1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/writeback.h> 19 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 20 #include <linux/fs_context.h> 21 #include <linux/pseudo_fs.h> 22 23 #include <linux/uaccess.h> 24 25 #include "internal.h" 26 27 int simple_getattr(const struct path *path, struct kstat *stat, 28 u32 request_mask, unsigned int query_flags) 29 { 30 struct inode *inode = d_inode(path->dentry); 31 generic_fillattr(inode, stat); 32 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 33 return 0; 34 } 35 EXPORT_SYMBOL(simple_getattr); 36 37 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 38 { 39 buf->f_type = dentry->d_sb->s_magic; 40 buf->f_bsize = PAGE_SIZE; 41 buf->f_namelen = NAME_MAX; 42 return 0; 43 } 44 EXPORT_SYMBOL(simple_statfs); 45 46 /* 47 * Retaining negative dentries for an in-memory filesystem just wastes 48 * memory and lookup time: arrange for them to be deleted immediately. 49 */ 50 int always_delete_dentry(const struct dentry *dentry) 51 { 52 return 1; 53 } 54 EXPORT_SYMBOL(always_delete_dentry); 55 56 const struct dentry_operations simple_dentry_operations = { 57 .d_delete = always_delete_dentry, 58 }; 59 EXPORT_SYMBOL(simple_dentry_operations); 60 61 /* 62 * Lookup the data. This is trivial - if the dentry didn't already 63 * exist, we know it is negative. Set d_op to delete negative dentries. 64 */ 65 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 66 { 67 if (dentry->d_name.len > NAME_MAX) 68 return ERR_PTR(-ENAMETOOLONG); 69 if (!dentry->d_sb->s_d_op) 70 d_set_d_op(dentry, &simple_dentry_operations); 71 d_add(dentry, NULL); 72 return NULL; 73 } 74 EXPORT_SYMBOL(simple_lookup); 75 76 int dcache_dir_open(struct inode *inode, struct file *file) 77 { 78 file->private_data = d_alloc_cursor(file->f_path.dentry); 79 80 return file->private_data ? 0 : -ENOMEM; 81 } 82 EXPORT_SYMBOL(dcache_dir_open); 83 84 int dcache_dir_close(struct inode *inode, struct file *file) 85 { 86 dput(file->private_data); 87 return 0; 88 } 89 EXPORT_SYMBOL(dcache_dir_close); 90 91 /* parent is locked at least shared */ 92 /* 93 * Returns an element of siblings' list. 94 * We are looking for <count>th positive after <p>; if 95 * found, dentry is grabbed and returned to caller. 96 * If no such element exists, NULL is returned. 97 */ 98 static struct dentry *scan_positives(struct dentry *cursor, 99 struct list_head *p, 100 loff_t count, 101 struct dentry *last) 102 { 103 struct dentry *dentry = cursor->d_parent, *found = NULL; 104 105 spin_lock(&dentry->d_lock); 106 while ((p = p->next) != &dentry->d_subdirs) { 107 struct dentry *d = list_entry(p, struct dentry, d_child); 108 // we must at least skip cursors, to avoid livelocks 109 if (d->d_flags & DCACHE_DENTRY_CURSOR) 110 continue; 111 if (simple_positive(d) && !--count) { 112 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 113 if (simple_positive(d)) 114 found = dget_dlock(d); 115 spin_unlock(&d->d_lock); 116 if (likely(found)) 117 break; 118 count = 1; 119 } 120 if (need_resched()) { 121 list_move(&cursor->d_child, p); 122 p = &cursor->d_child; 123 spin_unlock(&dentry->d_lock); 124 cond_resched(); 125 spin_lock(&dentry->d_lock); 126 } 127 } 128 spin_unlock(&dentry->d_lock); 129 dput(last); 130 return found; 131 } 132 133 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 134 { 135 struct dentry *dentry = file->f_path.dentry; 136 switch (whence) { 137 case 1: 138 offset += file->f_pos; 139 /* fall through */ 140 case 0: 141 if (offset >= 0) 142 break; 143 /* fall through */ 144 default: 145 return -EINVAL; 146 } 147 if (offset != file->f_pos) { 148 struct dentry *cursor = file->private_data; 149 struct dentry *to = NULL; 150 151 inode_lock_shared(dentry->d_inode); 152 153 if (offset > 2) 154 to = scan_positives(cursor, &dentry->d_subdirs, 155 offset - 2, NULL); 156 spin_lock(&dentry->d_lock); 157 if (to) 158 list_move(&cursor->d_child, &to->d_child); 159 else 160 list_del_init(&cursor->d_child); 161 spin_unlock(&dentry->d_lock); 162 dput(to); 163 164 file->f_pos = offset; 165 166 inode_unlock_shared(dentry->d_inode); 167 } 168 return offset; 169 } 170 EXPORT_SYMBOL(dcache_dir_lseek); 171 172 /* Relationship between i_mode and the DT_xxx types */ 173 static inline unsigned char dt_type(struct inode *inode) 174 { 175 return (inode->i_mode >> 12) & 15; 176 } 177 178 /* 179 * Directory is locked and all positive dentries in it are safe, since 180 * for ramfs-type trees they can't go away without unlink() or rmdir(), 181 * both impossible due to the lock on directory. 182 */ 183 184 int dcache_readdir(struct file *file, struct dir_context *ctx) 185 { 186 struct dentry *dentry = file->f_path.dentry; 187 struct dentry *cursor = file->private_data; 188 struct list_head *anchor = &dentry->d_subdirs; 189 struct dentry *next = NULL; 190 struct list_head *p; 191 192 if (!dir_emit_dots(file, ctx)) 193 return 0; 194 195 if (ctx->pos == 2) 196 p = anchor; 197 else if (!list_empty(&cursor->d_child)) 198 p = &cursor->d_child; 199 else 200 return 0; 201 202 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 203 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 204 d_inode(next)->i_ino, dt_type(d_inode(next)))) 205 break; 206 ctx->pos++; 207 p = &next->d_child; 208 } 209 spin_lock(&dentry->d_lock); 210 if (next) 211 list_move_tail(&cursor->d_child, &next->d_child); 212 else 213 list_del_init(&cursor->d_child); 214 spin_unlock(&dentry->d_lock); 215 dput(next); 216 217 return 0; 218 } 219 EXPORT_SYMBOL(dcache_readdir); 220 221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 222 { 223 return -EISDIR; 224 } 225 EXPORT_SYMBOL(generic_read_dir); 226 227 const struct file_operations simple_dir_operations = { 228 .open = dcache_dir_open, 229 .release = dcache_dir_close, 230 .llseek = dcache_dir_lseek, 231 .read = generic_read_dir, 232 .iterate_shared = dcache_readdir, 233 .fsync = noop_fsync, 234 }; 235 EXPORT_SYMBOL(simple_dir_operations); 236 237 const struct inode_operations simple_dir_inode_operations = { 238 .lookup = simple_lookup, 239 }; 240 EXPORT_SYMBOL(simple_dir_inode_operations); 241 242 static const struct super_operations simple_super_operations = { 243 .statfs = simple_statfs, 244 }; 245 246 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 247 { 248 struct pseudo_fs_context *ctx = fc->fs_private; 249 struct inode *root; 250 251 s->s_maxbytes = MAX_LFS_FILESIZE; 252 s->s_blocksize = PAGE_SIZE; 253 s->s_blocksize_bits = PAGE_SHIFT; 254 s->s_magic = ctx->magic; 255 s->s_op = ctx->ops ?: &simple_super_operations; 256 s->s_xattr = ctx->xattr; 257 s->s_time_gran = 1; 258 root = new_inode(s); 259 if (!root) 260 return -ENOMEM; 261 262 /* 263 * since this is the first inode, make it number 1. New inodes created 264 * after this must take care not to collide with it (by passing 265 * max_reserved of 1 to iunique). 266 */ 267 root->i_ino = 1; 268 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 269 root->i_atime = root->i_mtime = root->i_ctime = current_time(root); 270 s->s_root = d_make_root(root); 271 if (!s->s_root) 272 return -ENOMEM; 273 s->s_d_op = ctx->dops; 274 return 0; 275 } 276 277 static int pseudo_fs_get_tree(struct fs_context *fc) 278 { 279 return get_tree_nodev(fc, pseudo_fs_fill_super); 280 } 281 282 static void pseudo_fs_free(struct fs_context *fc) 283 { 284 kfree(fc->fs_private); 285 } 286 287 static const struct fs_context_operations pseudo_fs_context_ops = { 288 .free = pseudo_fs_free, 289 .get_tree = pseudo_fs_get_tree, 290 }; 291 292 /* 293 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 294 * will never be mountable) 295 */ 296 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 297 unsigned long magic) 298 { 299 struct pseudo_fs_context *ctx; 300 301 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 302 if (likely(ctx)) { 303 ctx->magic = magic; 304 fc->fs_private = ctx; 305 fc->ops = &pseudo_fs_context_ops; 306 fc->sb_flags |= SB_NOUSER; 307 fc->global = true; 308 } 309 return ctx; 310 } 311 EXPORT_SYMBOL(init_pseudo); 312 313 int simple_open(struct inode *inode, struct file *file) 314 { 315 if (inode->i_private) 316 file->private_data = inode->i_private; 317 return 0; 318 } 319 EXPORT_SYMBOL(simple_open); 320 321 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 322 { 323 struct inode *inode = d_inode(old_dentry); 324 325 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 326 inc_nlink(inode); 327 ihold(inode); 328 dget(dentry); 329 d_instantiate(dentry, inode); 330 return 0; 331 } 332 EXPORT_SYMBOL(simple_link); 333 334 int simple_empty(struct dentry *dentry) 335 { 336 struct dentry *child; 337 int ret = 0; 338 339 spin_lock(&dentry->d_lock); 340 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 341 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 342 if (simple_positive(child)) { 343 spin_unlock(&child->d_lock); 344 goto out; 345 } 346 spin_unlock(&child->d_lock); 347 } 348 ret = 1; 349 out: 350 spin_unlock(&dentry->d_lock); 351 return ret; 352 } 353 EXPORT_SYMBOL(simple_empty); 354 355 int simple_unlink(struct inode *dir, struct dentry *dentry) 356 { 357 struct inode *inode = d_inode(dentry); 358 359 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 360 drop_nlink(inode); 361 dput(dentry); 362 return 0; 363 } 364 EXPORT_SYMBOL(simple_unlink); 365 366 int simple_rmdir(struct inode *dir, struct dentry *dentry) 367 { 368 if (!simple_empty(dentry)) 369 return -ENOTEMPTY; 370 371 drop_nlink(d_inode(dentry)); 372 simple_unlink(dir, dentry); 373 drop_nlink(dir); 374 return 0; 375 } 376 EXPORT_SYMBOL(simple_rmdir); 377 378 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 379 struct inode *new_dir, struct dentry *new_dentry, 380 unsigned int flags) 381 { 382 struct inode *inode = d_inode(old_dentry); 383 int they_are_dirs = d_is_dir(old_dentry); 384 385 if (flags & ~RENAME_NOREPLACE) 386 return -EINVAL; 387 388 if (!simple_empty(new_dentry)) 389 return -ENOTEMPTY; 390 391 if (d_really_is_positive(new_dentry)) { 392 simple_unlink(new_dir, new_dentry); 393 if (they_are_dirs) { 394 drop_nlink(d_inode(new_dentry)); 395 drop_nlink(old_dir); 396 } 397 } else if (they_are_dirs) { 398 drop_nlink(old_dir); 399 inc_nlink(new_dir); 400 } 401 402 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 403 new_dir->i_mtime = inode->i_ctime = current_time(old_dir); 404 405 return 0; 406 } 407 EXPORT_SYMBOL(simple_rename); 408 409 /** 410 * simple_setattr - setattr for simple filesystem 411 * @dentry: dentry 412 * @iattr: iattr structure 413 * 414 * Returns 0 on success, -error on failure. 415 * 416 * simple_setattr is a simple ->setattr implementation without a proper 417 * implementation of size changes. 418 * 419 * It can either be used for in-memory filesystems or special files 420 * on simple regular filesystems. Anything that needs to change on-disk 421 * or wire state on size changes needs its own setattr method. 422 */ 423 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 424 { 425 struct inode *inode = d_inode(dentry); 426 int error; 427 428 error = setattr_prepare(dentry, iattr); 429 if (error) 430 return error; 431 432 if (iattr->ia_valid & ATTR_SIZE) 433 truncate_setsize(inode, iattr->ia_size); 434 setattr_copy(inode, iattr); 435 mark_inode_dirty(inode); 436 return 0; 437 } 438 EXPORT_SYMBOL(simple_setattr); 439 440 int simple_readpage(struct file *file, struct page *page) 441 { 442 clear_highpage(page); 443 flush_dcache_page(page); 444 SetPageUptodate(page); 445 unlock_page(page); 446 return 0; 447 } 448 EXPORT_SYMBOL(simple_readpage); 449 450 int simple_write_begin(struct file *file, struct address_space *mapping, 451 loff_t pos, unsigned len, unsigned flags, 452 struct page **pagep, void **fsdata) 453 { 454 struct page *page; 455 pgoff_t index; 456 457 index = pos >> PAGE_SHIFT; 458 459 page = grab_cache_page_write_begin(mapping, index, flags); 460 if (!page) 461 return -ENOMEM; 462 463 *pagep = page; 464 465 if (!PageUptodate(page) && (len != PAGE_SIZE)) { 466 unsigned from = pos & (PAGE_SIZE - 1); 467 468 zero_user_segments(page, 0, from, from + len, PAGE_SIZE); 469 } 470 return 0; 471 } 472 EXPORT_SYMBOL(simple_write_begin); 473 474 /** 475 * simple_write_end - .write_end helper for non-block-device FSes 476 * @file: See .write_end of address_space_operations 477 * @mapping: " 478 * @pos: " 479 * @len: " 480 * @copied: " 481 * @page: " 482 * @fsdata: " 483 * 484 * simple_write_end does the minimum needed for updating a page after writing is 485 * done. It has the same API signature as the .write_end of 486 * address_space_operations vector. So it can just be set onto .write_end for 487 * FSes that don't need any other processing. i_mutex is assumed to be held. 488 * Block based filesystems should use generic_write_end(). 489 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 490 * is not called, so a filesystem that actually does store data in .write_inode 491 * should extend on what's done here with a call to mark_inode_dirty() in the 492 * case that i_size has changed. 493 * 494 * Use *ONLY* with simple_readpage() 495 */ 496 int simple_write_end(struct file *file, struct address_space *mapping, 497 loff_t pos, unsigned len, unsigned copied, 498 struct page *page, void *fsdata) 499 { 500 struct inode *inode = page->mapping->host; 501 loff_t last_pos = pos + copied; 502 503 /* zero the stale part of the page if we did a short copy */ 504 if (!PageUptodate(page)) { 505 if (copied < len) { 506 unsigned from = pos & (PAGE_SIZE - 1); 507 508 zero_user(page, from + copied, len - copied); 509 } 510 SetPageUptodate(page); 511 } 512 /* 513 * No need to use i_size_read() here, the i_size 514 * cannot change under us because we hold the i_mutex. 515 */ 516 if (last_pos > inode->i_size) 517 i_size_write(inode, last_pos); 518 519 set_page_dirty(page); 520 unlock_page(page); 521 put_page(page); 522 523 return copied; 524 } 525 EXPORT_SYMBOL(simple_write_end); 526 527 /* 528 * the inodes created here are not hashed. If you use iunique to generate 529 * unique inode values later for this filesystem, then you must take care 530 * to pass it an appropriate max_reserved value to avoid collisions. 531 */ 532 int simple_fill_super(struct super_block *s, unsigned long magic, 533 const struct tree_descr *files) 534 { 535 struct inode *inode; 536 struct dentry *root; 537 struct dentry *dentry; 538 int i; 539 540 s->s_blocksize = PAGE_SIZE; 541 s->s_blocksize_bits = PAGE_SHIFT; 542 s->s_magic = magic; 543 s->s_op = &simple_super_operations; 544 s->s_time_gran = 1; 545 546 inode = new_inode(s); 547 if (!inode) 548 return -ENOMEM; 549 /* 550 * because the root inode is 1, the files array must not contain an 551 * entry at index 1 552 */ 553 inode->i_ino = 1; 554 inode->i_mode = S_IFDIR | 0755; 555 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 556 inode->i_op = &simple_dir_inode_operations; 557 inode->i_fop = &simple_dir_operations; 558 set_nlink(inode, 2); 559 root = d_make_root(inode); 560 if (!root) 561 return -ENOMEM; 562 for (i = 0; !files->name || files->name[0]; i++, files++) { 563 if (!files->name) 564 continue; 565 566 /* warn if it tries to conflict with the root inode */ 567 if (unlikely(i == 1)) 568 printk(KERN_WARNING "%s: %s passed in a files array" 569 "with an index of 1!\n", __func__, 570 s->s_type->name); 571 572 dentry = d_alloc_name(root, files->name); 573 if (!dentry) 574 goto out; 575 inode = new_inode(s); 576 if (!inode) { 577 dput(dentry); 578 goto out; 579 } 580 inode->i_mode = S_IFREG | files->mode; 581 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 582 inode->i_fop = files->ops; 583 inode->i_ino = i; 584 d_add(dentry, inode); 585 } 586 s->s_root = root; 587 return 0; 588 out: 589 d_genocide(root); 590 shrink_dcache_parent(root); 591 dput(root); 592 return -ENOMEM; 593 } 594 EXPORT_SYMBOL(simple_fill_super); 595 596 static DEFINE_SPINLOCK(pin_fs_lock); 597 598 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 599 { 600 struct vfsmount *mnt = NULL; 601 spin_lock(&pin_fs_lock); 602 if (unlikely(!*mount)) { 603 spin_unlock(&pin_fs_lock); 604 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 605 if (IS_ERR(mnt)) 606 return PTR_ERR(mnt); 607 spin_lock(&pin_fs_lock); 608 if (!*mount) 609 *mount = mnt; 610 } 611 mntget(*mount); 612 ++*count; 613 spin_unlock(&pin_fs_lock); 614 mntput(mnt); 615 return 0; 616 } 617 EXPORT_SYMBOL(simple_pin_fs); 618 619 void simple_release_fs(struct vfsmount **mount, int *count) 620 { 621 struct vfsmount *mnt; 622 spin_lock(&pin_fs_lock); 623 mnt = *mount; 624 if (!--*count) 625 *mount = NULL; 626 spin_unlock(&pin_fs_lock); 627 mntput(mnt); 628 } 629 EXPORT_SYMBOL(simple_release_fs); 630 631 /** 632 * simple_read_from_buffer - copy data from the buffer to user space 633 * @to: the user space buffer to read to 634 * @count: the maximum number of bytes to read 635 * @ppos: the current position in the buffer 636 * @from: the buffer to read from 637 * @available: the size of the buffer 638 * 639 * The simple_read_from_buffer() function reads up to @count bytes from the 640 * buffer @from at offset @ppos into the user space address starting at @to. 641 * 642 * On success, the number of bytes read is returned and the offset @ppos is 643 * advanced by this number, or negative value is returned on error. 644 **/ 645 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 646 const void *from, size_t available) 647 { 648 loff_t pos = *ppos; 649 size_t ret; 650 651 if (pos < 0) 652 return -EINVAL; 653 if (pos >= available || !count) 654 return 0; 655 if (count > available - pos) 656 count = available - pos; 657 ret = copy_to_user(to, from + pos, count); 658 if (ret == count) 659 return -EFAULT; 660 count -= ret; 661 *ppos = pos + count; 662 return count; 663 } 664 EXPORT_SYMBOL(simple_read_from_buffer); 665 666 /** 667 * simple_write_to_buffer - copy data from user space to the buffer 668 * @to: the buffer to write to 669 * @available: the size of the buffer 670 * @ppos: the current position in the buffer 671 * @from: the user space buffer to read from 672 * @count: the maximum number of bytes to read 673 * 674 * The simple_write_to_buffer() function reads up to @count bytes from the user 675 * space address starting at @from into the buffer @to at offset @ppos. 676 * 677 * On success, the number of bytes written is returned and the offset @ppos is 678 * advanced by this number, or negative value is returned on error. 679 **/ 680 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 681 const void __user *from, size_t count) 682 { 683 loff_t pos = *ppos; 684 size_t res; 685 686 if (pos < 0) 687 return -EINVAL; 688 if (pos >= available || !count) 689 return 0; 690 if (count > available - pos) 691 count = available - pos; 692 res = copy_from_user(to + pos, from, count); 693 if (res == count) 694 return -EFAULT; 695 count -= res; 696 *ppos = pos + count; 697 return count; 698 } 699 EXPORT_SYMBOL(simple_write_to_buffer); 700 701 /** 702 * memory_read_from_buffer - copy data from the buffer 703 * @to: the kernel space buffer to read to 704 * @count: the maximum number of bytes to read 705 * @ppos: the current position in the buffer 706 * @from: the buffer to read from 707 * @available: the size of the buffer 708 * 709 * The memory_read_from_buffer() function reads up to @count bytes from the 710 * buffer @from at offset @ppos into the kernel space address starting at @to. 711 * 712 * On success, the number of bytes read is returned and the offset @ppos is 713 * advanced by this number, or negative value is returned on error. 714 **/ 715 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 716 const void *from, size_t available) 717 { 718 loff_t pos = *ppos; 719 720 if (pos < 0) 721 return -EINVAL; 722 if (pos >= available) 723 return 0; 724 if (count > available - pos) 725 count = available - pos; 726 memcpy(to, from + pos, count); 727 *ppos = pos + count; 728 729 return count; 730 } 731 EXPORT_SYMBOL(memory_read_from_buffer); 732 733 /* 734 * Transaction based IO. 735 * The file expects a single write which triggers the transaction, and then 736 * possibly a read which collects the result - which is stored in a 737 * file-local buffer. 738 */ 739 740 void simple_transaction_set(struct file *file, size_t n) 741 { 742 struct simple_transaction_argresp *ar = file->private_data; 743 744 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 745 746 /* 747 * The barrier ensures that ar->size will really remain zero until 748 * ar->data is ready for reading. 749 */ 750 smp_mb(); 751 ar->size = n; 752 } 753 EXPORT_SYMBOL(simple_transaction_set); 754 755 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 756 { 757 struct simple_transaction_argresp *ar; 758 static DEFINE_SPINLOCK(simple_transaction_lock); 759 760 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 761 return ERR_PTR(-EFBIG); 762 763 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 764 if (!ar) 765 return ERR_PTR(-ENOMEM); 766 767 spin_lock(&simple_transaction_lock); 768 769 /* only one write allowed per open */ 770 if (file->private_data) { 771 spin_unlock(&simple_transaction_lock); 772 free_page((unsigned long)ar); 773 return ERR_PTR(-EBUSY); 774 } 775 776 file->private_data = ar; 777 778 spin_unlock(&simple_transaction_lock); 779 780 if (copy_from_user(ar->data, buf, size)) 781 return ERR_PTR(-EFAULT); 782 783 return ar->data; 784 } 785 EXPORT_SYMBOL(simple_transaction_get); 786 787 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 788 { 789 struct simple_transaction_argresp *ar = file->private_data; 790 791 if (!ar) 792 return 0; 793 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 794 } 795 EXPORT_SYMBOL(simple_transaction_read); 796 797 int simple_transaction_release(struct inode *inode, struct file *file) 798 { 799 free_page((unsigned long)file->private_data); 800 return 0; 801 } 802 EXPORT_SYMBOL(simple_transaction_release); 803 804 /* Simple attribute files */ 805 806 struct simple_attr { 807 int (*get)(void *, u64 *); 808 int (*set)(void *, u64); 809 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 810 char set_buf[24]; 811 void *data; 812 const char *fmt; /* format for read operation */ 813 struct mutex mutex; /* protects access to these buffers */ 814 }; 815 816 /* simple_attr_open is called by an actual attribute open file operation 817 * to set the attribute specific access operations. */ 818 int simple_attr_open(struct inode *inode, struct file *file, 819 int (*get)(void *, u64 *), int (*set)(void *, u64), 820 const char *fmt) 821 { 822 struct simple_attr *attr; 823 824 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 825 if (!attr) 826 return -ENOMEM; 827 828 attr->get = get; 829 attr->set = set; 830 attr->data = inode->i_private; 831 attr->fmt = fmt; 832 mutex_init(&attr->mutex); 833 834 file->private_data = attr; 835 836 return nonseekable_open(inode, file); 837 } 838 EXPORT_SYMBOL_GPL(simple_attr_open); 839 840 int simple_attr_release(struct inode *inode, struct file *file) 841 { 842 kfree(file->private_data); 843 return 0; 844 } 845 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 846 847 /* read from the buffer that is filled with the get function */ 848 ssize_t simple_attr_read(struct file *file, char __user *buf, 849 size_t len, loff_t *ppos) 850 { 851 struct simple_attr *attr; 852 size_t size; 853 ssize_t ret; 854 855 attr = file->private_data; 856 857 if (!attr->get) 858 return -EACCES; 859 860 ret = mutex_lock_interruptible(&attr->mutex); 861 if (ret) 862 return ret; 863 864 if (*ppos) { /* continued read */ 865 size = strlen(attr->get_buf); 866 } else { /* first read */ 867 u64 val; 868 ret = attr->get(attr->data, &val); 869 if (ret) 870 goto out; 871 872 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 873 attr->fmt, (unsigned long long)val); 874 } 875 876 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 877 out: 878 mutex_unlock(&attr->mutex); 879 return ret; 880 } 881 EXPORT_SYMBOL_GPL(simple_attr_read); 882 883 /* interpret the buffer as a number to call the set function with */ 884 ssize_t simple_attr_write(struct file *file, const char __user *buf, 885 size_t len, loff_t *ppos) 886 { 887 struct simple_attr *attr; 888 u64 val; 889 size_t size; 890 ssize_t ret; 891 892 attr = file->private_data; 893 if (!attr->set) 894 return -EACCES; 895 896 ret = mutex_lock_interruptible(&attr->mutex); 897 if (ret) 898 return ret; 899 900 ret = -EFAULT; 901 size = min(sizeof(attr->set_buf) - 1, len); 902 if (copy_from_user(attr->set_buf, buf, size)) 903 goto out; 904 905 attr->set_buf[size] = '\0'; 906 val = simple_strtoll(attr->set_buf, NULL, 0); 907 ret = attr->set(attr->data, val); 908 if (ret == 0) 909 ret = len; /* on success, claim we got the whole input */ 910 out: 911 mutex_unlock(&attr->mutex); 912 return ret; 913 } 914 EXPORT_SYMBOL_GPL(simple_attr_write); 915 916 /** 917 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 918 * @sb: filesystem to do the file handle conversion on 919 * @fid: file handle to convert 920 * @fh_len: length of the file handle in bytes 921 * @fh_type: type of file handle 922 * @get_inode: filesystem callback to retrieve inode 923 * 924 * This function decodes @fid as long as it has one of the well-known 925 * Linux filehandle types and calls @get_inode on it to retrieve the 926 * inode for the object specified in the file handle. 927 */ 928 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 929 int fh_len, int fh_type, struct inode *(*get_inode) 930 (struct super_block *sb, u64 ino, u32 gen)) 931 { 932 struct inode *inode = NULL; 933 934 if (fh_len < 2) 935 return NULL; 936 937 switch (fh_type) { 938 case FILEID_INO32_GEN: 939 case FILEID_INO32_GEN_PARENT: 940 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 941 break; 942 } 943 944 return d_obtain_alias(inode); 945 } 946 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 947 948 /** 949 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 950 * @sb: filesystem to do the file handle conversion on 951 * @fid: file handle to convert 952 * @fh_len: length of the file handle in bytes 953 * @fh_type: type of file handle 954 * @get_inode: filesystem callback to retrieve inode 955 * 956 * This function decodes @fid as long as it has one of the well-known 957 * Linux filehandle types and calls @get_inode on it to retrieve the 958 * inode for the _parent_ object specified in the file handle if it 959 * is specified in the file handle, or NULL otherwise. 960 */ 961 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 962 int fh_len, int fh_type, struct inode *(*get_inode) 963 (struct super_block *sb, u64 ino, u32 gen)) 964 { 965 struct inode *inode = NULL; 966 967 if (fh_len <= 2) 968 return NULL; 969 970 switch (fh_type) { 971 case FILEID_INO32_GEN_PARENT: 972 inode = get_inode(sb, fid->i32.parent_ino, 973 (fh_len > 3 ? fid->i32.parent_gen : 0)); 974 break; 975 } 976 977 return d_obtain_alias(inode); 978 } 979 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 980 981 /** 982 * __generic_file_fsync - generic fsync implementation for simple filesystems 983 * 984 * @file: file to synchronize 985 * @start: start offset in bytes 986 * @end: end offset in bytes (inclusive) 987 * @datasync: only synchronize essential metadata if true 988 * 989 * This is a generic implementation of the fsync method for simple 990 * filesystems which track all non-inode metadata in the buffers list 991 * hanging off the address_space structure. 992 */ 993 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 994 int datasync) 995 { 996 struct inode *inode = file->f_mapping->host; 997 int err; 998 int ret; 999 1000 err = file_write_and_wait_range(file, start, end); 1001 if (err) 1002 return err; 1003 1004 inode_lock(inode); 1005 ret = sync_mapping_buffers(inode->i_mapping); 1006 if (!(inode->i_state & I_DIRTY_ALL)) 1007 goto out; 1008 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1009 goto out; 1010 1011 err = sync_inode_metadata(inode, 1); 1012 if (ret == 0) 1013 ret = err; 1014 1015 out: 1016 inode_unlock(inode); 1017 /* check and advance again to catch errors after syncing out buffers */ 1018 err = file_check_and_advance_wb_err(file); 1019 if (ret == 0) 1020 ret = err; 1021 return ret; 1022 } 1023 EXPORT_SYMBOL(__generic_file_fsync); 1024 1025 /** 1026 * generic_file_fsync - generic fsync implementation for simple filesystems 1027 * with flush 1028 * @file: file to synchronize 1029 * @start: start offset in bytes 1030 * @end: end offset in bytes (inclusive) 1031 * @datasync: only synchronize essential metadata if true 1032 * 1033 */ 1034 1035 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1036 int datasync) 1037 { 1038 struct inode *inode = file->f_mapping->host; 1039 int err; 1040 1041 err = __generic_file_fsync(file, start, end, datasync); 1042 if (err) 1043 return err; 1044 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 1045 } 1046 EXPORT_SYMBOL(generic_file_fsync); 1047 1048 /** 1049 * generic_check_addressable - Check addressability of file system 1050 * @blocksize_bits: log of file system block size 1051 * @num_blocks: number of blocks in file system 1052 * 1053 * Determine whether a file system with @num_blocks blocks (and a 1054 * block size of 2**@blocksize_bits) is addressable by the sector_t 1055 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1056 */ 1057 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1058 { 1059 u64 last_fs_block = num_blocks - 1; 1060 u64 last_fs_page = 1061 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1062 1063 if (unlikely(num_blocks == 0)) 1064 return 0; 1065 1066 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1067 return -EINVAL; 1068 1069 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1070 (last_fs_page > (pgoff_t)(~0ULL))) { 1071 return -EFBIG; 1072 } 1073 return 0; 1074 } 1075 EXPORT_SYMBOL(generic_check_addressable); 1076 1077 /* 1078 * No-op implementation of ->fsync for in-memory filesystems. 1079 */ 1080 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1081 { 1082 return 0; 1083 } 1084 EXPORT_SYMBOL(noop_fsync); 1085 1086 int noop_set_page_dirty(struct page *page) 1087 { 1088 /* 1089 * Unlike __set_page_dirty_no_writeback that handles dirty page 1090 * tracking in the page object, dax does all dirty tracking in 1091 * the inode address_space in response to mkwrite faults. In the 1092 * dax case we only need to worry about potentially dirty CPU 1093 * caches, not dirty page cache pages to write back. 1094 * 1095 * This callback is defined to prevent fallback to 1096 * __set_page_dirty_buffers() in set_page_dirty(). 1097 */ 1098 return 0; 1099 } 1100 EXPORT_SYMBOL_GPL(noop_set_page_dirty); 1101 1102 void noop_invalidatepage(struct page *page, unsigned int offset, 1103 unsigned int length) 1104 { 1105 /* 1106 * There is no page cache to invalidate in the dax case, however 1107 * we need this callback defined to prevent falling back to 1108 * block_invalidatepage() in do_invalidatepage(). 1109 */ 1110 } 1111 EXPORT_SYMBOL_GPL(noop_invalidatepage); 1112 1113 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1114 { 1115 /* 1116 * iomap based filesystems support direct I/O without need for 1117 * this callback. However, it still needs to be set in 1118 * inode->a_ops so that open/fcntl know that direct I/O is 1119 * generally supported. 1120 */ 1121 return -EINVAL; 1122 } 1123 EXPORT_SYMBOL_GPL(noop_direct_IO); 1124 1125 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1126 void kfree_link(void *p) 1127 { 1128 kfree(p); 1129 } 1130 EXPORT_SYMBOL(kfree_link); 1131 1132 /* 1133 * nop .set_page_dirty method so that people can use .page_mkwrite on 1134 * anon inodes. 1135 */ 1136 static int anon_set_page_dirty(struct page *page) 1137 { 1138 return 0; 1139 }; 1140 1141 /* 1142 * A single inode exists for all anon_inode files. Contrary to pipes, 1143 * anon_inode inodes have no associated per-instance data, so we need 1144 * only allocate one of them. 1145 */ 1146 struct inode *alloc_anon_inode(struct super_block *s) 1147 { 1148 static const struct address_space_operations anon_aops = { 1149 .set_page_dirty = anon_set_page_dirty, 1150 }; 1151 struct inode *inode = new_inode_pseudo(s); 1152 1153 if (!inode) 1154 return ERR_PTR(-ENOMEM); 1155 1156 inode->i_ino = get_next_ino(); 1157 inode->i_mapping->a_ops = &anon_aops; 1158 1159 /* 1160 * Mark the inode dirty from the very beginning, 1161 * that way it will never be moved to the dirty 1162 * list because mark_inode_dirty() will think 1163 * that it already _is_ on the dirty list. 1164 */ 1165 inode->i_state = I_DIRTY; 1166 inode->i_mode = S_IRUSR | S_IWUSR; 1167 inode->i_uid = current_fsuid(); 1168 inode->i_gid = current_fsgid(); 1169 inode->i_flags |= S_PRIVATE; 1170 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 1171 return inode; 1172 } 1173 EXPORT_SYMBOL(alloc_anon_inode); 1174 1175 /** 1176 * simple_nosetlease - generic helper for prohibiting leases 1177 * @filp: file pointer 1178 * @arg: type of lease to obtain 1179 * @flp: new lease supplied for insertion 1180 * @priv: private data for lm_setup operation 1181 * 1182 * Generic helper for filesystems that do not wish to allow leases to be set. 1183 * All arguments are ignored and it just returns -EINVAL. 1184 */ 1185 int 1186 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, 1187 void **priv) 1188 { 1189 return -EINVAL; 1190 } 1191 EXPORT_SYMBOL(simple_nosetlease); 1192 1193 /** 1194 * simple_get_link - generic helper to get the target of "fast" symlinks 1195 * @dentry: not used here 1196 * @inode: the symlink inode 1197 * @done: not used here 1198 * 1199 * Generic helper for filesystems to use for symlink inodes where a pointer to 1200 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1201 * since as an optimization the path lookup code uses any non-NULL ->i_link 1202 * directly, without calling ->get_link(). But ->get_link() still must be set, 1203 * to mark the inode_operations as being for a symlink. 1204 * 1205 * Return: the symlink target 1206 */ 1207 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1208 struct delayed_call *done) 1209 { 1210 return inode->i_link; 1211 } 1212 EXPORT_SYMBOL(simple_get_link); 1213 1214 const struct inode_operations simple_symlink_inode_operations = { 1215 .get_link = simple_get_link, 1216 }; 1217 EXPORT_SYMBOL(simple_symlink_inode_operations); 1218 1219 /* 1220 * Operations for a permanently empty directory. 1221 */ 1222 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1223 { 1224 return ERR_PTR(-ENOENT); 1225 } 1226 1227 static int empty_dir_getattr(const struct path *path, struct kstat *stat, 1228 u32 request_mask, unsigned int query_flags) 1229 { 1230 struct inode *inode = d_inode(path->dentry); 1231 generic_fillattr(inode, stat); 1232 return 0; 1233 } 1234 1235 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr) 1236 { 1237 return -EPERM; 1238 } 1239 1240 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1241 { 1242 return -EOPNOTSUPP; 1243 } 1244 1245 static const struct inode_operations empty_dir_inode_operations = { 1246 .lookup = empty_dir_lookup, 1247 .permission = generic_permission, 1248 .setattr = empty_dir_setattr, 1249 .getattr = empty_dir_getattr, 1250 .listxattr = empty_dir_listxattr, 1251 }; 1252 1253 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1254 { 1255 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1256 return generic_file_llseek_size(file, offset, whence, 2, 2); 1257 } 1258 1259 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1260 { 1261 dir_emit_dots(file, ctx); 1262 return 0; 1263 } 1264 1265 static const struct file_operations empty_dir_operations = { 1266 .llseek = empty_dir_llseek, 1267 .read = generic_read_dir, 1268 .iterate_shared = empty_dir_readdir, 1269 .fsync = noop_fsync, 1270 }; 1271 1272 1273 void make_empty_dir_inode(struct inode *inode) 1274 { 1275 set_nlink(inode, 2); 1276 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1277 inode->i_uid = GLOBAL_ROOT_UID; 1278 inode->i_gid = GLOBAL_ROOT_GID; 1279 inode->i_rdev = 0; 1280 inode->i_size = 0; 1281 inode->i_blkbits = PAGE_SHIFT; 1282 inode->i_blocks = 0; 1283 1284 inode->i_op = &empty_dir_inode_operations; 1285 inode->i_opflags &= ~IOP_XATTR; 1286 inode->i_fop = &empty_dir_operations; 1287 } 1288 1289 bool is_empty_dir_inode(struct inode *inode) 1290 { 1291 return (inode->i_fop == &empty_dir_operations) && 1292 (inode->i_op == &empty_dir_inode_operations); 1293 } 1294