 /** 1397 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1398 * @sb: filesystem to do the file handle conversion on 1399 * @fid: file handle to convert 1400 * @fh_len: length of the file handle in bytes 1401 * @fh_type: type of file handle 1402 * @get_inode: filesystem callback to retrieve inode 1403 * 1404 * This function decodes @fid as long as it has one of the well-known 1405 * Linux filehandle types and calls @get_inode on it to retrieve the 1406 * inode for the _parent_ object specified in the file handle if it 1407 * is specified in the file handle, or NULL otherwise. 1408 */ 1409 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1410 int fh_len, int fh_type, struct inode *(*get_inode) 1411 (struct super_block *sb, u64 ino, u32 gen)) 1412 { 1413 struct inode *inode = NULL; 1414 1415 if (fh_len <= 2) 1416 return NULL; 1417 1418 switch (fh_type) { 1419 case FILEID_INO32_GEN_PARENT: 1420 inode = get_inode(sb, fid->i32.parent_ino, 1421 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1422 break; 1423 } 1424 1425 return d_obtain_alias(inode); 1426 } 1427 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1428 1429 /** 1430 * __generic_file_fsync - generic fsync implementation for simple filesystems 1431 * 1432 * @file: file to synchronize 1433 * @start: start offset in bytes 1434 * @end: end offset in bytes (inclusive) 1435 * @datasync: only synchronize essential metadata if true 1436 * 1437 * This is a generic implementation of the fsync method for simple 1438 * filesystems which track all non-inode metadata in the buffers list 1439 * hanging off the address_space structure. 1440 */ 1441 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1442 int datasync) 1443 { 1444 struct inode *inode = file->f_mapping->host; 1445 int err; 1446 int ret; 1447 1448 err = file_write_and_wait_range(file, start, end); 1449 if (err) 1450 return err; 1451 1452 inode_lock(inode); 1453 ret = sync_mapping_buffers(inode->i_mapping); 1454 if (!(inode->i_state & I_DIRTY_ALL)) 1455 goto out; 1456 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1457 goto out; 1458 1459 err = sync_inode_metadata(inode, 1); 1460 if (ret == 0) 1461 ret = err; 1462 1463 out: 1464 inode_unlock(inode); 1465 /* check and advance again to catch errors after syncing out buffers */ 1466 err = file_check_and_advance_wb_err(file); 1467 if (ret == 0) 1468 ret = err; 1469 return ret; 1470 } 1471 EXPORT_SYMBOL(__generic_file_fsync); 1472 1473 /** 1474 * generic_file_fsync - generic fsync implementation for simple filesystems 1475 * with flush 1476 * @file: file to synchronize 1477 * @start: start offset in bytes 1478 * @end: end offset in bytes (inclusive) 1479 * @datasync: only synchronize essential metadata if true 1480 * 1481 */ 1482 1483 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1484 int datasync) 1485 { 1486 struct inode *inode = file->f_mapping->host; 1487 int err; 1488 1489 err = __generic_file_fsync(file, start, end, datasync); 1490 if (err) 1491 return err; 1492 return blkdev_issue_flush(inode->i_sb->s_bdev); 1493 } 1494 EXPORT_SYMBOL(generic_file_fsync); 1495 1496 /** 1497 * generic_check_addressable - Check addressability of file system 1498 * @blocksize_bits: log of file system block size 1499 * @num_blocks: number of blocks in file system 1500 * 1501 * Determine whether a file system with @num_blocks blocks (and a 1502 * block size of 2**@blocksize_bits) is addressable by the sector_t 1503 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1504 */ 1505 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1506 { 1507 u64 last_fs_block = num_blocks - 1; 1508 u64 last_fs_page = 1509 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1510 1511 if (unlikely(num_blocks == 0)) 1512 return 0; 1513 1514 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1515 return -EINVAL; 1516 1517 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1518 (last_fs_page > (pgoff_t)(~0ULL))) { 1519 return -EFBIG; 1520 } 1521 return 0; 1522 } 1523 EXPORT_SYMBOL(generic_check_addressable); 1524 1525 /* 1526 * No-op implementation of ->fsync for in-memory filesystems. 1527 */ 1528 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1529 { 1530 return 0; 1531 } 1532 EXPORT_SYMBOL(noop_fsync); 1533 1534 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1535 { 1536 /* 1537 * iomap based filesystems support direct I/O without need for 1538 * this callback. However, it still needs to be set in 1539 * inode->a_ops so that open/fcntl know that direct I/O is 1540 * generally supported. 1541 */ 1542 return -EINVAL; 1543 } 1544 EXPORT_SYMBOL_GPL(noop_direct_IO); 1545 1546 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1547 void kfree_link(void *p) 1548 { 1549 kfree(p); 1550 } 1551 EXPORT_SYMBOL(kfree_link); 1552 1553 struct inode *alloc_anon_inode(struct super_block *s) 1554 { 1555 static const struct address_space_operations anon_aops = { 1556 .dirty_folio = noop_dirty_folio, 1557 }; 1558 struct inode *inode = new_inode_pseudo(s); 1559 1560 if (!inode) 1561 return ERR_PTR(-ENOMEM); 1562 1563 inode->i_ino = get_next_ino(); 1564 inode->i_mapping->a_ops = &anon_aops; 1565 1566 /* 1567 * Mark the inode dirty from the very beginning, 1568 * that way it will never be moved to the dirty 1569 * list because mark_inode_dirty() will think 1570 * that it already _is_ on the dirty list. 1571 */ 1572 inode->i_state = I_DIRTY; 1573 inode->i_mode = S_IRUSR | S_IWUSR; 1574 inode->i_uid = current_fsuid(); 1575 inode->i_gid = current_fsgid(); 1576 inode->i_flags |= S_PRIVATE; 1577 simple_inode_init_ts(inode); 1578 return inode; 1579 } 1580 EXPORT_SYMBOL(alloc_anon_inode); 1581 1582 /** 1583 * simple_nosetlease - generic helper for prohibiting leases 1584 * @filp: file pointer 1585 * @arg: type of lease to obtain 1586 * @flp: new lease supplied for insertion 1587 * @priv: private data for lm_setup operation 1588 * 1589 * Generic helper for filesystems that do not wish to allow leases to be set. 1590 * All arguments are ignored and it just returns -EINVAL. 1591 */ 1592 int 1593 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp, 1594 void **priv) 1595 { 1596 return -EINVAL; 1597 } 1598 EXPORT_SYMBOL(simple_nosetlease); 1599 1600 /** 1601 * simple_get_link - generic helper to get the target of "fast" symlinks 1602 * @dentry: not used here 1603 * @inode: the symlink inode 1604 * @done: not used here 1605 * 1606 * Generic helper for filesystems to use for symlink inodes where a pointer to 1607 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1608 * since as an optimization the path lookup code uses any non-NULL ->i_link 1609 * directly, without calling ->get_link(). But ->get_link() still must be set, 1610 * to mark the inode_operations as being for a symlink. 1611 * 1612 * Return: the symlink target 1613 */ 1614 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1615 struct delayed_call *done) 1616 { 1617 return inode->i_link; 1618 } 1619 EXPORT_SYMBOL(simple_get_link); 1620 1621 const struct inode_operations simple_symlink_inode_operations = { 1622 .get_link = simple_get_link, 1623 }; 1624 EXPORT_SYMBOL(simple_symlink_inode_operations); 1625 1626 /* 1627 * Operations for a permanently empty directory. 1628 */ 1629 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1630 { 1631 return ERR_PTR(-ENOENT); 1632 } 1633 1634 static int empty_dir_getattr(struct mnt_idmap *idmap, 1635 const struct path *path, struct kstat *stat, 1636 u32 request_mask, unsigned int query_flags) 1637 { 1638 struct inode *inode = d_inode(path->dentry); 1639 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1640 return 0; 1641 } 1642 1643 static int empty_dir_setattr(struct mnt_idmap *idmap, 1644 struct dentry *dentry, struct iattr *attr) 1645 { 1646 return -EPERM; 1647 } 1648 1649 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1650 { 1651 return -EOPNOTSUPP; 1652 } 1653 1654 static const struct inode_operations empty_dir_inode_operations = { 1655 .lookup = empty_dir_lookup, 1656 .permission = generic_permission, 1657 .setattr = empty_dir_setattr, 1658 .getattr = empty_dir_getattr, 1659 .listxattr = empty_dir_listxattr, 1660 }; 1661 1662 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1663 { 1664 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1665 return generic_file_llseek_size(file, offset, whence, 2, 2); 1666 } 1667 1668 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1669 { 1670 dir_emit_dots(file, ctx); 1671 return 0; 1672 } 1673 1674 static const struct file_operations empty_dir_operations = { 1675 .llseek = empty_dir_llseek, 1676 .read = generic_read_dir, 1677 .iterate_shared = empty_dir_readdir, 1678 .fsync = noop_fsync, 1679 }; 1680 1681 1682 void make_empty_dir_inode(struct inode *inode) 1683 { 1684 set_nlink(inode, 2); 1685 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1686 inode->i_uid = GLOBAL_ROOT_UID; 1687 inode->i_gid = GLOBAL_ROOT_GID; 1688 inode->i_rdev = 0; 1689 inode->i_size = 0; 1690 inode->i_blkbits = PAGE_SHIFT; 1691 inode->i_blocks = 0; 1692 1693 inode->i_op = &empty_dir_inode_operations; 1694 inode->i_opflags &= ~IOP_XATTR; 1695 inode->i_fop = &empty_dir_operations; 1696 } 1697 1698 bool is_empty_dir_inode(struct inode *inode) 1699 { 1700 return (inode->i_fop == &empty_dir_operations) && 1701 (inode->i_op == &empty_dir_inode_operations); 1702 } 1703 1704 #if IS_ENABLED(CONFIG_UNICODE) 1705 /** 1706 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1707 * @dentry: dentry whose name we are checking against 1708 * @len: len of name of dentry 1709 * @str: str pointer to name of dentry 1710 * @name: Name to compare against 1711 * 1712 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1713 */ 1714 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1715 const char *str, const struct qstr *name) 1716 { 1717 const struct dentry *parent = READ_ONCE(dentry->d_parent); 1718 const struct inode *dir = READ_ONCE(parent->d_inode); 1719 const struct super_block *sb = dentry->d_sb; 1720 const struct unicode_map *um = sb->s_encoding; 1721 struct qstr qstr = QSTR_INIT(str, len); 1722 char strbuf[DNAME_INLINE_LEN]; 1723 int ret; 1724 1725 if (!dir || !IS_CASEFOLDED(dir)) 1726 goto fallback; 1727 /* 1728 * If the dentry name is stored in-line, then it may be concurrently 1729 * modified by a rename. If this happens, the VFS will eventually retry 1730 * the lookup, so it doesn't matter what ->d_compare() returns. 1731 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1732 * string. Therefore, we have to copy the name into a temporary buffer. 1733 */ 1734 if (len <= DNAME_INLINE_LEN - 1) { 1735 memcpy(strbuf, str, len); 1736 strbuf[len] = 0; 1737 qstr.name = strbuf; 1738 /* prevent compiler from optimizing out the temporary buffer */ 1739 barrier(); 1740 } 1741 ret = utf8_strncasecmp(um, name, &qstr); 1742 if (ret >= 0) 1743 return ret; 1744 1745 if (sb_has_strict_encoding(sb)) 1746 return -EINVAL; 1747 fallback: 1748 if (len != name->len) 1749 return 1; 1750 return !!memcmp(str, name->name, len); 1751 } 1752 1753 /** 1754 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1755 * @dentry: dentry of the parent directory 1756 * @str: qstr of name whose hash we should fill in 1757 * 1758 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1759 */ 1760 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1761 { 1762 const struct inode *dir = READ_ONCE(dentry->d_inode); 1763 struct super_block *sb = dentry->d_sb; 1764 const struct unicode_map *um = sb->s_encoding; 1765 int ret = 0; 1766 1767 if (!dir || !IS_CASEFOLDED(dir)) 1768 return 0; 1769 1770 ret = utf8_casefold_hash(um, dentry, str); 1771 if (ret < 0 && sb_has_strict_encoding(sb)) 1772 return -EINVAL; 1773 return 0; 1774 } 1775 1776 static const struct dentry_operations generic_ci_dentry_ops = { 1777 .d_hash = generic_ci_d_hash, 1778 .d_compare = generic_ci_d_compare, 1779 }; 1780 #endif 1781 1782 #ifdef CONFIG_FS_ENCRYPTION 1783 static const struct dentry_operations generic_encrypted_dentry_ops = { 1784 .d_revalidate = fscrypt_d_revalidate, 1785 }; 1786 #endif 1787 1788 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1789 static const struct dentry_operations generic_encrypted_ci_dentry_ops = { 1790 .d_hash = generic_ci_d_hash, 1791 .d_compare = generic_ci_d_compare, 1792 .d_revalidate = fscrypt_d_revalidate, 1793 }; 1794 #endif 1795 1796 /** 1797 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry 1798 * @dentry: dentry to set ops on 1799 * 1800 * Casefolded directories need d_hash and d_compare set, so that the dentries 1801 * contained in them are handled case-insensitively. Note that these operations 1802 * are needed on the parent directory rather than on the dentries in it, and 1803 * while the casefolding flag can be toggled on and off on an empty directory, 1804 * dentry_operations can't be changed later. As a result, if the filesystem has 1805 * casefolding support enabled at all, we have to give all dentries the 1806 * casefolding operations even if their inode doesn't have the casefolding flag 1807 * currently (and thus the casefolding ops would be no-ops for now). 1808 * 1809 * Encryption works differently in that the only dentry operation it needs is 1810 * d_revalidate, which it only needs on dentries that have the no-key name flag. 1811 * The no-key flag can't be set "later", so we don't have to worry about that. 1812 * 1813 * Finally, to maximize compatibility with overlayfs (which isn't compatible 1814 * with certain dentry operations) and to avoid taking an unnecessary 1815 * performance hit, we use custom dentry_operations for each possible 1816 * combination rather than always installing all operations. 1817 */ 1818 void generic_set_encrypted_ci_d_ops(struct dentry *dentry) 1819 { 1820 #ifdef CONFIG_FS_ENCRYPTION 1821 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; 1822 #endif 1823 #if IS_ENABLED(CONFIG_UNICODE) 1824 bool needs_ci_ops = dentry->d_sb->s_encoding; 1825 #endif 1826 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1827 if (needs_encrypt_ops && needs_ci_ops) { 1828 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); 1829 return; 1830 } 1831 #endif 1832 #ifdef CONFIG_FS_ENCRYPTION 1833 if (needs_encrypt_ops) { 1834 d_set_d_op(dentry, &generic_encrypted_dentry_ops); 1835 return; 1836 } 1837 #endif 1838 #if IS_ENABLED(CONFIG_UNICODE) 1839 if (needs_ci_ops) { 1840 d_set_d_op(dentry, &generic_ci_dentry_ops); 1841 return; 1842 } 1843 #endif 1844 } 1845 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops); 1846 1847 /** 1848 * inode_maybe_inc_iversion - increments i_version 1849 * @inode: inode with the i_version that should be updated 1850 * @force: increment the counter even if it's not necessary? 1851 * 1852 * Every time the inode is modified, the i_version field must be seen to have 1853 * changed by any observer. 1854 * 1855 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1856 * the value, and clear the queried flag. 1857 * 1858 * In the common case where neither is set, then we can return "false" without 1859 * updating i_version. 1860 * 1861 * If this function returns false, and no other metadata has changed, then we 1862 * can avoid logging the metadata. 1863 */ 1864 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1865 { 1866 u64 cur, new; 1867 1868 /* 1869 * The i_version field is not strictly ordered with any other inode 1870 * information, but the legacy inode_inc_iversion code used a spinlock 1871 * to serialize increments. 1872 * 1873 * Here, we add full memory barriers to ensure that any de-facto 1874 * ordering with other info is preserved. 1875 * 1876 * This barrier pairs with the barrier in inode_query_iversion() 1877 */ 1878 smp_mb(); 1879 cur = inode_peek_iversion_raw(inode); 1880 do { 1881 /* If flag is clear then we needn't do anything */ 1882 if (!force && !(cur & I_VERSION_QUERIED)) 1883 return false; 1884 1885 /* Since lowest bit is flag, add 2 to avoid it */ 1886 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 1887 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1888 return true; 1889 } 1890 EXPORT_SYMBOL(inode_maybe_inc_iversion); 1891 1892 /** 1893 * inode_query_iversion - read i_version for later use 1894 * @inode: inode from which i_version should be read 1895 * 1896 * Read the inode i_version counter. This should be used by callers that wish 1897 * to store the returned i_version for later comparison. This will guarantee 1898 * that a later query of the i_version will result in a different value if 1899 * anything has changed. 1900 * 1901 * In this implementation, we fetch the current value, set the QUERIED flag and 1902 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 1903 * that fails, we try again with the newly fetched value from the cmpxchg. 1904 */ 1905 u64 inode_query_iversion(struct inode *inode) 1906 { 1907 u64 cur, new; 1908 1909 cur = inode_peek_iversion_raw(inode); 1910 do { 1911 /* If flag is already set, then no need to swap */ 1912 if (cur & I_VERSION_QUERIED) { 1913 /* 1914 * This barrier (and the implicit barrier in the 1915 * cmpxchg below) pairs with the barrier in 1916 * inode_maybe_inc_iversion(). 1917 */ 1918 smp_mb(); 1919 break; 1920 } 1921 1922 new = cur | I_VERSION_QUERIED; 1923 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1924 return cur >> I_VERSION_QUERIED_SHIFT; 1925 } 1926 EXPORT_SYMBOL(inode_query_iversion); 1927 1928 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 1929 ssize_t direct_written, ssize_t buffered_written) 1930 { 1931 struct address_space *mapping = iocb->ki_filp->f_mapping; 1932 loff_t pos = iocb->ki_pos - buffered_written; 1933 loff_t end = iocb->ki_pos - 1; 1934 int err; 1935 1936 /* 1937 * If the buffered write fallback returned an error, we want to return 1938 * the number of bytes which were written by direct I/O, or the error 1939 * code if that was zero. 1940 * 1941 * Note that this differs from normal direct-io semantics, which will 1942 * return -EFOO even if some bytes were written. 1943 */ 1944 if (unlikely(buffered_written < 0)) { 1945 if (direct_written) 1946 return direct_written; 1947 return buffered_written; 1948 } 1949 1950 /* 1951 * We need to ensure that the page cache pages are written to disk and 1952 * invalidated to preserve the expected O_DIRECT semantics. 1953 */ 1954 err = filemap_write_and_wait_range(mapping, pos, end); 1955 if (err < 0) { 1956 /* 1957 * We don't know how much we wrote, so just return the number of 1958 * bytes which were direct-written 1959 */ 1960 iocb->ki_pos -= buffered_written; 1961 if (direct_written) 1962 return direct_written; 1963 return err; 1964 } 1965 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 1966 return direct_written + buffered_written; 1967 } 1968 EXPORT_SYMBOL_GPL(direct_write_fallback); 1969 1970 /** 1971 * simple_inode_init_ts - initialize the timestamps for a new inode 1972 * @inode: inode to be initialized 1973 * 1974 * When a new inode is created, most filesystems set the timestamps to the 1975 * current time. Add a helper to do this. 1976 */ 1977 struct timespec64 simple_inode_init_ts(struct inode *inode) 1978 { 1979 struct timespec64 ts = inode_set_ctime_current(inode); 1980 1981 inode_set_atime_to_ts(inode, ts); 1982 inode_set_mtime_to_ts(inode, ts); 1983 return ts; 1984 } 1985 EXPORT_SYMBOL(simple_inode_init_ts); 1986