xref: /linux/fs/libfs.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
18 
19 #include <asm/uaccess.h>
20 
21 #include "internal.h"
22 
23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 		   struct kstat *stat)
25 {
26 	struct inode *inode = d_inode(dentry);
27 	generic_fillattr(inode, stat);
28 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
29 	return 0;
30 }
31 EXPORT_SYMBOL(simple_getattr);
32 
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
34 {
35 	buf->f_type = dentry->d_sb->s_magic;
36 	buf->f_bsize = PAGE_SIZE;
37 	buf->f_namelen = NAME_MAX;
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_statfs);
41 
42 /*
43  * Retaining negative dentries for an in-memory filesystem just wastes
44  * memory and lookup time: arrange for them to be deleted immediately.
45  */
46 int always_delete_dentry(const struct dentry *dentry)
47 {
48 	return 1;
49 }
50 EXPORT_SYMBOL(always_delete_dentry);
51 
52 const struct dentry_operations simple_dentry_operations = {
53 	.d_delete = always_delete_dentry,
54 };
55 EXPORT_SYMBOL(simple_dentry_operations);
56 
57 /*
58  * Lookup the data. This is trivial - if the dentry didn't already
59  * exist, we know it is negative.  Set d_op to delete negative dentries.
60  */
61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
62 {
63 	if (dentry->d_name.len > NAME_MAX)
64 		return ERR_PTR(-ENAMETOOLONG);
65 	if (!dentry->d_sb->s_d_op)
66 		d_set_d_op(dentry, &simple_dentry_operations);
67 	d_add(dentry, NULL);
68 	return NULL;
69 }
70 EXPORT_SYMBOL(simple_lookup);
71 
72 int dcache_dir_open(struct inode *inode, struct file *file)
73 {
74 	static struct qstr cursor_name = QSTR_INIT(".", 1);
75 
76 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
77 
78 	return file->private_data ? 0 : -ENOMEM;
79 }
80 EXPORT_SYMBOL(dcache_dir_open);
81 
82 int dcache_dir_close(struct inode *inode, struct file *file)
83 {
84 	dput(file->private_data);
85 	return 0;
86 }
87 EXPORT_SYMBOL(dcache_dir_close);
88 
89 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
90 {
91 	struct dentry *dentry = file->f_path.dentry;
92 	switch (whence) {
93 		case 1:
94 			offset += file->f_pos;
95 		case 0:
96 			if (offset >= 0)
97 				break;
98 		default:
99 			return -EINVAL;
100 	}
101 	if (offset != file->f_pos) {
102 		file->f_pos = offset;
103 		if (file->f_pos >= 2) {
104 			struct list_head *p;
105 			struct dentry *cursor = file->private_data;
106 			loff_t n = file->f_pos - 2;
107 
108 			spin_lock(&dentry->d_lock);
109 			/* d_lock not required for cursor */
110 			list_del(&cursor->d_child);
111 			p = dentry->d_subdirs.next;
112 			while (n && p != &dentry->d_subdirs) {
113 				struct dentry *next;
114 				next = list_entry(p, struct dentry, d_child);
115 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
116 				if (simple_positive(next))
117 					n--;
118 				spin_unlock(&next->d_lock);
119 				p = p->next;
120 			}
121 			list_add_tail(&cursor->d_child, p);
122 			spin_unlock(&dentry->d_lock);
123 		}
124 	}
125 	return offset;
126 }
127 EXPORT_SYMBOL(dcache_dir_lseek);
128 
129 /* Relationship between i_mode and the DT_xxx types */
130 static inline unsigned char dt_type(struct inode *inode)
131 {
132 	return (inode->i_mode >> 12) & 15;
133 }
134 
135 /*
136  * Directory is locked and all positive dentries in it are safe, since
137  * for ramfs-type trees they can't go away without unlink() or rmdir(),
138  * both impossible due to the lock on directory.
139  */
140 
141 int dcache_readdir(struct file *file, struct dir_context *ctx)
142 {
143 	struct dentry *dentry = file->f_path.dentry;
144 	struct dentry *cursor = file->private_data;
145 	struct list_head *p, *q = &cursor->d_child;
146 
147 	if (!dir_emit_dots(file, ctx))
148 		return 0;
149 	spin_lock(&dentry->d_lock);
150 	if (ctx->pos == 2)
151 		list_move(q, &dentry->d_subdirs);
152 
153 	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
154 		struct dentry *next = list_entry(p, struct dentry, d_child);
155 		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
156 		if (!simple_positive(next)) {
157 			spin_unlock(&next->d_lock);
158 			continue;
159 		}
160 
161 		spin_unlock(&next->d_lock);
162 		spin_unlock(&dentry->d_lock);
163 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
164 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
165 			return 0;
166 		spin_lock(&dentry->d_lock);
167 		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
168 		/* next is still alive */
169 		list_move(q, p);
170 		spin_unlock(&next->d_lock);
171 		p = q;
172 		ctx->pos++;
173 	}
174 	spin_unlock(&dentry->d_lock);
175 	return 0;
176 }
177 EXPORT_SYMBOL(dcache_readdir);
178 
179 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
180 {
181 	return -EISDIR;
182 }
183 EXPORT_SYMBOL(generic_read_dir);
184 
185 const struct file_operations simple_dir_operations = {
186 	.open		= dcache_dir_open,
187 	.release	= dcache_dir_close,
188 	.llseek		= dcache_dir_lseek,
189 	.read		= generic_read_dir,
190 	.iterate_shared	= dcache_readdir,
191 	.fsync		= noop_fsync,
192 };
193 EXPORT_SYMBOL(simple_dir_operations);
194 
195 const struct inode_operations simple_dir_inode_operations = {
196 	.lookup		= simple_lookup,
197 };
198 EXPORT_SYMBOL(simple_dir_inode_operations);
199 
200 static const struct super_operations simple_super_operations = {
201 	.statfs		= simple_statfs,
202 };
203 
204 /*
205  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
206  * will never be mountable)
207  */
208 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
209 	const struct super_operations *ops,
210 	const struct dentry_operations *dops, unsigned long magic)
211 {
212 	struct super_block *s;
213 	struct dentry *dentry;
214 	struct inode *root;
215 	struct qstr d_name = QSTR_INIT(name, strlen(name));
216 
217 	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
218 	if (IS_ERR(s))
219 		return ERR_CAST(s);
220 
221 	s->s_maxbytes = MAX_LFS_FILESIZE;
222 	s->s_blocksize = PAGE_SIZE;
223 	s->s_blocksize_bits = PAGE_SHIFT;
224 	s->s_magic = magic;
225 	s->s_op = ops ? ops : &simple_super_operations;
226 	s->s_time_gran = 1;
227 	root = new_inode(s);
228 	if (!root)
229 		goto Enomem;
230 	/*
231 	 * since this is the first inode, make it number 1. New inodes created
232 	 * after this must take care not to collide with it (by passing
233 	 * max_reserved of 1 to iunique).
234 	 */
235 	root->i_ino = 1;
236 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
237 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
238 	dentry = __d_alloc(s, &d_name);
239 	if (!dentry) {
240 		iput(root);
241 		goto Enomem;
242 	}
243 	d_instantiate(dentry, root);
244 	s->s_root = dentry;
245 	s->s_d_op = dops;
246 	s->s_flags |= MS_ACTIVE;
247 	return dget(s->s_root);
248 
249 Enomem:
250 	deactivate_locked_super(s);
251 	return ERR_PTR(-ENOMEM);
252 }
253 EXPORT_SYMBOL(mount_pseudo);
254 
255 int simple_open(struct inode *inode, struct file *file)
256 {
257 	if (inode->i_private)
258 		file->private_data = inode->i_private;
259 	return 0;
260 }
261 EXPORT_SYMBOL(simple_open);
262 
263 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
264 {
265 	struct inode *inode = d_inode(old_dentry);
266 
267 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
268 	inc_nlink(inode);
269 	ihold(inode);
270 	dget(dentry);
271 	d_instantiate(dentry, inode);
272 	return 0;
273 }
274 EXPORT_SYMBOL(simple_link);
275 
276 int simple_empty(struct dentry *dentry)
277 {
278 	struct dentry *child;
279 	int ret = 0;
280 
281 	spin_lock(&dentry->d_lock);
282 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
283 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
284 		if (simple_positive(child)) {
285 			spin_unlock(&child->d_lock);
286 			goto out;
287 		}
288 		spin_unlock(&child->d_lock);
289 	}
290 	ret = 1;
291 out:
292 	spin_unlock(&dentry->d_lock);
293 	return ret;
294 }
295 EXPORT_SYMBOL(simple_empty);
296 
297 int simple_unlink(struct inode *dir, struct dentry *dentry)
298 {
299 	struct inode *inode = d_inode(dentry);
300 
301 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
302 	drop_nlink(inode);
303 	dput(dentry);
304 	return 0;
305 }
306 EXPORT_SYMBOL(simple_unlink);
307 
308 int simple_rmdir(struct inode *dir, struct dentry *dentry)
309 {
310 	if (!simple_empty(dentry))
311 		return -ENOTEMPTY;
312 
313 	drop_nlink(d_inode(dentry));
314 	simple_unlink(dir, dentry);
315 	drop_nlink(dir);
316 	return 0;
317 }
318 EXPORT_SYMBOL(simple_rmdir);
319 
320 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
321 		struct inode *new_dir, struct dentry *new_dentry)
322 {
323 	struct inode *inode = d_inode(old_dentry);
324 	int they_are_dirs = d_is_dir(old_dentry);
325 
326 	if (!simple_empty(new_dentry))
327 		return -ENOTEMPTY;
328 
329 	if (d_really_is_positive(new_dentry)) {
330 		simple_unlink(new_dir, new_dentry);
331 		if (they_are_dirs) {
332 			drop_nlink(d_inode(new_dentry));
333 			drop_nlink(old_dir);
334 		}
335 	} else if (they_are_dirs) {
336 		drop_nlink(old_dir);
337 		inc_nlink(new_dir);
338 	}
339 
340 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
341 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
342 
343 	return 0;
344 }
345 EXPORT_SYMBOL(simple_rename);
346 
347 /**
348  * simple_setattr - setattr for simple filesystem
349  * @dentry: dentry
350  * @iattr: iattr structure
351  *
352  * Returns 0 on success, -error on failure.
353  *
354  * simple_setattr is a simple ->setattr implementation without a proper
355  * implementation of size changes.
356  *
357  * It can either be used for in-memory filesystems or special files
358  * on simple regular filesystems.  Anything that needs to change on-disk
359  * or wire state on size changes needs its own setattr method.
360  */
361 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
362 {
363 	struct inode *inode = d_inode(dentry);
364 	int error;
365 
366 	error = inode_change_ok(inode, iattr);
367 	if (error)
368 		return error;
369 
370 	if (iattr->ia_valid & ATTR_SIZE)
371 		truncate_setsize(inode, iattr->ia_size);
372 	setattr_copy(inode, iattr);
373 	mark_inode_dirty(inode);
374 	return 0;
375 }
376 EXPORT_SYMBOL(simple_setattr);
377 
378 int simple_readpage(struct file *file, struct page *page)
379 {
380 	clear_highpage(page);
381 	flush_dcache_page(page);
382 	SetPageUptodate(page);
383 	unlock_page(page);
384 	return 0;
385 }
386 EXPORT_SYMBOL(simple_readpage);
387 
388 int simple_write_begin(struct file *file, struct address_space *mapping,
389 			loff_t pos, unsigned len, unsigned flags,
390 			struct page **pagep, void **fsdata)
391 {
392 	struct page *page;
393 	pgoff_t index;
394 
395 	index = pos >> PAGE_SHIFT;
396 
397 	page = grab_cache_page_write_begin(mapping, index, flags);
398 	if (!page)
399 		return -ENOMEM;
400 
401 	*pagep = page;
402 
403 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
404 		unsigned from = pos & (PAGE_SIZE - 1);
405 
406 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
407 	}
408 	return 0;
409 }
410 EXPORT_SYMBOL(simple_write_begin);
411 
412 /**
413  * simple_write_end - .write_end helper for non-block-device FSes
414  * @available: See .write_end of address_space_operations
415  * @file: 		"
416  * @mapping: 		"
417  * @pos: 		"
418  * @len: 		"
419  * @copied: 		"
420  * @page: 		"
421  * @fsdata: 		"
422  *
423  * simple_write_end does the minimum needed for updating a page after writing is
424  * done. It has the same API signature as the .write_end of
425  * address_space_operations vector. So it can just be set onto .write_end for
426  * FSes that don't need any other processing. i_mutex is assumed to be held.
427  * Block based filesystems should use generic_write_end().
428  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
429  * is not called, so a filesystem that actually does store data in .write_inode
430  * should extend on what's done here with a call to mark_inode_dirty() in the
431  * case that i_size has changed.
432  */
433 int simple_write_end(struct file *file, struct address_space *mapping,
434 			loff_t pos, unsigned len, unsigned copied,
435 			struct page *page, void *fsdata)
436 {
437 	struct inode *inode = page->mapping->host;
438 	loff_t last_pos = pos + copied;
439 
440 	/* zero the stale part of the page if we did a short copy */
441 	if (copied < len) {
442 		unsigned from = pos & (PAGE_SIZE - 1);
443 
444 		zero_user(page, from + copied, len - copied);
445 	}
446 
447 	if (!PageUptodate(page))
448 		SetPageUptodate(page);
449 	/*
450 	 * No need to use i_size_read() here, the i_size
451 	 * cannot change under us because we hold the i_mutex.
452 	 */
453 	if (last_pos > inode->i_size)
454 		i_size_write(inode, last_pos);
455 
456 	set_page_dirty(page);
457 	unlock_page(page);
458 	put_page(page);
459 
460 	return copied;
461 }
462 EXPORT_SYMBOL(simple_write_end);
463 
464 /*
465  * the inodes created here are not hashed. If you use iunique to generate
466  * unique inode values later for this filesystem, then you must take care
467  * to pass it an appropriate max_reserved value to avoid collisions.
468  */
469 int simple_fill_super(struct super_block *s, unsigned long magic,
470 		      struct tree_descr *files)
471 {
472 	struct inode *inode;
473 	struct dentry *root;
474 	struct dentry *dentry;
475 	int i;
476 
477 	s->s_blocksize = PAGE_SIZE;
478 	s->s_blocksize_bits = PAGE_SHIFT;
479 	s->s_magic = magic;
480 	s->s_op = &simple_super_operations;
481 	s->s_time_gran = 1;
482 
483 	inode = new_inode(s);
484 	if (!inode)
485 		return -ENOMEM;
486 	/*
487 	 * because the root inode is 1, the files array must not contain an
488 	 * entry at index 1
489 	 */
490 	inode->i_ino = 1;
491 	inode->i_mode = S_IFDIR | 0755;
492 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
493 	inode->i_op = &simple_dir_inode_operations;
494 	inode->i_fop = &simple_dir_operations;
495 	set_nlink(inode, 2);
496 	root = d_make_root(inode);
497 	if (!root)
498 		return -ENOMEM;
499 	for (i = 0; !files->name || files->name[0]; i++, files++) {
500 		if (!files->name)
501 			continue;
502 
503 		/* warn if it tries to conflict with the root inode */
504 		if (unlikely(i == 1))
505 			printk(KERN_WARNING "%s: %s passed in a files array"
506 				"with an index of 1!\n", __func__,
507 				s->s_type->name);
508 
509 		dentry = d_alloc_name(root, files->name);
510 		if (!dentry)
511 			goto out;
512 		inode = new_inode(s);
513 		if (!inode) {
514 			dput(dentry);
515 			goto out;
516 		}
517 		inode->i_mode = S_IFREG | files->mode;
518 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
519 		inode->i_fop = files->ops;
520 		inode->i_ino = i;
521 		d_add(dentry, inode);
522 	}
523 	s->s_root = root;
524 	return 0;
525 out:
526 	d_genocide(root);
527 	shrink_dcache_parent(root);
528 	dput(root);
529 	return -ENOMEM;
530 }
531 EXPORT_SYMBOL(simple_fill_super);
532 
533 static DEFINE_SPINLOCK(pin_fs_lock);
534 
535 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
536 {
537 	struct vfsmount *mnt = NULL;
538 	spin_lock(&pin_fs_lock);
539 	if (unlikely(!*mount)) {
540 		spin_unlock(&pin_fs_lock);
541 		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
542 		if (IS_ERR(mnt))
543 			return PTR_ERR(mnt);
544 		spin_lock(&pin_fs_lock);
545 		if (!*mount)
546 			*mount = mnt;
547 	}
548 	mntget(*mount);
549 	++*count;
550 	spin_unlock(&pin_fs_lock);
551 	mntput(mnt);
552 	return 0;
553 }
554 EXPORT_SYMBOL(simple_pin_fs);
555 
556 void simple_release_fs(struct vfsmount **mount, int *count)
557 {
558 	struct vfsmount *mnt;
559 	spin_lock(&pin_fs_lock);
560 	mnt = *mount;
561 	if (!--*count)
562 		*mount = NULL;
563 	spin_unlock(&pin_fs_lock);
564 	mntput(mnt);
565 }
566 EXPORT_SYMBOL(simple_release_fs);
567 
568 /**
569  * simple_read_from_buffer - copy data from the buffer to user space
570  * @to: the user space buffer to read to
571  * @count: the maximum number of bytes to read
572  * @ppos: the current position in the buffer
573  * @from: the buffer to read from
574  * @available: the size of the buffer
575  *
576  * The simple_read_from_buffer() function reads up to @count bytes from the
577  * buffer @from at offset @ppos into the user space address starting at @to.
578  *
579  * On success, the number of bytes read is returned and the offset @ppos is
580  * advanced by this number, or negative value is returned on error.
581  **/
582 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
583 				const void *from, size_t available)
584 {
585 	loff_t pos = *ppos;
586 	size_t ret;
587 
588 	if (pos < 0)
589 		return -EINVAL;
590 	if (pos >= available || !count)
591 		return 0;
592 	if (count > available - pos)
593 		count = available - pos;
594 	ret = copy_to_user(to, from + pos, count);
595 	if (ret == count)
596 		return -EFAULT;
597 	count -= ret;
598 	*ppos = pos + count;
599 	return count;
600 }
601 EXPORT_SYMBOL(simple_read_from_buffer);
602 
603 /**
604  * simple_write_to_buffer - copy data from user space to the buffer
605  * @to: the buffer to write to
606  * @available: the size of the buffer
607  * @ppos: the current position in the buffer
608  * @from: the user space buffer to read from
609  * @count: the maximum number of bytes to read
610  *
611  * The simple_write_to_buffer() function reads up to @count bytes from the user
612  * space address starting at @from into the buffer @to at offset @ppos.
613  *
614  * On success, the number of bytes written is returned and the offset @ppos is
615  * advanced by this number, or negative value is returned on error.
616  **/
617 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
618 		const void __user *from, size_t count)
619 {
620 	loff_t pos = *ppos;
621 	size_t res;
622 
623 	if (pos < 0)
624 		return -EINVAL;
625 	if (pos >= available || !count)
626 		return 0;
627 	if (count > available - pos)
628 		count = available - pos;
629 	res = copy_from_user(to + pos, from, count);
630 	if (res == count)
631 		return -EFAULT;
632 	count -= res;
633 	*ppos = pos + count;
634 	return count;
635 }
636 EXPORT_SYMBOL(simple_write_to_buffer);
637 
638 /**
639  * memory_read_from_buffer - copy data from the buffer
640  * @to: the kernel space buffer to read to
641  * @count: the maximum number of bytes to read
642  * @ppos: the current position in the buffer
643  * @from: the buffer to read from
644  * @available: the size of the buffer
645  *
646  * The memory_read_from_buffer() function reads up to @count bytes from the
647  * buffer @from at offset @ppos into the kernel space address starting at @to.
648  *
649  * On success, the number of bytes read is returned and the offset @ppos is
650  * advanced by this number, or negative value is returned on error.
651  **/
652 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
653 				const void *from, size_t available)
654 {
655 	loff_t pos = *ppos;
656 
657 	if (pos < 0)
658 		return -EINVAL;
659 	if (pos >= available)
660 		return 0;
661 	if (count > available - pos)
662 		count = available - pos;
663 	memcpy(to, from + pos, count);
664 	*ppos = pos + count;
665 
666 	return count;
667 }
668 EXPORT_SYMBOL(memory_read_from_buffer);
669 
670 /*
671  * Transaction based IO.
672  * The file expects a single write which triggers the transaction, and then
673  * possibly a read which collects the result - which is stored in a
674  * file-local buffer.
675  */
676 
677 void simple_transaction_set(struct file *file, size_t n)
678 {
679 	struct simple_transaction_argresp *ar = file->private_data;
680 
681 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
682 
683 	/*
684 	 * The barrier ensures that ar->size will really remain zero until
685 	 * ar->data is ready for reading.
686 	 */
687 	smp_mb();
688 	ar->size = n;
689 }
690 EXPORT_SYMBOL(simple_transaction_set);
691 
692 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
693 {
694 	struct simple_transaction_argresp *ar;
695 	static DEFINE_SPINLOCK(simple_transaction_lock);
696 
697 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
698 		return ERR_PTR(-EFBIG);
699 
700 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
701 	if (!ar)
702 		return ERR_PTR(-ENOMEM);
703 
704 	spin_lock(&simple_transaction_lock);
705 
706 	/* only one write allowed per open */
707 	if (file->private_data) {
708 		spin_unlock(&simple_transaction_lock);
709 		free_page((unsigned long)ar);
710 		return ERR_PTR(-EBUSY);
711 	}
712 
713 	file->private_data = ar;
714 
715 	spin_unlock(&simple_transaction_lock);
716 
717 	if (copy_from_user(ar->data, buf, size))
718 		return ERR_PTR(-EFAULT);
719 
720 	return ar->data;
721 }
722 EXPORT_SYMBOL(simple_transaction_get);
723 
724 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
725 {
726 	struct simple_transaction_argresp *ar = file->private_data;
727 
728 	if (!ar)
729 		return 0;
730 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
731 }
732 EXPORT_SYMBOL(simple_transaction_read);
733 
734 int simple_transaction_release(struct inode *inode, struct file *file)
735 {
736 	free_page((unsigned long)file->private_data);
737 	return 0;
738 }
739 EXPORT_SYMBOL(simple_transaction_release);
740 
741 /* Simple attribute files */
742 
743 struct simple_attr {
744 	int (*get)(void *, u64 *);
745 	int (*set)(void *, u64);
746 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
747 	char set_buf[24];
748 	void *data;
749 	const char *fmt;	/* format for read operation */
750 	struct mutex mutex;	/* protects access to these buffers */
751 };
752 
753 /* simple_attr_open is called by an actual attribute open file operation
754  * to set the attribute specific access operations. */
755 int simple_attr_open(struct inode *inode, struct file *file,
756 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
757 		     const char *fmt)
758 {
759 	struct simple_attr *attr;
760 
761 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
762 	if (!attr)
763 		return -ENOMEM;
764 
765 	attr->get = get;
766 	attr->set = set;
767 	attr->data = inode->i_private;
768 	attr->fmt = fmt;
769 	mutex_init(&attr->mutex);
770 
771 	file->private_data = attr;
772 
773 	return nonseekable_open(inode, file);
774 }
775 EXPORT_SYMBOL_GPL(simple_attr_open);
776 
777 int simple_attr_release(struct inode *inode, struct file *file)
778 {
779 	kfree(file->private_data);
780 	return 0;
781 }
782 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
783 
784 /* read from the buffer that is filled with the get function */
785 ssize_t simple_attr_read(struct file *file, char __user *buf,
786 			 size_t len, loff_t *ppos)
787 {
788 	struct simple_attr *attr;
789 	size_t size;
790 	ssize_t ret;
791 
792 	attr = file->private_data;
793 
794 	if (!attr->get)
795 		return -EACCES;
796 
797 	ret = mutex_lock_interruptible(&attr->mutex);
798 	if (ret)
799 		return ret;
800 
801 	if (*ppos) {		/* continued read */
802 		size = strlen(attr->get_buf);
803 	} else {		/* first read */
804 		u64 val;
805 		ret = attr->get(attr->data, &val);
806 		if (ret)
807 			goto out;
808 
809 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
810 				 attr->fmt, (unsigned long long)val);
811 	}
812 
813 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
814 out:
815 	mutex_unlock(&attr->mutex);
816 	return ret;
817 }
818 EXPORT_SYMBOL_GPL(simple_attr_read);
819 
820 /* interpret the buffer as a number to call the set function with */
821 ssize_t simple_attr_write(struct file *file, const char __user *buf,
822 			  size_t len, loff_t *ppos)
823 {
824 	struct simple_attr *attr;
825 	u64 val;
826 	size_t size;
827 	ssize_t ret;
828 
829 	attr = file->private_data;
830 	if (!attr->set)
831 		return -EACCES;
832 
833 	ret = mutex_lock_interruptible(&attr->mutex);
834 	if (ret)
835 		return ret;
836 
837 	ret = -EFAULT;
838 	size = min(sizeof(attr->set_buf) - 1, len);
839 	if (copy_from_user(attr->set_buf, buf, size))
840 		goto out;
841 
842 	attr->set_buf[size] = '\0';
843 	val = simple_strtoll(attr->set_buf, NULL, 0);
844 	ret = attr->set(attr->data, val);
845 	if (ret == 0)
846 		ret = len; /* on success, claim we got the whole input */
847 out:
848 	mutex_unlock(&attr->mutex);
849 	return ret;
850 }
851 EXPORT_SYMBOL_GPL(simple_attr_write);
852 
853 /**
854  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
855  * @sb:		filesystem to do the file handle conversion on
856  * @fid:	file handle to convert
857  * @fh_len:	length of the file handle in bytes
858  * @fh_type:	type of file handle
859  * @get_inode:	filesystem callback to retrieve inode
860  *
861  * This function decodes @fid as long as it has one of the well-known
862  * Linux filehandle types and calls @get_inode on it to retrieve the
863  * inode for the object specified in the file handle.
864  */
865 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
866 		int fh_len, int fh_type, struct inode *(*get_inode)
867 			(struct super_block *sb, u64 ino, u32 gen))
868 {
869 	struct inode *inode = NULL;
870 
871 	if (fh_len < 2)
872 		return NULL;
873 
874 	switch (fh_type) {
875 	case FILEID_INO32_GEN:
876 	case FILEID_INO32_GEN_PARENT:
877 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
878 		break;
879 	}
880 
881 	return d_obtain_alias(inode);
882 }
883 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
884 
885 /**
886  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
887  * @sb:		filesystem to do the file handle conversion on
888  * @fid:	file handle to convert
889  * @fh_len:	length of the file handle in bytes
890  * @fh_type:	type of file handle
891  * @get_inode:	filesystem callback to retrieve inode
892  *
893  * This function decodes @fid as long as it has one of the well-known
894  * Linux filehandle types and calls @get_inode on it to retrieve the
895  * inode for the _parent_ object specified in the file handle if it
896  * is specified in the file handle, or NULL otherwise.
897  */
898 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
899 		int fh_len, int fh_type, struct inode *(*get_inode)
900 			(struct super_block *sb, u64 ino, u32 gen))
901 {
902 	struct inode *inode = NULL;
903 
904 	if (fh_len <= 2)
905 		return NULL;
906 
907 	switch (fh_type) {
908 	case FILEID_INO32_GEN_PARENT:
909 		inode = get_inode(sb, fid->i32.parent_ino,
910 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
911 		break;
912 	}
913 
914 	return d_obtain_alias(inode);
915 }
916 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
917 
918 /**
919  * __generic_file_fsync - generic fsync implementation for simple filesystems
920  *
921  * @file:	file to synchronize
922  * @start:	start offset in bytes
923  * @end:	end offset in bytes (inclusive)
924  * @datasync:	only synchronize essential metadata if true
925  *
926  * This is a generic implementation of the fsync method for simple
927  * filesystems which track all non-inode metadata in the buffers list
928  * hanging off the address_space structure.
929  */
930 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
931 				 int datasync)
932 {
933 	struct inode *inode = file->f_mapping->host;
934 	int err;
935 	int ret;
936 
937 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
938 	if (err)
939 		return err;
940 
941 	inode_lock(inode);
942 	ret = sync_mapping_buffers(inode->i_mapping);
943 	if (!(inode->i_state & I_DIRTY_ALL))
944 		goto out;
945 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
946 		goto out;
947 
948 	err = sync_inode_metadata(inode, 1);
949 	if (ret == 0)
950 		ret = err;
951 
952 out:
953 	inode_unlock(inode);
954 	return ret;
955 }
956 EXPORT_SYMBOL(__generic_file_fsync);
957 
958 /**
959  * generic_file_fsync - generic fsync implementation for simple filesystems
960  *			with flush
961  * @file:	file to synchronize
962  * @start:	start offset in bytes
963  * @end:	end offset in bytes (inclusive)
964  * @datasync:	only synchronize essential metadata if true
965  *
966  */
967 
968 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
969 		       int datasync)
970 {
971 	struct inode *inode = file->f_mapping->host;
972 	int err;
973 
974 	err = __generic_file_fsync(file, start, end, datasync);
975 	if (err)
976 		return err;
977 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
978 }
979 EXPORT_SYMBOL(generic_file_fsync);
980 
981 /**
982  * generic_check_addressable - Check addressability of file system
983  * @blocksize_bits:	log of file system block size
984  * @num_blocks:		number of blocks in file system
985  *
986  * Determine whether a file system with @num_blocks blocks (and a
987  * block size of 2**@blocksize_bits) is addressable by the sector_t
988  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
989  */
990 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
991 {
992 	u64 last_fs_block = num_blocks - 1;
993 	u64 last_fs_page =
994 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
995 
996 	if (unlikely(num_blocks == 0))
997 		return 0;
998 
999 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1000 		return -EINVAL;
1001 
1002 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1003 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1004 		return -EFBIG;
1005 	}
1006 	return 0;
1007 }
1008 EXPORT_SYMBOL(generic_check_addressable);
1009 
1010 /*
1011  * No-op implementation of ->fsync for in-memory filesystems.
1012  */
1013 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1014 {
1015 	return 0;
1016 }
1017 EXPORT_SYMBOL(noop_fsync);
1018 
1019 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1020 void kfree_link(void *p)
1021 {
1022 	kfree(p);
1023 }
1024 EXPORT_SYMBOL(kfree_link);
1025 
1026 /*
1027  * nop .set_page_dirty method so that people can use .page_mkwrite on
1028  * anon inodes.
1029  */
1030 static int anon_set_page_dirty(struct page *page)
1031 {
1032 	return 0;
1033 };
1034 
1035 /*
1036  * A single inode exists for all anon_inode files. Contrary to pipes,
1037  * anon_inode inodes have no associated per-instance data, so we need
1038  * only allocate one of them.
1039  */
1040 struct inode *alloc_anon_inode(struct super_block *s)
1041 {
1042 	static const struct address_space_operations anon_aops = {
1043 		.set_page_dirty = anon_set_page_dirty,
1044 	};
1045 	struct inode *inode = new_inode_pseudo(s);
1046 
1047 	if (!inode)
1048 		return ERR_PTR(-ENOMEM);
1049 
1050 	inode->i_ino = get_next_ino();
1051 	inode->i_mapping->a_ops = &anon_aops;
1052 
1053 	/*
1054 	 * Mark the inode dirty from the very beginning,
1055 	 * that way it will never be moved to the dirty
1056 	 * list because mark_inode_dirty() will think
1057 	 * that it already _is_ on the dirty list.
1058 	 */
1059 	inode->i_state = I_DIRTY;
1060 	inode->i_mode = S_IRUSR | S_IWUSR;
1061 	inode->i_uid = current_fsuid();
1062 	inode->i_gid = current_fsgid();
1063 	inode->i_flags |= S_PRIVATE;
1064 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1065 	return inode;
1066 }
1067 EXPORT_SYMBOL(alloc_anon_inode);
1068 
1069 /**
1070  * simple_nosetlease - generic helper for prohibiting leases
1071  * @filp: file pointer
1072  * @arg: type of lease to obtain
1073  * @flp: new lease supplied for insertion
1074  * @priv: private data for lm_setup operation
1075  *
1076  * Generic helper for filesystems that do not wish to allow leases to be set.
1077  * All arguments are ignored and it just returns -EINVAL.
1078  */
1079 int
1080 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1081 		  void **priv)
1082 {
1083 	return -EINVAL;
1084 }
1085 EXPORT_SYMBOL(simple_nosetlease);
1086 
1087 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1088 			    struct delayed_call *done)
1089 {
1090 	return inode->i_link;
1091 }
1092 EXPORT_SYMBOL(simple_get_link);
1093 
1094 const struct inode_operations simple_symlink_inode_operations = {
1095 	.get_link = simple_get_link,
1096 	.readlink = generic_readlink
1097 };
1098 EXPORT_SYMBOL(simple_symlink_inode_operations);
1099 
1100 /*
1101  * Operations for a permanently empty directory.
1102  */
1103 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1104 {
1105 	return ERR_PTR(-ENOENT);
1106 }
1107 
1108 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1109 				 struct kstat *stat)
1110 {
1111 	struct inode *inode = d_inode(dentry);
1112 	generic_fillattr(inode, stat);
1113 	return 0;
1114 }
1115 
1116 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1117 {
1118 	return -EPERM;
1119 }
1120 
1121 static int empty_dir_setxattr(struct dentry *dentry, struct inode *inode,
1122 			      const char *name, const void *value,
1123 			      size_t size, int flags)
1124 {
1125 	return -EOPNOTSUPP;
1126 }
1127 
1128 static ssize_t empty_dir_getxattr(struct dentry *dentry, struct inode *inode,
1129 				  const char *name, void *value, size_t size)
1130 {
1131 	return -EOPNOTSUPP;
1132 }
1133 
1134 static int empty_dir_removexattr(struct dentry *dentry, const char *name)
1135 {
1136 	return -EOPNOTSUPP;
1137 }
1138 
1139 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1140 {
1141 	return -EOPNOTSUPP;
1142 }
1143 
1144 static const struct inode_operations empty_dir_inode_operations = {
1145 	.lookup		= empty_dir_lookup,
1146 	.permission	= generic_permission,
1147 	.setattr	= empty_dir_setattr,
1148 	.getattr	= empty_dir_getattr,
1149 	.setxattr	= empty_dir_setxattr,
1150 	.getxattr	= empty_dir_getxattr,
1151 	.removexattr	= empty_dir_removexattr,
1152 	.listxattr	= empty_dir_listxattr,
1153 };
1154 
1155 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1156 {
1157 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1158 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1159 }
1160 
1161 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1162 {
1163 	dir_emit_dots(file, ctx);
1164 	return 0;
1165 }
1166 
1167 static const struct file_operations empty_dir_operations = {
1168 	.llseek		= empty_dir_llseek,
1169 	.read		= generic_read_dir,
1170 	.iterate_shared	= empty_dir_readdir,
1171 	.fsync		= noop_fsync,
1172 };
1173 
1174 
1175 void make_empty_dir_inode(struct inode *inode)
1176 {
1177 	set_nlink(inode, 2);
1178 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1179 	inode->i_uid = GLOBAL_ROOT_UID;
1180 	inode->i_gid = GLOBAL_ROOT_GID;
1181 	inode->i_rdev = 0;
1182 	inode->i_size = 0;
1183 	inode->i_blkbits = PAGE_SHIFT;
1184 	inode->i_blocks = 0;
1185 
1186 	inode->i_op = &empty_dir_inode_operations;
1187 	inode->i_fop = &empty_dir_operations;
1188 }
1189 
1190 bool is_empty_dir_inode(struct inode *inode)
1191 {
1192 	return (inode->i_fop == &empty_dir_operations) &&
1193 		(inode->i_op == &empty_dir_inode_operations);
1194 }
1195