xref: /linux/fs/libfs.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 		   struct kstat *stat, u32 request_mask,
33 		   unsigned int query_flags)
34 {
35 	struct inode *inode = d_inode(path->dentry);
36 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41 
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 	buf->f_type = dentry->d_sb->s_magic;
45 	buf->f_bsize = PAGE_SIZE;
46 	buf->f_namelen = NAME_MAX;
47 	return 0;
48 }
49 EXPORT_SYMBOL(simple_statfs);
50 
51 /*
52  * Retaining negative dentries for an in-memory filesystem just wastes
53  * memory and lookup time: arrange for them to be deleted immediately.
54  */
55 int always_delete_dentry(const struct dentry *dentry)
56 {
57 	return 1;
58 }
59 EXPORT_SYMBOL(always_delete_dentry);
60 
61 const struct dentry_operations simple_dentry_operations = {
62 	.d_delete = always_delete_dentry,
63 };
64 EXPORT_SYMBOL(simple_dentry_operations);
65 
66 /*
67  * Lookup the data. This is trivial - if the dentry didn't already
68  * exist, we know it is negative.  Set d_op to delete negative dentries.
69  */
70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 	if (dentry->d_name.len > NAME_MAX)
73 		return ERR_PTR(-ENAMETOOLONG);
74 	if (!dentry->d_sb->s_d_op)
75 		d_set_d_op(dentry, &simple_dentry_operations);
76 	d_add(dentry, NULL);
77 	return NULL;
78 }
79 EXPORT_SYMBOL(simple_lookup);
80 
81 int dcache_dir_open(struct inode *inode, struct file *file)
82 {
83 	file->private_data = d_alloc_cursor(file->f_path.dentry);
84 
85 	return file->private_data ? 0 : -ENOMEM;
86 }
87 EXPORT_SYMBOL(dcache_dir_open);
88 
89 int dcache_dir_close(struct inode *inode, struct file *file)
90 {
91 	dput(file->private_data);
92 	return 0;
93 }
94 EXPORT_SYMBOL(dcache_dir_close);
95 
96 /* parent is locked at least shared */
97 /*
98  * Returns an element of siblings' list.
99  * We are looking for <count>th positive after <p>; if
100  * found, dentry is grabbed and returned to caller.
101  * If no such element exists, NULL is returned.
102  */
103 static struct dentry *scan_positives(struct dentry *cursor,
104 					struct list_head *p,
105 					loff_t count,
106 					struct dentry *last)
107 {
108 	struct dentry *dentry = cursor->d_parent, *found = NULL;
109 
110 	spin_lock(&dentry->d_lock);
111 	while ((p = p->next) != &dentry->d_subdirs) {
112 		struct dentry *d = list_entry(p, struct dentry, d_child);
113 		// we must at least skip cursors, to avoid livelocks
114 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 			continue;
116 		if (simple_positive(d) && !--count) {
117 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 			if (simple_positive(d))
119 				found = dget_dlock(d);
120 			spin_unlock(&d->d_lock);
121 			if (likely(found))
122 				break;
123 			count = 1;
124 		}
125 		if (need_resched()) {
126 			list_move(&cursor->d_child, p);
127 			p = &cursor->d_child;
128 			spin_unlock(&dentry->d_lock);
129 			cond_resched();
130 			spin_lock(&dentry->d_lock);
131 		}
132 	}
133 	spin_unlock(&dentry->d_lock);
134 	dput(last);
135 	return found;
136 }
137 
138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 {
140 	struct dentry *dentry = file->f_path.dentry;
141 	switch (whence) {
142 		case 1:
143 			offset += file->f_pos;
144 			fallthrough;
145 		case 0:
146 			if (offset >= 0)
147 				break;
148 			fallthrough;
149 		default:
150 			return -EINVAL;
151 	}
152 	if (offset != file->f_pos) {
153 		struct dentry *cursor = file->private_data;
154 		struct dentry *to = NULL;
155 
156 		inode_lock_shared(dentry->d_inode);
157 
158 		if (offset > 2)
159 			to = scan_positives(cursor, &dentry->d_subdirs,
160 					    offset - 2, NULL);
161 		spin_lock(&dentry->d_lock);
162 		if (to)
163 			list_move(&cursor->d_child, &to->d_child);
164 		else
165 			list_del_init(&cursor->d_child);
166 		spin_unlock(&dentry->d_lock);
167 		dput(to);
168 
169 		file->f_pos = offset;
170 
171 		inode_unlock_shared(dentry->d_inode);
172 	}
173 	return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176 
177 /*
178  * Directory is locked and all positive dentries in it are safe, since
179  * for ramfs-type trees they can't go away without unlink() or rmdir(),
180  * both impossible due to the lock on directory.
181  */
182 
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 	struct dentry *dentry = file->f_path.dentry;
186 	struct dentry *cursor = file->private_data;
187 	struct list_head *anchor = &dentry->d_subdirs;
188 	struct dentry *next = NULL;
189 	struct list_head *p;
190 
191 	if (!dir_emit_dots(file, ctx))
192 		return 0;
193 
194 	if (ctx->pos == 2)
195 		p = anchor;
196 	else if (!list_empty(&cursor->d_child))
197 		p = &cursor->d_child;
198 	else
199 		return 0;
200 
201 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203 			      d_inode(next)->i_ino,
204 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
205 			break;
206 		ctx->pos++;
207 		p = &next->d_child;
208 	}
209 	spin_lock(&dentry->d_lock);
210 	if (next)
211 		list_move_tail(&cursor->d_child, &next->d_child);
212 	else
213 		list_del_init(&cursor->d_child);
214 	spin_unlock(&dentry->d_lock);
215 	dput(next);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220 
221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 	return -EISDIR;
224 }
225 EXPORT_SYMBOL(generic_read_dir);
226 
227 const struct file_operations simple_dir_operations = {
228 	.open		= dcache_dir_open,
229 	.release	= dcache_dir_close,
230 	.llseek		= dcache_dir_lseek,
231 	.read		= generic_read_dir,
232 	.iterate_shared	= dcache_readdir,
233 	.fsync		= noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236 
237 const struct inode_operations simple_dir_inode_operations = {
238 	.lookup		= simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241 
242 static void offset_set(struct dentry *dentry, u32 offset)
243 {
244 	dentry->d_fsdata = (void *)((uintptr_t)(offset));
245 }
246 
247 static u32 dentry2offset(struct dentry *dentry)
248 {
249 	return (u32)((uintptr_t)(dentry->d_fsdata));
250 }
251 
252 static struct lock_class_key simple_offset_xa_lock;
253 
254 /**
255  * simple_offset_init - initialize an offset_ctx
256  * @octx: directory offset map to be initialized
257  *
258  */
259 void simple_offset_init(struct offset_ctx *octx)
260 {
261 	xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
262 	lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
263 
264 	/* 0 is '.', 1 is '..', so always start with offset 2 */
265 	octx->next_offset = 2;
266 }
267 
268 /**
269  * simple_offset_add - Add an entry to a directory's offset map
270  * @octx: directory offset ctx to be updated
271  * @dentry: new dentry being added
272  *
273  * Returns zero on success. @so_ctx and the dentry offset are updated.
274  * Otherwise, a negative errno value is returned.
275  */
276 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
277 {
278 	static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
279 	u32 offset;
280 	int ret;
281 
282 	if (dentry2offset(dentry) != 0)
283 		return -EBUSY;
284 
285 	ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
286 			      &octx->next_offset, GFP_KERNEL);
287 	if (ret < 0)
288 		return ret;
289 
290 	offset_set(dentry, offset);
291 	return 0;
292 }
293 
294 /**
295  * simple_offset_remove - Remove an entry to a directory's offset map
296  * @octx: directory offset ctx to be updated
297  * @dentry: dentry being removed
298  *
299  */
300 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
301 {
302 	u32 offset;
303 
304 	offset = dentry2offset(dentry);
305 	if (offset == 0)
306 		return;
307 
308 	xa_erase(&octx->xa, offset);
309 	offset_set(dentry, 0);
310 }
311 
312 /**
313  * simple_offset_rename_exchange - exchange rename with directory offsets
314  * @old_dir: parent of dentry being moved
315  * @old_dentry: dentry being moved
316  * @new_dir: destination parent
317  * @new_dentry: destination dentry
318  *
319  * Returns zero on success. Otherwise a negative errno is returned and the
320  * rename is rolled back.
321  */
322 int simple_offset_rename_exchange(struct inode *old_dir,
323 				  struct dentry *old_dentry,
324 				  struct inode *new_dir,
325 				  struct dentry *new_dentry)
326 {
327 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
328 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
329 	u32 old_index = dentry2offset(old_dentry);
330 	u32 new_index = dentry2offset(new_dentry);
331 	int ret;
332 
333 	simple_offset_remove(old_ctx, old_dentry);
334 	simple_offset_remove(new_ctx, new_dentry);
335 
336 	ret = simple_offset_add(new_ctx, old_dentry);
337 	if (ret)
338 		goto out_restore;
339 
340 	ret = simple_offset_add(old_ctx, new_dentry);
341 	if (ret) {
342 		simple_offset_remove(new_ctx, old_dentry);
343 		goto out_restore;
344 	}
345 
346 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
347 	if (ret) {
348 		simple_offset_remove(new_ctx, old_dentry);
349 		simple_offset_remove(old_ctx, new_dentry);
350 		goto out_restore;
351 	}
352 	return 0;
353 
354 out_restore:
355 	offset_set(old_dentry, old_index);
356 	xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
357 	offset_set(new_dentry, new_index);
358 	xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
359 	return ret;
360 }
361 
362 /**
363  * simple_offset_destroy - Release offset map
364  * @octx: directory offset ctx that is about to be destroyed
365  *
366  * During fs teardown (eg. umount), a directory's offset map might still
367  * contain entries. xa_destroy() cleans out anything that remains.
368  */
369 void simple_offset_destroy(struct offset_ctx *octx)
370 {
371 	xa_destroy(&octx->xa);
372 }
373 
374 /**
375  * offset_dir_llseek - Advance the read position of a directory descriptor
376  * @file: an open directory whose position is to be updated
377  * @offset: a byte offset
378  * @whence: enumerator describing the starting position for this update
379  *
380  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
381  *
382  * Returns the updated read position if successful; otherwise a
383  * negative errno is returned and the read position remains unchanged.
384  */
385 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
386 {
387 	switch (whence) {
388 	case SEEK_CUR:
389 		offset += file->f_pos;
390 		fallthrough;
391 	case SEEK_SET:
392 		if (offset >= 0)
393 			break;
394 		fallthrough;
395 	default:
396 		return -EINVAL;
397 	}
398 
399 	return vfs_setpos(file, offset, U32_MAX);
400 }
401 
402 static struct dentry *offset_find_next(struct xa_state *xas)
403 {
404 	struct dentry *child, *found = NULL;
405 
406 	rcu_read_lock();
407 	child = xas_next_entry(xas, U32_MAX);
408 	if (!child)
409 		goto out;
410 	spin_lock(&child->d_lock);
411 	if (simple_positive(child))
412 		found = dget_dlock(child);
413 	spin_unlock(&child->d_lock);
414 out:
415 	rcu_read_unlock();
416 	return found;
417 }
418 
419 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
420 {
421 	u32 offset = dentry2offset(dentry);
422 	struct inode *inode = d_inode(dentry);
423 
424 	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
425 			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
426 }
427 
428 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
429 {
430 	struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
431 	XA_STATE(xas, &so_ctx->xa, ctx->pos);
432 	struct dentry *dentry;
433 
434 	while (true) {
435 		dentry = offset_find_next(&xas);
436 		if (!dentry)
437 			break;
438 
439 		if (!offset_dir_emit(ctx, dentry)) {
440 			dput(dentry);
441 			break;
442 		}
443 
444 		dput(dentry);
445 		ctx->pos = xas.xa_index + 1;
446 	}
447 }
448 
449 /**
450  * offset_readdir - Emit entries starting at offset @ctx->pos
451  * @file: an open directory to iterate over
452  * @ctx: directory iteration context
453  *
454  * Caller must hold @file's i_rwsem to prevent insertion or removal of
455  * entries during this call.
456  *
457  * On entry, @ctx->pos contains an offset that represents the first entry
458  * to be read from the directory.
459  *
460  * The operation continues until there are no more entries to read, or
461  * until the ctx->actor indicates there is no more space in the caller's
462  * output buffer.
463  *
464  * On return, @ctx->pos contains an offset that will read the next entry
465  * in this directory when offset_readdir() is called again with @ctx.
466  *
467  * Return values:
468  *   %0 - Complete
469  */
470 static int offset_readdir(struct file *file, struct dir_context *ctx)
471 {
472 	struct dentry *dir = file->f_path.dentry;
473 
474 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
475 
476 	if (!dir_emit_dots(file, ctx))
477 		return 0;
478 
479 	offset_iterate_dir(d_inode(dir), ctx);
480 	return 0;
481 }
482 
483 const struct file_operations simple_offset_dir_operations = {
484 	.llseek		= offset_dir_llseek,
485 	.iterate_shared	= offset_readdir,
486 	.read		= generic_read_dir,
487 	.fsync		= noop_fsync,
488 };
489 
490 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
491 {
492 	struct dentry *child = NULL;
493 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
494 
495 	spin_lock(&parent->d_lock);
496 	while ((p = p->next) != &parent->d_subdirs) {
497 		struct dentry *d = container_of(p, struct dentry, d_child);
498 		if (simple_positive(d)) {
499 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
500 			if (simple_positive(d))
501 				child = dget_dlock(d);
502 			spin_unlock(&d->d_lock);
503 			if (likely(child))
504 				break;
505 		}
506 	}
507 	spin_unlock(&parent->d_lock);
508 	dput(prev);
509 	return child;
510 }
511 
512 void simple_recursive_removal(struct dentry *dentry,
513                               void (*callback)(struct dentry *))
514 {
515 	struct dentry *this = dget(dentry);
516 	while (true) {
517 		struct dentry *victim = NULL, *child;
518 		struct inode *inode = this->d_inode;
519 
520 		inode_lock(inode);
521 		if (d_is_dir(this))
522 			inode->i_flags |= S_DEAD;
523 		while ((child = find_next_child(this, victim)) == NULL) {
524 			// kill and ascend
525 			// update metadata while it's still locked
526 			inode_set_ctime_current(inode);
527 			clear_nlink(inode);
528 			inode_unlock(inode);
529 			victim = this;
530 			this = this->d_parent;
531 			inode = this->d_inode;
532 			inode_lock(inode);
533 			if (simple_positive(victim)) {
534 				d_invalidate(victim);	// avoid lost mounts
535 				if (d_is_dir(victim))
536 					fsnotify_rmdir(inode, victim);
537 				else
538 					fsnotify_unlink(inode, victim);
539 				if (callback)
540 					callback(victim);
541 				dput(victim);		// unpin it
542 			}
543 			if (victim == dentry) {
544 				inode_set_mtime_to_ts(inode,
545 						      inode_set_ctime_current(inode));
546 				if (d_is_dir(dentry))
547 					drop_nlink(inode);
548 				inode_unlock(inode);
549 				dput(dentry);
550 				return;
551 			}
552 		}
553 		inode_unlock(inode);
554 		this = child;
555 	}
556 }
557 EXPORT_SYMBOL(simple_recursive_removal);
558 
559 static const struct super_operations simple_super_operations = {
560 	.statfs		= simple_statfs,
561 };
562 
563 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
564 {
565 	struct pseudo_fs_context *ctx = fc->fs_private;
566 	struct inode *root;
567 
568 	s->s_maxbytes = MAX_LFS_FILESIZE;
569 	s->s_blocksize = PAGE_SIZE;
570 	s->s_blocksize_bits = PAGE_SHIFT;
571 	s->s_magic = ctx->magic;
572 	s->s_op = ctx->ops ?: &simple_super_operations;
573 	s->s_xattr = ctx->xattr;
574 	s->s_time_gran = 1;
575 	root = new_inode(s);
576 	if (!root)
577 		return -ENOMEM;
578 
579 	/*
580 	 * since this is the first inode, make it number 1. New inodes created
581 	 * after this must take care not to collide with it (by passing
582 	 * max_reserved of 1 to iunique).
583 	 */
584 	root->i_ino = 1;
585 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
586 	simple_inode_init_ts(root);
587 	s->s_root = d_make_root(root);
588 	if (!s->s_root)
589 		return -ENOMEM;
590 	s->s_d_op = ctx->dops;
591 	return 0;
592 }
593 
594 static int pseudo_fs_get_tree(struct fs_context *fc)
595 {
596 	return get_tree_nodev(fc, pseudo_fs_fill_super);
597 }
598 
599 static void pseudo_fs_free(struct fs_context *fc)
600 {
601 	kfree(fc->fs_private);
602 }
603 
604 static const struct fs_context_operations pseudo_fs_context_ops = {
605 	.free		= pseudo_fs_free,
606 	.get_tree	= pseudo_fs_get_tree,
607 };
608 
609 /*
610  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
611  * will never be mountable)
612  */
613 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
614 					unsigned long magic)
615 {
616 	struct pseudo_fs_context *ctx;
617 
618 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
619 	if (likely(ctx)) {
620 		ctx->magic = magic;
621 		fc->fs_private = ctx;
622 		fc->ops = &pseudo_fs_context_ops;
623 		fc->sb_flags |= SB_NOUSER;
624 		fc->global = true;
625 	}
626 	return ctx;
627 }
628 EXPORT_SYMBOL(init_pseudo);
629 
630 int simple_open(struct inode *inode, struct file *file)
631 {
632 	if (inode->i_private)
633 		file->private_data = inode->i_private;
634 	return 0;
635 }
636 EXPORT_SYMBOL(simple_open);
637 
638 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
639 {
640 	struct inode *inode = d_inode(old_dentry);
641 
642 	inode_set_mtime_to_ts(dir,
643 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
644 	inc_nlink(inode);
645 	ihold(inode);
646 	dget(dentry);
647 	d_instantiate(dentry, inode);
648 	return 0;
649 }
650 EXPORT_SYMBOL(simple_link);
651 
652 int simple_empty(struct dentry *dentry)
653 {
654 	struct dentry *child;
655 	int ret = 0;
656 
657 	spin_lock(&dentry->d_lock);
658 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
659 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
660 		if (simple_positive(child)) {
661 			spin_unlock(&child->d_lock);
662 			goto out;
663 		}
664 		spin_unlock(&child->d_lock);
665 	}
666 	ret = 1;
667 out:
668 	spin_unlock(&dentry->d_lock);
669 	return ret;
670 }
671 EXPORT_SYMBOL(simple_empty);
672 
673 int simple_unlink(struct inode *dir, struct dentry *dentry)
674 {
675 	struct inode *inode = d_inode(dentry);
676 
677 	inode_set_mtime_to_ts(dir,
678 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
679 	drop_nlink(inode);
680 	dput(dentry);
681 	return 0;
682 }
683 EXPORT_SYMBOL(simple_unlink);
684 
685 int simple_rmdir(struct inode *dir, struct dentry *dentry)
686 {
687 	if (!simple_empty(dentry))
688 		return -ENOTEMPTY;
689 
690 	drop_nlink(d_inode(dentry));
691 	simple_unlink(dir, dentry);
692 	drop_nlink(dir);
693 	return 0;
694 }
695 EXPORT_SYMBOL(simple_rmdir);
696 
697 /**
698  * simple_rename_timestamp - update the various inode timestamps for rename
699  * @old_dir: old parent directory
700  * @old_dentry: dentry that is being renamed
701  * @new_dir: new parent directory
702  * @new_dentry: target for rename
703  *
704  * POSIX mandates that the old and new parent directories have their ctime and
705  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
706  * their ctime updated.
707  */
708 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
709 			     struct inode *new_dir, struct dentry *new_dentry)
710 {
711 	struct inode *newino = d_inode(new_dentry);
712 
713 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
714 	if (new_dir != old_dir)
715 		inode_set_mtime_to_ts(new_dir,
716 				      inode_set_ctime_current(new_dir));
717 	inode_set_ctime_current(d_inode(old_dentry));
718 	if (newino)
719 		inode_set_ctime_current(newino);
720 }
721 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
722 
723 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
724 			   struct inode *new_dir, struct dentry *new_dentry)
725 {
726 	bool old_is_dir = d_is_dir(old_dentry);
727 	bool new_is_dir = d_is_dir(new_dentry);
728 
729 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
730 		if (old_is_dir) {
731 			drop_nlink(old_dir);
732 			inc_nlink(new_dir);
733 		} else {
734 			drop_nlink(new_dir);
735 			inc_nlink(old_dir);
736 		}
737 	}
738 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
739 	return 0;
740 }
741 EXPORT_SYMBOL_GPL(simple_rename_exchange);
742 
743 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
744 		  struct dentry *old_dentry, struct inode *new_dir,
745 		  struct dentry *new_dentry, unsigned int flags)
746 {
747 	int they_are_dirs = d_is_dir(old_dentry);
748 
749 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
750 		return -EINVAL;
751 
752 	if (flags & RENAME_EXCHANGE)
753 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
754 
755 	if (!simple_empty(new_dentry))
756 		return -ENOTEMPTY;
757 
758 	if (d_really_is_positive(new_dentry)) {
759 		simple_unlink(new_dir, new_dentry);
760 		if (they_are_dirs) {
761 			drop_nlink(d_inode(new_dentry));
762 			drop_nlink(old_dir);
763 		}
764 	} else if (they_are_dirs) {
765 		drop_nlink(old_dir);
766 		inc_nlink(new_dir);
767 	}
768 
769 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
770 	return 0;
771 }
772 EXPORT_SYMBOL(simple_rename);
773 
774 /**
775  * simple_setattr - setattr for simple filesystem
776  * @idmap: idmap of the target mount
777  * @dentry: dentry
778  * @iattr: iattr structure
779  *
780  * Returns 0 on success, -error on failure.
781  *
782  * simple_setattr is a simple ->setattr implementation without a proper
783  * implementation of size changes.
784  *
785  * It can either be used for in-memory filesystems or special files
786  * on simple regular filesystems.  Anything that needs to change on-disk
787  * or wire state on size changes needs its own setattr method.
788  */
789 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
790 		   struct iattr *iattr)
791 {
792 	struct inode *inode = d_inode(dentry);
793 	int error;
794 
795 	error = setattr_prepare(idmap, dentry, iattr);
796 	if (error)
797 		return error;
798 
799 	if (iattr->ia_valid & ATTR_SIZE)
800 		truncate_setsize(inode, iattr->ia_size);
801 	setattr_copy(idmap, inode, iattr);
802 	mark_inode_dirty(inode);
803 	return 0;
804 }
805 EXPORT_SYMBOL(simple_setattr);
806 
807 static int simple_read_folio(struct file *file, struct folio *folio)
808 {
809 	folio_zero_range(folio, 0, folio_size(folio));
810 	flush_dcache_folio(folio);
811 	folio_mark_uptodate(folio);
812 	folio_unlock(folio);
813 	return 0;
814 }
815 
816 int simple_write_begin(struct file *file, struct address_space *mapping,
817 			loff_t pos, unsigned len,
818 			struct page **pagep, void **fsdata)
819 {
820 	struct folio *folio;
821 
822 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
823 			mapping_gfp_mask(mapping));
824 	if (IS_ERR(folio))
825 		return PTR_ERR(folio);
826 
827 	*pagep = &folio->page;
828 
829 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
830 		size_t from = offset_in_folio(folio, pos);
831 
832 		folio_zero_segments(folio, 0, from,
833 				from + len, folio_size(folio));
834 	}
835 	return 0;
836 }
837 EXPORT_SYMBOL(simple_write_begin);
838 
839 /**
840  * simple_write_end - .write_end helper for non-block-device FSes
841  * @file: See .write_end of address_space_operations
842  * @mapping: 		"
843  * @pos: 		"
844  * @len: 		"
845  * @copied: 		"
846  * @page: 		"
847  * @fsdata: 		"
848  *
849  * simple_write_end does the minimum needed for updating a page after writing is
850  * done. It has the same API signature as the .write_end of
851  * address_space_operations vector. So it can just be set onto .write_end for
852  * FSes that don't need any other processing. i_mutex is assumed to be held.
853  * Block based filesystems should use generic_write_end().
854  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
855  * is not called, so a filesystem that actually does store data in .write_inode
856  * should extend on what's done here with a call to mark_inode_dirty() in the
857  * case that i_size has changed.
858  *
859  * Use *ONLY* with simple_read_folio()
860  */
861 static int simple_write_end(struct file *file, struct address_space *mapping,
862 			loff_t pos, unsigned len, unsigned copied,
863 			struct page *page, void *fsdata)
864 {
865 	struct folio *folio = page_folio(page);
866 	struct inode *inode = folio->mapping->host;
867 	loff_t last_pos = pos + copied;
868 
869 	/* zero the stale part of the folio if we did a short copy */
870 	if (!folio_test_uptodate(folio)) {
871 		if (copied < len) {
872 			size_t from = offset_in_folio(folio, pos);
873 
874 			folio_zero_range(folio, from + copied, len - copied);
875 		}
876 		folio_mark_uptodate(folio);
877 	}
878 	/*
879 	 * No need to use i_size_read() here, the i_size
880 	 * cannot change under us because we hold the i_mutex.
881 	 */
882 	if (last_pos > inode->i_size)
883 		i_size_write(inode, last_pos);
884 
885 	folio_mark_dirty(folio);
886 	folio_unlock(folio);
887 	folio_put(folio);
888 
889 	return copied;
890 }
891 
892 /*
893  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
894  */
895 const struct address_space_operations ram_aops = {
896 	.read_folio	= simple_read_folio,
897 	.write_begin	= simple_write_begin,
898 	.write_end	= simple_write_end,
899 	.dirty_folio	= noop_dirty_folio,
900 };
901 EXPORT_SYMBOL(ram_aops);
902 
903 /*
904  * the inodes created here are not hashed. If you use iunique to generate
905  * unique inode values later for this filesystem, then you must take care
906  * to pass it an appropriate max_reserved value to avoid collisions.
907  */
908 int simple_fill_super(struct super_block *s, unsigned long magic,
909 		      const struct tree_descr *files)
910 {
911 	struct inode *inode;
912 	struct dentry *root;
913 	struct dentry *dentry;
914 	int i;
915 
916 	s->s_blocksize = PAGE_SIZE;
917 	s->s_blocksize_bits = PAGE_SHIFT;
918 	s->s_magic = magic;
919 	s->s_op = &simple_super_operations;
920 	s->s_time_gran = 1;
921 
922 	inode = new_inode(s);
923 	if (!inode)
924 		return -ENOMEM;
925 	/*
926 	 * because the root inode is 1, the files array must not contain an
927 	 * entry at index 1
928 	 */
929 	inode->i_ino = 1;
930 	inode->i_mode = S_IFDIR | 0755;
931 	simple_inode_init_ts(inode);
932 	inode->i_op = &simple_dir_inode_operations;
933 	inode->i_fop = &simple_dir_operations;
934 	set_nlink(inode, 2);
935 	root = d_make_root(inode);
936 	if (!root)
937 		return -ENOMEM;
938 	for (i = 0; !files->name || files->name[0]; i++, files++) {
939 		if (!files->name)
940 			continue;
941 
942 		/* warn if it tries to conflict with the root inode */
943 		if (unlikely(i == 1))
944 			printk(KERN_WARNING "%s: %s passed in a files array"
945 				"with an index of 1!\n", __func__,
946 				s->s_type->name);
947 
948 		dentry = d_alloc_name(root, files->name);
949 		if (!dentry)
950 			goto out;
951 		inode = new_inode(s);
952 		if (!inode) {
953 			dput(dentry);
954 			goto out;
955 		}
956 		inode->i_mode = S_IFREG | files->mode;
957 		simple_inode_init_ts(inode);
958 		inode->i_fop = files->ops;
959 		inode->i_ino = i;
960 		d_add(dentry, inode);
961 	}
962 	s->s_root = root;
963 	return 0;
964 out:
965 	d_genocide(root);
966 	shrink_dcache_parent(root);
967 	dput(root);
968 	return -ENOMEM;
969 }
970 EXPORT_SYMBOL(simple_fill_super);
971 
972 static DEFINE_SPINLOCK(pin_fs_lock);
973 
974 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
975 {
976 	struct vfsmount *mnt = NULL;
977 	spin_lock(&pin_fs_lock);
978 	if (unlikely(!*mount)) {
979 		spin_unlock(&pin_fs_lock);
980 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
981 		if (IS_ERR(mnt))
982 			return PTR_ERR(mnt);
983 		spin_lock(&pin_fs_lock);
984 		if (!*mount)
985 			*mount = mnt;
986 	}
987 	mntget(*mount);
988 	++*count;
989 	spin_unlock(&pin_fs_lock);
990 	mntput(mnt);
991 	return 0;
992 }
993 EXPORT_SYMBOL(simple_pin_fs);
994 
995 void simple_release_fs(struct vfsmount **mount, int *count)
996 {
997 	struct vfsmount *mnt;
998 	spin_lock(&pin_fs_lock);
999 	mnt = *mount;
1000 	if (!--*count)
1001 		*mount = NULL;
1002 	spin_unlock(&pin_fs_lock);
1003 	mntput(mnt);
1004 }
1005 EXPORT_SYMBOL(simple_release_fs);
1006 
1007 /**
1008  * simple_read_from_buffer - copy data from the buffer to user space
1009  * @to: the user space buffer to read to
1010  * @count: the maximum number of bytes to read
1011  * @ppos: the current position in the buffer
1012  * @from: the buffer to read from
1013  * @available: the size of the buffer
1014  *
1015  * The simple_read_from_buffer() function reads up to @count bytes from the
1016  * buffer @from at offset @ppos into the user space address starting at @to.
1017  *
1018  * On success, the number of bytes read is returned and the offset @ppos is
1019  * advanced by this number, or negative value is returned on error.
1020  **/
1021 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1022 				const void *from, size_t available)
1023 {
1024 	loff_t pos = *ppos;
1025 	size_t ret;
1026 
1027 	if (pos < 0)
1028 		return -EINVAL;
1029 	if (pos >= available || !count)
1030 		return 0;
1031 	if (count > available - pos)
1032 		count = available - pos;
1033 	ret = copy_to_user(to, from + pos, count);
1034 	if (ret == count)
1035 		return -EFAULT;
1036 	count -= ret;
1037 	*ppos = pos + count;
1038 	return count;
1039 }
1040 EXPORT_SYMBOL(simple_read_from_buffer);
1041 
1042 /**
1043  * simple_write_to_buffer - copy data from user space to the buffer
1044  * @to: the buffer to write to
1045  * @available: the size of the buffer
1046  * @ppos: the current position in the buffer
1047  * @from: the user space buffer to read from
1048  * @count: the maximum number of bytes to read
1049  *
1050  * The simple_write_to_buffer() function reads up to @count bytes from the user
1051  * space address starting at @from into the buffer @to at offset @ppos.
1052  *
1053  * On success, the number of bytes written is returned and the offset @ppos is
1054  * advanced by this number, or negative value is returned on error.
1055  **/
1056 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1057 		const void __user *from, size_t count)
1058 {
1059 	loff_t pos = *ppos;
1060 	size_t res;
1061 
1062 	if (pos < 0)
1063 		return -EINVAL;
1064 	if (pos >= available || !count)
1065 		return 0;
1066 	if (count > available - pos)
1067 		count = available - pos;
1068 	res = copy_from_user(to + pos, from, count);
1069 	if (res == count)
1070 		return -EFAULT;
1071 	count -= res;
1072 	*ppos = pos + count;
1073 	return count;
1074 }
1075 EXPORT_SYMBOL(simple_write_to_buffer);
1076 
1077 /**
1078  * memory_read_from_buffer - copy data from the buffer
1079  * @to: the kernel space buffer to read to
1080  * @count: the maximum number of bytes to read
1081  * @ppos: the current position in the buffer
1082  * @from: the buffer to read from
1083  * @available: the size of the buffer
1084  *
1085  * The memory_read_from_buffer() function reads up to @count bytes from the
1086  * buffer @from at offset @ppos into the kernel space address starting at @to.
1087  *
1088  * On success, the number of bytes read is returned and the offset @ppos is
1089  * advanced by this number, or negative value is returned on error.
1090  **/
1091 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1092 				const void *from, size_t available)
1093 {
1094 	loff_t pos = *ppos;
1095 
1096 	if (pos < 0)
1097 		return -EINVAL;
1098 	if (pos >= available)
1099 		return 0;
1100 	if (count > available - pos)
1101 		count = available - pos;
1102 	memcpy(to, from + pos, count);
1103 	*ppos = pos + count;
1104 
1105 	return count;
1106 }
1107 EXPORT_SYMBOL(memory_read_from_buffer);
1108 
1109 /*
1110  * Transaction based IO.
1111  * The file expects a single write which triggers the transaction, and then
1112  * possibly a read which collects the result - which is stored in a
1113  * file-local buffer.
1114  */
1115 
1116 void simple_transaction_set(struct file *file, size_t n)
1117 {
1118 	struct simple_transaction_argresp *ar = file->private_data;
1119 
1120 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1121 
1122 	/*
1123 	 * The barrier ensures that ar->size will really remain zero until
1124 	 * ar->data is ready for reading.
1125 	 */
1126 	smp_mb();
1127 	ar->size = n;
1128 }
1129 EXPORT_SYMBOL(simple_transaction_set);
1130 
1131 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1132 {
1133 	struct simple_transaction_argresp *ar;
1134 	static DEFINE_SPINLOCK(simple_transaction_lock);
1135 
1136 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1137 		return ERR_PTR(-EFBIG);
1138 
1139 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1140 	if (!ar)
1141 		return ERR_PTR(-ENOMEM);
1142 
1143 	spin_lock(&simple_transaction_lock);
1144 
1145 	/* only one write allowed per open */
1146 	if (file->private_data) {
1147 		spin_unlock(&simple_transaction_lock);
1148 		free_page((unsigned long)ar);
1149 		return ERR_PTR(-EBUSY);
1150 	}
1151 
1152 	file->private_data = ar;
1153 
1154 	spin_unlock(&simple_transaction_lock);
1155 
1156 	if (copy_from_user(ar->data, buf, size))
1157 		return ERR_PTR(-EFAULT);
1158 
1159 	return ar->data;
1160 }
1161 EXPORT_SYMBOL(simple_transaction_get);
1162 
1163 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1164 {
1165 	struct simple_transaction_argresp *ar = file->private_data;
1166 
1167 	if (!ar)
1168 		return 0;
1169 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1170 }
1171 EXPORT_SYMBOL(simple_transaction_read);
1172 
1173 int simple_transaction_release(struct inode *inode, struct file *file)
1174 {
1175 	free_page((unsigned long)file->private_data);
1176 	return 0;
1177 }
1178 EXPORT_SYMBOL(simple_transaction_release);
1179 
1180 /* Simple attribute files */
1181 
1182 struct simple_attr {
1183 	int (*get)(void *, u64 *);
1184 	int (*set)(void *, u64);
1185 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1186 	char set_buf[24];
1187 	void *data;
1188 	const char *fmt;	/* format for read operation */
1189 	struct mutex mutex;	/* protects access to these buffers */
1190 };
1191 
1192 /* simple_attr_open is called by an actual attribute open file operation
1193  * to set the attribute specific access operations. */
1194 int simple_attr_open(struct inode *inode, struct file *file,
1195 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1196 		     const char *fmt)
1197 {
1198 	struct simple_attr *attr;
1199 
1200 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1201 	if (!attr)
1202 		return -ENOMEM;
1203 
1204 	attr->get = get;
1205 	attr->set = set;
1206 	attr->data = inode->i_private;
1207 	attr->fmt = fmt;
1208 	mutex_init(&attr->mutex);
1209 
1210 	file->private_data = attr;
1211 
1212 	return nonseekable_open(inode, file);
1213 }
1214 EXPORT_SYMBOL_GPL(simple_attr_open);
1215 
1216 int simple_attr_release(struct inode *inode, struct file *file)
1217 {
1218 	kfree(file->private_data);
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1222 
1223 /* read from the buffer that is filled with the get function */
1224 ssize_t simple_attr_read(struct file *file, char __user *buf,
1225 			 size_t len, loff_t *ppos)
1226 {
1227 	struct simple_attr *attr;
1228 	size_t size;
1229 	ssize_t ret;
1230 
1231 	attr = file->private_data;
1232 
1233 	if (!attr->get)
1234 		return -EACCES;
1235 
1236 	ret = mutex_lock_interruptible(&attr->mutex);
1237 	if (ret)
1238 		return ret;
1239 
1240 	if (*ppos && attr->get_buf[0]) {
1241 		/* continued read */
1242 		size = strlen(attr->get_buf);
1243 	} else {
1244 		/* first read */
1245 		u64 val;
1246 		ret = attr->get(attr->data, &val);
1247 		if (ret)
1248 			goto out;
1249 
1250 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1251 				 attr->fmt, (unsigned long long)val);
1252 	}
1253 
1254 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1255 out:
1256 	mutex_unlock(&attr->mutex);
1257 	return ret;
1258 }
1259 EXPORT_SYMBOL_GPL(simple_attr_read);
1260 
1261 /* interpret the buffer as a number to call the set function with */
1262 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1263 			  size_t len, loff_t *ppos, bool is_signed)
1264 {
1265 	struct simple_attr *attr;
1266 	unsigned long long val;
1267 	size_t size;
1268 	ssize_t ret;
1269 
1270 	attr = file->private_data;
1271 	if (!attr->set)
1272 		return -EACCES;
1273 
1274 	ret = mutex_lock_interruptible(&attr->mutex);
1275 	if (ret)
1276 		return ret;
1277 
1278 	ret = -EFAULT;
1279 	size = min(sizeof(attr->set_buf) - 1, len);
1280 	if (copy_from_user(attr->set_buf, buf, size))
1281 		goto out;
1282 
1283 	attr->set_buf[size] = '\0';
1284 	if (is_signed)
1285 		ret = kstrtoll(attr->set_buf, 0, &val);
1286 	else
1287 		ret = kstrtoull(attr->set_buf, 0, &val);
1288 	if (ret)
1289 		goto out;
1290 	ret = attr->set(attr->data, val);
1291 	if (ret == 0)
1292 		ret = len; /* on success, claim we got the whole input */
1293 out:
1294 	mutex_unlock(&attr->mutex);
1295 	return ret;
1296 }
1297 
1298 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1299 			  size_t len, loff_t *ppos)
1300 {
1301 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1302 }
1303 EXPORT_SYMBOL_GPL(simple_attr_write);
1304 
1305 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1306 			  size_t len, loff_t *ppos)
1307 {
1308 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1309 }
1310 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1311 
1312 /**
1313  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1314  * @sb:		filesystem to do the file handle conversion on
1315  * @fid:	file handle to convert
1316  * @fh_len:	length of the file handle in bytes
1317  * @fh_type:	type of file handle
1318  * @get_inode:	filesystem callback to retrieve inode
1319  *
1320  * This function decodes @fid as long as it has one of the well-known
1321  * Linux filehandle types and calls @get_inode on it to retrieve the
1322  * inode for the object specified in the file handle.
1323  */
1324 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1325 		int fh_len, int fh_type, struct inode *(*get_inode)
1326 			(struct super_block *sb, u64 ino, u32 gen))
1327 {
1328 	struct inode *inode = NULL;
1329 
1330 	if (fh_len < 2)
1331 		return NULL;
1332 
1333 	switch (fh_type) {
1334 	case FILEID_INO32_GEN:
1335 	case FILEID_INO32_GEN_PARENT:
1336 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1337 		break;
1338 	}
1339 
1340 	return d_obtain_alias(inode);
1341 }
1342 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1343 
1344 /**
1345  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1346  * @sb:		filesystem to do the file handle conversion on
1347  * @fid:	file handle to convert
1348  * @fh_len:	length of the file handle in bytes
1349  * @fh_type:	type of file handle
1350  * @get_inode:	filesystem callback to retrieve inode
1351  *
1352  * This function decodes @fid as long as it has one of the well-known
1353  * Linux filehandle types and calls @get_inode on it to retrieve the
1354  * inode for the _parent_ object specified in the file handle if it
1355  * is specified in the file handle, or NULL otherwise.
1356  */
1357 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1358 		int fh_len, int fh_type, struct inode *(*get_inode)
1359 			(struct super_block *sb, u64 ino, u32 gen))
1360 {
1361 	struct inode *inode = NULL;
1362 
1363 	if (fh_len <= 2)
1364 		return NULL;
1365 
1366 	switch (fh_type) {
1367 	case FILEID_INO32_GEN_PARENT:
1368 		inode = get_inode(sb, fid->i32.parent_ino,
1369 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1370 		break;
1371 	}
1372 
1373 	return d_obtain_alias(inode);
1374 }
1375 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1376 
1377 /**
1378  * __generic_file_fsync - generic fsync implementation for simple filesystems
1379  *
1380  * @file:	file to synchronize
1381  * @start:	start offset in bytes
1382  * @end:	end offset in bytes (inclusive)
1383  * @datasync:	only synchronize essential metadata if true
1384  *
1385  * This is a generic implementation of the fsync method for simple
1386  * filesystems which track all non-inode metadata in the buffers list
1387  * hanging off the address_space structure.
1388  */
1389 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1390 				 int datasync)
1391 {
1392 	struct inode *inode = file->f_mapping->host;
1393 	int err;
1394 	int ret;
1395 
1396 	err = file_write_and_wait_range(file, start, end);
1397 	if (err)
1398 		return err;
1399 
1400 	inode_lock(inode);
1401 	ret = sync_mapping_buffers(inode->i_mapping);
1402 	if (!(inode->i_state & I_DIRTY_ALL))
1403 		goto out;
1404 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1405 		goto out;
1406 
1407 	err = sync_inode_metadata(inode, 1);
1408 	if (ret == 0)
1409 		ret = err;
1410 
1411 out:
1412 	inode_unlock(inode);
1413 	/* check and advance again to catch errors after syncing out buffers */
1414 	err = file_check_and_advance_wb_err(file);
1415 	if (ret == 0)
1416 		ret = err;
1417 	return ret;
1418 }
1419 EXPORT_SYMBOL(__generic_file_fsync);
1420 
1421 /**
1422  * generic_file_fsync - generic fsync implementation for simple filesystems
1423  *			with flush
1424  * @file:	file to synchronize
1425  * @start:	start offset in bytes
1426  * @end:	end offset in bytes (inclusive)
1427  * @datasync:	only synchronize essential metadata if true
1428  *
1429  */
1430 
1431 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1432 		       int datasync)
1433 {
1434 	struct inode *inode = file->f_mapping->host;
1435 	int err;
1436 
1437 	err = __generic_file_fsync(file, start, end, datasync);
1438 	if (err)
1439 		return err;
1440 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1441 }
1442 EXPORT_SYMBOL(generic_file_fsync);
1443 
1444 /**
1445  * generic_check_addressable - Check addressability of file system
1446  * @blocksize_bits:	log of file system block size
1447  * @num_blocks:		number of blocks in file system
1448  *
1449  * Determine whether a file system with @num_blocks blocks (and a
1450  * block size of 2**@blocksize_bits) is addressable by the sector_t
1451  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1452  */
1453 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1454 {
1455 	u64 last_fs_block = num_blocks - 1;
1456 	u64 last_fs_page =
1457 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1458 
1459 	if (unlikely(num_blocks == 0))
1460 		return 0;
1461 
1462 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1463 		return -EINVAL;
1464 
1465 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1466 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1467 		return -EFBIG;
1468 	}
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL(generic_check_addressable);
1472 
1473 /*
1474  * No-op implementation of ->fsync for in-memory filesystems.
1475  */
1476 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1477 {
1478 	return 0;
1479 }
1480 EXPORT_SYMBOL(noop_fsync);
1481 
1482 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1483 {
1484 	/*
1485 	 * iomap based filesystems support direct I/O without need for
1486 	 * this callback. However, it still needs to be set in
1487 	 * inode->a_ops so that open/fcntl know that direct I/O is
1488 	 * generally supported.
1489 	 */
1490 	return -EINVAL;
1491 }
1492 EXPORT_SYMBOL_GPL(noop_direct_IO);
1493 
1494 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1495 void kfree_link(void *p)
1496 {
1497 	kfree(p);
1498 }
1499 EXPORT_SYMBOL(kfree_link);
1500 
1501 struct inode *alloc_anon_inode(struct super_block *s)
1502 {
1503 	static const struct address_space_operations anon_aops = {
1504 		.dirty_folio	= noop_dirty_folio,
1505 	};
1506 	struct inode *inode = new_inode_pseudo(s);
1507 
1508 	if (!inode)
1509 		return ERR_PTR(-ENOMEM);
1510 
1511 	inode->i_ino = get_next_ino();
1512 	inode->i_mapping->a_ops = &anon_aops;
1513 
1514 	/*
1515 	 * Mark the inode dirty from the very beginning,
1516 	 * that way it will never be moved to the dirty
1517 	 * list because mark_inode_dirty() will think
1518 	 * that it already _is_ on the dirty list.
1519 	 */
1520 	inode->i_state = I_DIRTY;
1521 	inode->i_mode = S_IRUSR | S_IWUSR;
1522 	inode->i_uid = current_fsuid();
1523 	inode->i_gid = current_fsgid();
1524 	inode->i_flags |= S_PRIVATE;
1525 	simple_inode_init_ts(inode);
1526 	return inode;
1527 }
1528 EXPORT_SYMBOL(alloc_anon_inode);
1529 
1530 /**
1531  * simple_nosetlease - generic helper for prohibiting leases
1532  * @filp: file pointer
1533  * @arg: type of lease to obtain
1534  * @flp: new lease supplied for insertion
1535  * @priv: private data for lm_setup operation
1536  *
1537  * Generic helper for filesystems that do not wish to allow leases to be set.
1538  * All arguments are ignored and it just returns -EINVAL.
1539  */
1540 int
1541 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1542 		  void **priv)
1543 {
1544 	return -EINVAL;
1545 }
1546 EXPORT_SYMBOL(simple_nosetlease);
1547 
1548 /**
1549  * simple_get_link - generic helper to get the target of "fast" symlinks
1550  * @dentry: not used here
1551  * @inode: the symlink inode
1552  * @done: not used here
1553  *
1554  * Generic helper for filesystems to use for symlink inodes where a pointer to
1555  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1556  * since as an optimization the path lookup code uses any non-NULL ->i_link
1557  * directly, without calling ->get_link().  But ->get_link() still must be set,
1558  * to mark the inode_operations as being for a symlink.
1559  *
1560  * Return: the symlink target
1561  */
1562 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1563 			    struct delayed_call *done)
1564 {
1565 	return inode->i_link;
1566 }
1567 EXPORT_SYMBOL(simple_get_link);
1568 
1569 const struct inode_operations simple_symlink_inode_operations = {
1570 	.get_link = simple_get_link,
1571 };
1572 EXPORT_SYMBOL(simple_symlink_inode_operations);
1573 
1574 /*
1575  * Operations for a permanently empty directory.
1576  */
1577 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1578 {
1579 	return ERR_PTR(-ENOENT);
1580 }
1581 
1582 static int empty_dir_getattr(struct mnt_idmap *idmap,
1583 			     const struct path *path, struct kstat *stat,
1584 			     u32 request_mask, unsigned int query_flags)
1585 {
1586 	struct inode *inode = d_inode(path->dentry);
1587 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1588 	return 0;
1589 }
1590 
1591 static int empty_dir_setattr(struct mnt_idmap *idmap,
1592 			     struct dentry *dentry, struct iattr *attr)
1593 {
1594 	return -EPERM;
1595 }
1596 
1597 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1598 {
1599 	return -EOPNOTSUPP;
1600 }
1601 
1602 static const struct inode_operations empty_dir_inode_operations = {
1603 	.lookup		= empty_dir_lookup,
1604 	.permission	= generic_permission,
1605 	.setattr	= empty_dir_setattr,
1606 	.getattr	= empty_dir_getattr,
1607 	.listxattr	= empty_dir_listxattr,
1608 };
1609 
1610 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1611 {
1612 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1613 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1614 }
1615 
1616 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1617 {
1618 	dir_emit_dots(file, ctx);
1619 	return 0;
1620 }
1621 
1622 static const struct file_operations empty_dir_operations = {
1623 	.llseek		= empty_dir_llseek,
1624 	.read		= generic_read_dir,
1625 	.iterate_shared	= empty_dir_readdir,
1626 	.fsync		= noop_fsync,
1627 };
1628 
1629 
1630 void make_empty_dir_inode(struct inode *inode)
1631 {
1632 	set_nlink(inode, 2);
1633 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1634 	inode->i_uid = GLOBAL_ROOT_UID;
1635 	inode->i_gid = GLOBAL_ROOT_GID;
1636 	inode->i_rdev = 0;
1637 	inode->i_size = 0;
1638 	inode->i_blkbits = PAGE_SHIFT;
1639 	inode->i_blocks = 0;
1640 
1641 	inode->i_op = &empty_dir_inode_operations;
1642 	inode->i_opflags &= ~IOP_XATTR;
1643 	inode->i_fop = &empty_dir_operations;
1644 }
1645 
1646 bool is_empty_dir_inode(struct inode *inode)
1647 {
1648 	return (inode->i_fop == &empty_dir_operations) &&
1649 		(inode->i_op == &empty_dir_inode_operations);
1650 }
1651 
1652 #if IS_ENABLED(CONFIG_UNICODE)
1653 /**
1654  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1655  * @dentry:	dentry whose name we are checking against
1656  * @len:	len of name of dentry
1657  * @str:	str pointer to name of dentry
1658  * @name:	Name to compare against
1659  *
1660  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1661  */
1662 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1663 				const char *str, const struct qstr *name)
1664 {
1665 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1666 	const struct inode *dir = READ_ONCE(parent->d_inode);
1667 	const struct super_block *sb = dentry->d_sb;
1668 	const struct unicode_map *um = sb->s_encoding;
1669 	struct qstr qstr = QSTR_INIT(str, len);
1670 	char strbuf[DNAME_INLINE_LEN];
1671 	int ret;
1672 
1673 	if (!dir || !IS_CASEFOLDED(dir))
1674 		goto fallback;
1675 	/*
1676 	 * If the dentry name is stored in-line, then it may be concurrently
1677 	 * modified by a rename.  If this happens, the VFS will eventually retry
1678 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1679 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1680 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1681 	 */
1682 	if (len <= DNAME_INLINE_LEN - 1) {
1683 		memcpy(strbuf, str, len);
1684 		strbuf[len] = 0;
1685 		qstr.name = strbuf;
1686 		/* prevent compiler from optimizing out the temporary buffer */
1687 		barrier();
1688 	}
1689 	ret = utf8_strncasecmp(um, name, &qstr);
1690 	if (ret >= 0)
1691 		return ret;
1692 
1693 	if (sb_has_strict_encoding(sb))
1694 		return -EINVAL;
1695 fallback:
1696 	if (len != name->len)
1697 		return 1;
1698 	return !!memcmp(str, name->name, len);
1699 }
1700 
1701 /**
1702  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1703  * @dentry:	dentry of the parent directory
1704  * @str:	qstr of name whose hash we should fill in
1705  *
1706  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1707  */
1708 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1709 {
1710 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1711 	struct super_block *sb = dentry->d_sb;
1712 	const struct unicode_map *um = sb->s_encoding;
1713 	int ret = 0;
1714 
1715 	if (!dir || !IS_CASEFOLDED(dir))
1716 		return 0;
1717 
1718 	ret = utf8_casefold_hash(um, dentry, str);
1719 	if (ret < 0 && sb_has_strict_encoding(sb))
1720 		return -EINVAL;
1721 	return 0;
1722 }
1723 
1724 static const struct dentry_operations generic_ci_dentry_ops = {
1725 	.d_hash = generic_ci_d_hash,
1726 	.d_compare = generic_ci_d_compare,
1727 };
1728 #endif
1729 
1730 #ifdef CONFIG_FS_ENCRYPTION
1731 static const struct dentry_operations generic_encrypted_dentry_ops = {
1732 	.d_revalidate = fscrypt_d_revalidate,
1733 };
1734 #endif
1735 
1736 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1737 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1738 	.d_hash = generic_ci_d_hash,
1739 	.d_compare = generic_ci_d_compare,
1740 	.d_revalidate = fscrypt_d_revalidate,
1741 };
1742 #endif
1743 
1744 /**
1745  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1746  * @dentry:	dentry to set ops on
1747  *
1748  * Casefolded directories need d_hash and d_compare set, so that the dentries
1749  * contained in them are handled case-insensitively.  Note that these operations
1750  * are needed on the parent directory rather than on the dentries in it, and
1751  * while the casefolding flag can be toggled on and off on an empty directory,
1752  * dentry_operations can't be changed later.  As a result, if the filesystem has
1753  * casefolding support enabled at all, we have to give all dentries the
1754  * casefolding operations even if their inode doesn't have the casefolding flag
1755  * currently (and thus the casefolding ops would be no-ops for now).
1756  *
1757  * Encryption works differently in that the only dentry operation it needs is
1758  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1759  * The no-key flag can't be set "later", so we don't have to worry about that.
1760  *
1761  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1762  * with certain dentry operations) and to avoid taking an unnecessary
1763  * performance hit, we use custom dentry_operations for each possible
1764  * combination rather than always installing all operations.
1765  */
1766 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1767 {
1768 #ifdef CONFIG_FS_ENCRYPTION
1769 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1770 #endif
1771 #if IS_ENABLED(CONFIG_UNICODE)
1772 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1773 #endif
1774 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1775 	if (needs_encrypt_ops && needs_ci_ops) {
1776 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1777 		return;
1778 	}
1779 #endif
1780 #ifdef CONFIG_FS_ENCRYPTION
1781 	if (needs_encrypt_ops) {
1782 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1783 		return;
1784 	}
1785 #endif
1786 #if IS_ENABLED(CONFIG_UNICODE)
1787 	if (needs_ci_ops) {
1788 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1789 		return;
1790 	}
1791 #endif
1792 }
1793 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1794 
1795 /**
1796  * inode_maybe_inc_iversion - increments i_version
1797  * @inode: inode with the i_version that should be updated
1798  * @force: increment the counter even if it's not necessary?
1799  *
1800  * Every time the inode is modified, the i_version field must be seen to have
1801  * changed by any observer.
1802  *
1803  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1804  * the value, and clear the queried flag.
1805  *
1806  * In the common case where neither is set, then we can return "false" without
1807  * updating i_version.
1808  *
1809  * If this function returns false, and no other metadata has changed, then we
1810  * can avoid logging the metadata.
1811  */
1812 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1813 {
1814 	u64 cur, new;
1815 
1816 	/*
1817 	 * The i_version field is not strictly ordered with any other inode
1818 	 * information, but the legacy inode_inc_iversion code used a spinlock
1819 	 * to serialize increments.
1820 	 *
1821 	 * Here, we add full memory barriers to ensure that any de-facto
1822 	 * ordering with other info is preserved.
1823 	 *
1824 	 * This barrier pairs with the barrier in inode_query_iversion()
1825 	 */
1826 	smp_mb();
1827 	cur = inode_peek_iversion_raw(inode);
1828 	do {
1829 		/* If flag is clear then we needn't do anything */
1830 		if (!force && !(cur & I_VERSION_QUERIED))
1831 			return false;
1832 
1833 		/* Since lowest bit is flag, add 2 to avoid it */
1834 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1835 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1836 	return true;
1837 }
1838 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1839 
1840 /**
1841  * inode_query_iversion - read i_version for later use
1842  * @inode: inode from which i_version should be read
1843  *
1844  * Read the inode i_version counter. This should be used by callers that wish
1845  * to store the returned i_version for later comparison. This will guarantee
1846  * that a later query of the i_version will result in a different value if
1847  * anything has changed.
1848  *
1849  * In this implementation, we fetch the current value, set the QUERIED flag and
1850  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1851  * that fails, we try again with the newly fetched value from the cmpxchg.
1852  */
1853 u64 inode_query_iversion(struct inode *inode)
1854 {
1855 	u64 cur, new;
1856 
1857 	cur = inode_peek_iversion_raw(inode);
1858 	do {
1859 		/* If flag is already set, then no need to swap */
1860 		if (cur & I_VERSION_QUERIED) {
1861 			/*
1862 			 * This barrier (and the implicit barrier in the
1863 			 * cmpxchg below) pairs with the barrier in
1864 			 * inode_maybe_inc_iversion().
1865 			 */
1866 			smp_mb();
1867 			break;
1868 		}
1869 
1870 		new = cur | I_VERSION_QUERIED;
1871 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1872 	return cur >> I_VERSION_QUERIED_SHIFT;
1873 }
1874 EXPORT_SYMBOL(inode_query_iversion);
1875 
1876 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1877 		ssize_t direct_written, ssize_t buffered_written)
1878 {
1879 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1880 	loff_t pos = iocb->ki_pos - buffered_written;
1881 	loff_t end = iocb->ki_pos - 1;
1882 	int err;
1883 
1884 	/*
1885 	 * If the buffered write fallback returned an error, we want to return
1886 	 * the number of bytes which were written by direct I/O, or the error
1887 	 * code if that was zero.
1888 	 *
1889 	 * Note that this differs from normal direct-io semantics, which will
1890 	 * return -EFOO even if some bytes were written.
1891 	 */
1892 	if (unlikely(buffered_written < 0)) {
1893 		if (direct_written)
1894 			return direct_written;
1895 		return buffered_written;
1896 	}
1897 
1898 	/*
1899 	 * We need to ensure that the page cache pages are written to disk and
1900 	 * invalidated to preserve the expected O_DIRECT semantics.
1901 	 */
1902 	err = filemap_write_and_wait_range(mapping, pos, end);
1903 	if (err < 0) {
1904 		/*
1905 		 * We don't know how much we wrote, so just return the number of
1906 		 * bytes which were direct-written
1907 		 */
1908 		iocb->ki_pos -= buffered_written;
1909 		if (direct_written)
1910 			return direct_written;
1911 		return err;
1912 	}
1913 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1914 	return direct_written + buffered_written;
1915 }
1916 EXPORT_SYMBOL_GPL(direct_write_fallback);
1917 
1918 /**
1919  * simple_inode_init_ts - initialize the timestamps for a new inode
1920  * @inode: inode to be initialized
1921  *
1922  * When a new inode is created, most filesystems set the timestamps to the
1923  * current time. Add a helper to do this.
1924  */
1925 struct timespec64 simple_inode_init_ts(struct inode *inode)
1926 {
1927 	struct timespec64 ts = inode_set_ctime_current(inode);
1928 
1929 	inode_set_atime_to_ts(inode, ts);
1930 	inode_set_mtime_to_ts(inode, ts);
1931 	return ts;
1932 }
1933 EXPORT_SYMBOL(simple_inode_init_ts);
1934