1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 32 struct kstat *stat, u32 request_mask, 33 unsigned int query_flags) 34 { 35 struct inode *inode = d_inode(path->dentry); 36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 38 return 0; 39 } 40 EXPORT_SYMBOL(simple_getattr); 41 42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 43 { 44 buf->f_type = dentry->d_sb->s_magic; 45 buf->f_bsize = PAGE_SIZE; 46 buf->f_namelen = NAME_MAX; 47 return 0; 48 } 49 EXPORT_SYMBOL(simple_statfs); 50 51 /* 52 * Retaining negative dentries for an in-memory filesystem just wastes 53 * memory and lookup time: arrange for them to be deleted immediately. 54 */ 55 int always_delete_dentry(const struct dentry *dentry) 56 { 57 return 1; 58 } 59 EXPORT_SYMBOL(always_delete_dentry); 60 61 const struct dentry_operations simple_dentry_operations = { 62 .d_delete = always_delete_dentry, 63 }; 64 EXPORT_SYMBOL(simple_dentry_operations); 65 66 /* 67 * Lookup the data. This is trivial - if the dentry didn't already 68 * exist, we know it is negative. Set d_op to delete negative dentries. 69 */ 70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 71 { 72 if (dentry->d_name.len > NAME_MAX) 73 return ERR_PTR(-ENAMETOOLONG); 74 if (!dentry->d_sb->s_d_op) 75 d_set_d_op(dentry, &simple_dentry_operations); 76 d_add(dentry, NULL); 77 return NULL; 78 } 79 EXPORT_SYMBOL(simple_lookup); 80 81 int dcache_dir_open(struct inode *inode, struct file *file) 82 { 83 file->private_data = d_alloc_cursor(file->f_path.dentry); 84 85 return file->private_data ? 0 : -ENOMEM; 86 } 87 EXPORT_SYMBOL(dcache_dir_open); 88 89 int dcache_dir_close(struct inode *inode, struct file *file) 90 { 91 dput(file->private_data); 92 return 0; 93 } 94 EXPORT_SYMBOL(dcache_dir_close); 95 96 /* parent is locked at least shared */ 97 /* 98 * Returns an element of siblings' list. 99 * We are looking for <count>th positive after <p>; if 100 * found, dentry is grabbed and returned to caller. 101 * If no such element exists, NULL is returned. 102 */ 103 static struct dentry *scan_positives(struct dentry *cursor, 104 struct list_head *p, 105 loff_t count, 106 struct dentry *last) 107 { 108 struct dentry *dentry = cursor->d_parent, *found = NULL; 109 110 spin_lock(&dentry->d_lock); 111 while ((p = p->next) != &dentry->d_subdirs) { 112 struct dentry *d = list_entry(p, struct dentry, d_child); 113 // we must at least skip cursors, to avoid livelocks 114 if (d->d_flags & DCACHE_DENTRY_CURSOR) 115 continue; 116 if (simple_positive(d) && !--count) { 117 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 118 if (simple_positive(d)) 119 found = dget_dlock(d); 120 spin_unlock(&d->d_lock); 121 if (likely(found)) 122 break; 123 count = 1; 124 } 125 if (need_resched()) { 126 list_move(&cursor->d_child, p); 127 p = &cursor->d_child; 128 spin_unlock(&dentry->d_lock); 129 cond_resched(); 130 spin_lock(&dentry->d_lock); 131 } 132 } 133 spin_unlock(&dentry->d_lock); 134 dput(last); 135 return found; 136 } 137 138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 139 { 140 struct dentry *dentry = file->f_path.dentry; 141 switch (whence) { 142 case 1: 143 offset += file->f_pos; 144 fallthrough; 145 case 0: 146 if (offset >= 0) 147 break; 148 fallthrough; 149 default: 150 return -EINVAL; 151 } 152 if (offset != file->f_pos) { 153 struct dentry *cursor = file->private_data; 154 struct dentry *to = NULL; 155 156 inode_lock_shared(dentry->d_inode); 157 158 if (offset > 2) 159 to = scan_positives(cursor, &dentry->d_subdirs, 160 offset - 2, NULL); 161 spin_lock(&dentry->d_lock); 162 if (to) 163 list_move(&cursor->d_child, &to->d_child); 164 else 165 list_del_init(&cursor->d_child); 166 spin_unlock(&dentry->d_lock); 167 dput(to); 168 169 file->f_pos = offset; 170 171 inode_unlock_shared(dentry->d_inode); 172 } 173 return offset; 174 } 175 EXPORT_SYMBOL(dcache_dir_lseek); 176 177 /* 178 * Directory is locked and all positive dentries in it are safe, since 179 * for ramfs-type trees they can't go away without unlink() or rmdir(), 180 * both impossible due to the lock on directory. 181 */ 182 183 int dcache_readdir(struct file *file, struct dir_context *ctx) 184 { 185 struct dentry *dentry = file->f_path.dentry; 186 struct dentry *cursor = file->private_data; 187 struct list_head *anchor = &dentry->d_subdirs; 188 struct dentry *next = NULL; 189 struct list_head *p; 190 191 if (!dir_emit_dots(file, ctx)) 192 return 0; 193 194 if (ctx->pos == 2) 195 p = anchor; 196 else if (!list_empty(&cursor->d_child)) 197 p = &cursor->d_child; 198 else 199 return 0; 200 201 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 202 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 203 d_inode(next)->i_ino, 204 fs_umode_to_dtype(d_inode(next)->i_mode))) 205 break; 206 ctx->pos++; 207 p = &next->d_child; 208 } 209 spin_lock(&dentry->d_lock); 210 if (next) 211 list_move_tail(&cursor->d_child, &next->d_child); 212 else 213 list_del_init(&cursor->d_child); 214 spin_unlock(&dentry->d_lock); 215 dput(next); 216 217 return 0; 218 } 219 EXPORT_SYMBOL(dcache_readdir); 220 221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 222 { 223 return -EISDIR; 224 } 225 EXPORT_SYMBOL(generic_read_dir); 226 227 const struct file_operations simple_dir_operations = { 228 .open = dcache_dir_open, 229 .release = dcache_dir_close, 230 .llseek = dcache_dir_lseek, 231 .read = generic_read_dir, 232 .iterate_shared = dcache_readdir, 233 .fsync = noop_fsync, 234 }; 235 EXPORT_SYMBOL(simple_dir_operations); 236 237 const struct inode_operations simple_dir_inode_operations = { 238 .lookup = simple_lookup, 239 }; 240 EXPORT_SYMBOL(simple_dir_inode_operations); 241 242 static void offset_set(struct dentry *dentry, u32 offset) 243 { 244 dentry->d_fsdata = (void *)((uintptr_t)(offset)); 245 } 246 247 static u32 dentry2offset(struct dentry *dentry) 248 { 249 return (u32)((uintptr_t)(dentry->d_fsdata)); 250 } 251 252 static struct lock_class_key simple_offset_xa_lock; 253 254 /** 255 * simple_offset_init - initialize an offset_ctx 256 * @octx: directory offset map to be initialized 257 * 258 */ 259 void simple_offset_init(struct offset_ctx *octx) 260 { 261 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1); 262 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock); 263 264 /* 0 is '.', 1 is '..', so always start with offset 2 */ 265 octx->next_offset = 2; 266 } 267 268 /** 269 * simple_offset_add - Add an entry to a directory's offset map 270 * @octx: directory offset ctx to be updated 271 * @dentry: new dentry being added 272 * 273 * Returns zero on success. @so_ctx and the dentry offset are updated. 274 * Otherwise, a negative errno value is returned. 275 */ 276 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 277 { 278 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX); 279 u32 offset; 280 int ret; 281 282 if (dentry2offset(dentry) != 0) 283 return -EBUSY; 284 285 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit, 286 &octx->next_offset, GFP_KERNEL); 287 if (ret < 0) 288 return ret; 289 290 offset_set(dentry, offset); 291 return 0; 292 } 293 294 /** 295 * simple_offset_remove - Remove an entry to a directory's offset map 296 * @octx: directory offset ctx to be updated 297 * @dentry: dentry being removed 298 * 299 */ 300 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 301 { 302 u32 offset; 303 304 offset = dentry2offset(dentry); 305 if (offset == 0) 306 return; 307 308 xa_erase(&octx->xa, offset); 309 offset_set(dentry, 0); 310 } 311 312 /** 313 * simple_offset_rename_exchange - exchange rename with directory offsets 314 * @old_dir: parent of dentry being moved 315 * @old_dentry: dentry being moved 316 * @new_dir: destination parent 317 * @new_dentry: destination dentry 318 * 319 * Returns zero on success. Otherwise a negative errno is returned and the 320 * rename is rolled back. 321 */ 322 int simple_offset_rename_exchange(struct inode *old_dir, 323 struct dentry *old_dentry, 324 struct inode *new_dir, 325 struct dentry *new_dentry) 326 { 327 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 328 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 329 u32 old_index = dentry2offset(old_dentry); 330 u32 new_index = dentry2offset(new_dentry); 331 int ret; 332 333 simple_offset_remove(old_ctx, old_dentry); 334 simple_offset_remove(new_ctx, new_dentry); 335 336 ret = simple_offset_add(new_ctx, old_dentry); 337 if (ret) 338 goto out_restore; 339 340 ret = simple_offset_add(old_ctx, new_dentry); 341 if (ret) { 342 simple_offset_remove(new_ctx, old_dentry); 343 goto out_restore; 344 } 345 346 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 347 if (ret) { 348 simple_offset_remove(new_ctx, old_dentry); 349 simple_offset_remove(old_ctx, new_dentry); 350 goto out_restore; 351 } 352 return 0; 353 354 out_restore: 355 offset_set(old_dentry, old_index); 356 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL); 357 offset_set(new_dentry, new_index); 358 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL); 359 return ret; 360 } 361 362 /** 363 * simple_offset_destroy - Release offset map 364 * @octx: directory offset ctx that is about to be destroyed 365 * 366 * During fs teardown (eg. umount), a directory's offset map might still 367 * contain entries. xa_destroy() cleans out anything that remains. 368 */ 369 void simple_offset_destroy(struct offset_ctx *octx) 370 { 371 xa_destroy(&octx->xa); 372 } 373 374 /** 375 * offset_dir_llseek - Advance the read position of a directory descriptor 376 * @file: an open directory whose position is to be updated 377 * @offset: a byte offset 378 * @whence: enumerator describing the starting position for this update 379 * 380 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 381 * 382 * Returns the updated read position if successful; otherwise a 383 * negative errno is returned and the read position remains unchanged. 384 */ 385 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 386 { 387 switch (whence) { 388 case SEEK_CUR: 389 offset += file->f_pos; 390 fallthrough; 391 case SEEK_SET: 392 if (offset >= 0) 393 break; 394 fallthrough; 395 default: 396 return -EINVAL; 397 } 398 399 return vfs_setpos(file, offset, U32_MAX); 400 } 401 402 static struct dentry *offset_find_next(struct xa_state *xas) 403 { 404 struct dentry *child, *found = NULL; 405 406 rcu_read_lock(); 407 child = xas_next_entry(xas, U32_MAX); 408 if (!child) 409 goto out; 410 spin_lock(&child->d_lock); 411 if (simple_positive(child)) 412 found = dget_dlock(child); 413 spin_unlock(&child->d_lock); 414 out: 415 rcu_read_unlock(); 416 return found; 417 } 418 419 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 420 { 421 u32 offset = dentry2offset(dentry); 422 struct inode *inode = d_inode(dentry); 423 424 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 425 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 426 } 427 428 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx) 429 { 430 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode); 431 XA_STATE(xas, &so_ctx->xa, ctx->pos); 432 struct dentry *dentry; 433 434 while (true) { 435 dentry = offset_find_next(&xas); 436 if (!dentry) 437 break; 438 439 if (!offset_dir_emit(ctx, dentry)) { 440 dput(dentry); 441 break; 442 } 443 444 dput(dentry); 445 ctx->pos = xas.xa_index + 1; 446 } 447 } 448 449 /** 450 * offset_readdir - Emit entries starting at offset @ctx->pos 451 * @file: an open directory to iterate over 452 * @ctx: directory iteration context 453 * 454 * Caller must hold @file's i_rwsem to prevent insertion or removal of 455 * entries during this call. 456 * 457 * On entry, @ctx->pos contains an offset that represents the first entry 458 * to be read from the directory. 459 * 460 * The operation continues until there are no more entries to read, or 461 * until the ctx->actor indicates there is no more space in the caller's 462 * output buffer. 463 * 464 * On return, @ctx->pos contains an offset that will read the next entry 465 * in this directory when offset_readdir() is called again with @ctx. 466 * 467 * Return values: 468 * %0 - Complete 469 */ 470 static int offset_readdir(struct file *file, struct dir_context *ctx) 471 { 472 struct dentry *dir = file->f_path.dentry; 473 474 lockdep_assert_held(&d_inode(dir)->i_rwsem); 475 476 if (!dir_emit_dots(file, ctx)) 477 return 0; 478 479 offset_iterate_dir(d_inode(dir), ctx); 480 return 0; 481 } 482 483 const struct file_operations simple_offset_dir_operations = { 484 .llseek = offset_dir_llseek, 485 .iterate_shared = offset_readdir, 486 .read = generic_read_dir, 487 .fsync = noop_fsync, 488 }; 489 490 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 491 { 492 struct dentry *child = NULL; 493 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; 494 495 spin_lock(&parent->d_lock); 496 while ((p = p->next) != &parent->d_subdirs) { 497 struct dentry *d = container_of(p, struct dentry, d_child); 498 if (simple_positive(d)) { 499 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 500 if (simple_positive(d)) 501 child = dget_dlock(d); 502 spin_unlock(&d->d_lock); 503 if (likely(child)) 504 break; 505 } 506 } 507 spin_unlock(&parent->d_lock); 508 dput(prev); 509 return child; 510 } 511 512 void simple_recursive_removal(struct dentry *dentry, 513 void (*callback)(struct dentry *)) 514 { 515 struct dentry *this = dget(dentry); 516 while (true) { 517 struct dentry *victim = NULL, *child; 518 struct inode *inode = this->d_inode; 519 520 inode_lock(inode); 521 if (d_is_dir(this)) 522 inode->i_flags |= S_DEAD; 523 while ((child = find_next_child(this, victim)) == NULL) { 524 // kill and ascend 525 // update metadata while it's still locked 526 inode_set_ctime_current(inode); 527 clear_nlink(inode); 528 inode_unlock(inode); 529 victim = this; 530 this = this->d_parent; 531 inode = this->d_inode; 532 inode_lock(inode); 533 if (simple_positive(victim)) { 534 d_invalidate(victim); // avoid lost mounts 535 if (d_is_dir(victim)) 536 fsnotify_rmdir(inode, victim); 537 else 538 fsnotify_unlink(inode, victim); 539 if (callback) 540 callback(victim); 541 dput(victim); // unpin it 542 } 543 if (victim == dentry) { 544 inode_set_mtime_to_ts(inode, 545 inode_set_ctime_current(inode)); 546 if (d_is_dir(dentry)) 547 drop_nlink(inode); 548 inode_unlock(inode); 549 dput(dentry); 550 return; 551 } 552 } 553 inode_unlock(inode); 554 this = child; 555 } 556 } 557 EXPORT_SYMBOL(simple_recursive_removal); 558 559 static const struct super_operations simple_super_operations = { 560 .statfs = simple_statfs, 561 }; 562 563 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 564 { 565 struct pseudo_fs_context *ctx = fc->fs_private; 566 struct inode *root; 567 568 s->s_maxbytes = MAX_LFS_FILESIZE; 569 s->s_blocksize = PAGE_SIZE; 570 s->s_blocksize_bits = PAGE_SHIFT; 571 s->s_magic = ctx->magic; 572 s->s_op = ctx->ops ?: &simple_super_operations; 573 s->s_xattr = ctx->xattr; 574 s->s_time_gran = 1; 575 root = new_inode(s); 576 if (!root) 577 return -ENOMEM; 578 579 /* 580 * since this is the first inode, make it number 1. New inodes created 581 * after this must take care not to collide with it (by passing 582 * max_reserved of 1 to iunique). 583 */ 584 root->i_ino = 1; 585 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 586 simple_inode_init_ts(root); 587 s->s_root = d_make_root(root); 588 if (!s->s_root) 589 return -ENOMEM; 590 s->s_d_op = ctx->dops; 591 return 0; 592 } 593 594 static int pseudo_fs_get_tree(struct fs_context *fc) 595 { 596 return get_tree_nodev(fc, pseudo_fs_fill_super); 597 } 598 599 static void pseudo_fs_free(struct fs_context *fc) 600 { 601 kfree(fc->fs_private); 602 } 603 604 static const struct fs_context_operations pseudo_fs_context_ops = { 605 .free = pseudo_fs_free, 606 .get_tree = pseudo_fs_get_tree, 607 }; 608 609 /* 610 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 611 * will never be mountable) 612 */ 613 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 614 unsigned long magic) 615 { 616 struct pseudo_fs_context *ctx; 617 618 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 619 if (likely(ctx)) { 620 ctx->magic = magic; 621 fc->fs_private = ctx; 622 fc->ops = &pseudo_fs_context_ops; 623 fc->sb_flags |= SB_NOUSER; 624 fc->global = true; 625 } 626 return ctx; 627 } 628 EXPORT_SYMBOL(init_pseudo); 629 630 int simple_open(struct inode *inode, struct file *file) 631 { 632 if (inode->i_private) 633 file->private_data = inode->i_private; 634 return 0; 635 } 636 EXPORT_SYMBOL(simple_open); 637 638 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 639 { 640 struct inode *inode = d_inode(old_dentry); 641 642 inode_set_mtime_to_ts(dir, 643 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 644 inc_nlink(inode); 645 ihold(inode); 646 dget(dentry); 647 d_instantiate(dentry, inode); 648 return 0; 649 } 650 EXPORT_SYMBOL(simple_link); 651 652 int simple_empty(struct dentry *dentry) 653 { 654 struct dentry *child; 655 int ret = 0; 656 657 spin_lock(&dentry->d_lock); 658 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 659 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 660 if (simple_positive(child)) { 661 spin_unlock(&child->d_lock); 662 goto out; 663 } 664 spin_unlock(&child->d_lock); 665 } 666 ret = 1; 667 out: 668 spin_unlock(&dentry->d_lock); 669 return ret; 670 } 671 EXPORT_SYMBOL(simple_empty); 672 673 int simple_unlink(struct inode *dir, struct dentry *dentry) 674 { 675 struct inode *inode = d_inode(dentry); 676 677 inode_set_mtime_to_ts(dir, 678 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 679 drop_nlink(inode); 680 dput(dentry); 681 return 0; 682 } 683 EXPORT_SYMBOL(simple_unlink); 684 685 int simple_rmdir(struct inode *dir, struct dentry *dentry) 686 { 687 if (!simple_empty(dentry)) 688 return -ENOTEMPTY; 689 690 drop_nlink(d_inode(dentry)); 691 simple_unlink(dir, dentry); 692 drop_nlink(dir); 693 return 0; 694 } 695 EXPORT_SYMBOL(simple_rmdir); 696 697 /** 698 * simple_rename_timestamp - update the various inode timestamps for rename 699 * @old_dir: old parent directory 700 * @old_dentry: dentry that is being renamed 701 * @new_dir: new parent directory 702 * @new_dentry: target for rename 703 * 704 * POSIX mandates that the old and new parent directories have their ctime and 705 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 706 * their ctime updated. 707 */ 708 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 709 struct inode *new_dir, struct dentry *new_dentry) 710 { 711 struct inode *newino = d_inode(new_dentry); 712 713 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 714 if (new_dir != old_dir) 715 inode_set_mtime_to_ts(new_dir, 716 inode_set_ctime_current(new_dir)); 717 inode_set_ctime_current(d_inode(old_dentry)); 718 if (newino) 719 inode_set_ctime_current(newino); 720 } 721 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 722 723 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 724 struct inode *new_dir, struct dentry *new_dentry) 725 { 726 bool old_is_dir = d_is_dir(old_dentry); 727 bool new_is_dir = d_is_dir(new_dentry); 728 729 if (old_dir != new_dir && old_is_dir != new_is_dir) { 730 if (old_is_dir) { 731 drop_nlink(old_dir); 732 inc_nlink(new_dir); 733 } else { 734 drop_nlink(new_dir); 735 inc_nlink(old_dir); 736 } 737 } 738 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 739 return 0; 740 } 741 EXPORT_SYMBOL_GPL(simple_rename_exchange); 742 743 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 744 struct dentry *old_dentry, struct inode *new_dir, 745 struct dentry *new_dentry, unsigned int flags) 746 { 747 int they_are_dirs = d_is_dir(old_dentry); 748 749 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 750 return -EINVAL; 751 752 if (flags & RENAME_EXCHANGE) 753 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 754 755 if (!simple_empty(new_dentry)) 756 return -ENOTEMPTY; 757 758 if (d_really_is_positive(new_dentry)) { 759 simple_unlink(new_dir, new_dentry); 760 if (they_are_dirs) { 761 drop_nlink(d_inode(new_dentry)); 762 drop_nlink(old_dir); 763 } 764 } else if (they_are_dirs) { 765 drop_nlink(old_dir); 766 inc_nlink(new_dir); 767 } 768 769 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 770 return 0; 771 } 772 EXPORT_SYMBOL(simple_rename); 773 774 /** 775 * simple_setattr - setattr for simple filesystem 776 * @idmap: idmap of the target mount 777 * @dentry: dentry 778 * @iattr: iattr structure 779 * 780 * Returns 0 on success, -error on failure. 781 * 782 * simple_setattr is a simple ->setattr implementation without a proper 783 * implementation of size changes. 784 * 785 * It can either be used for in-memory filesystems or special files 786 * on simple regular filesystems. Anything that needs to change on-disk 787 * or wire state on size changes needs its own setattr method. 788 */ 789 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 790 struct iattr *iattr) 791 { 792 struct inode *inode = d_inode(dentry); 793 int error; 794 795 error = setattr_prepare(idmap, dentry, iattr); 796 if (error) 797 return error; 798 799 if (iattr->ia_valid & ATTR_SIZE) 800 truncate_setsize(inode, iattr->ia_size); 801 setattr_copy(idmap, inode, iattr); 802 mark_inode_dirty(inode); 803 return 0; 804 } 805 EXPORT_SYMBOL(simple_setattr); 806 807 static int simple_read_folio(struct file *file, struct folio *folio) 808 { 809 folio_zero_range(folio, 0, folio_size(folio)); 810 flush_dcache_folio(folio); 811 folio_mark_uptodate(folio); 812 folio_unlock(folio); 813 return 0; 814 } 815 816 int simple_write_begin(struct file *file, struct address_space *mapping, 817 loff_t pos, unsigned len, 818 struct page **pagep, void **fsdata) 819 { 820 struct folio *folio; 821 822 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 823 mapping_gfp_mask(mapping)); 824 if (IS_ERR(folio)) 825 return PTR_ERR(folio); 826 827 *pagep = &folio->page; 828 829 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 830 size_t from = offset_in_folio(folio, pos); 831 832 folio_zero_segments(folio, 0, from, 833 from + len, folio_size(folio)); 834 } 835 return 0; 836 } 837 EXPORT_SYMBOL(simple_write_begin); 838 839 /** 840 * simple_write_end - .write_end helper for non-block-device FSes 841 * @file: See .write_end of address_space_operations 842 * @mapping: " 843 * @pos: " 844 * @len: " 845 * @copied: " 846 * @page: " 847 * @fsdata: " 848 * 849 * simple_write_end does the minimum needed for updating a page after writing is 850 * done. It has the same API signature as the .write_end of 851 * address_space_operations vector. So it can just be set onto .write_end for 852 * FSes that don't need any other processing. i_mutex is assumed to be held. 853 * Block based filesystems should use generic_write_end(). 854 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 855 * is not called, so a filesystem that actually does store data in .write_inode 856 * should extend on what's done here with a call to mark_inode_dirty() in the 857 * case that i_size has changed. 858 * 859 * Use *ONLY* with simple_read_folio() 860 */ 861 static int simple_write_end(struct file *file, struct address_space *mapping, 862 loff_t pos, unsigned len, unsigned copied, 863 struct page *page, void *fsdata) 864 { 865 struct folio *folio = page_folio(page); 866 struct inode *inode = folio->mapping->host; 867 loff_t last_pos = pos + copied; 868 869 /* zero the stale part of the folio if we did a short copy */ 870 if (!folio_test_uptodate(folio)) { 871 if (copied < len) { 872 size_t from = offset_in_folio(folio, pos); 873 874 folio_zero_range(folio, from + copied, len - copied); 875 } 876 folio_mark_uptodate(folio); 877 } 878 /* 879 * No need to use i_size_read() here, the i_size 880 * cannot change under us because we hold the i_mutex. 881 */ 882 if (last_pos > inode->i_size) 883 i_size_write(inode, last_pos); 884 885 folio_mark_dirty(folio); 886 folio_unlock(folio); 887 folio_put(folio); 888 889 return copied; 890 } 891 892 /* 893 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 894 */ 895 const struct address_space_operations ram_aops = { 896 .read_folio = simple_read_folio, 897 .write_begin = simple_write_begin, 898 .write_end = simple_write_end, 899 .dirty_folio = noop_dirty_folio, 900 }; 901 EXPORT_SYMBOL(ram_aops); 902 903 /* 904 * the inodes created here are not hashed. If you use iunique to generate 905 * unique inode values later for this filesystem, then you must take care 906 * to pass it an appropriate max_reserved value to avoid collisions. 907 */ 908 int simple_fill_super(struct super_block *s, unsigned long magic, 909 const struct tree_descr *files) 910 { 911 struct inode *inode; 912 struct dentry *root; 913 struct dentry *dentry; 914 int i; 915 916 s->s_blocksize = PAGE_SIZE; 917 s->s_blocksize_bits = PAGE_SHIFT; 918 s->s_magic = magic; 919 s->s_op = &simple_super_operations; 920 s->s_time_gran = 1; 921 922 inode = new_inode(s); 923 if (!inode) 924 return -ENOMEM; 925 /* 926 * because the root inode is 1, the files array must not contain an 927 * entry at index 1 928 */ 929 inode->i_ino = 1; 930 inode->i_mode = S_IFDIR | 0755; 931 simple_inode_init_ts(inode); 932 inode->i_op = &simple_dir_inode_operations; 933 inode->i_fop = &simple_dir_operations; 934 set_nlink(inode, 2); 935 root = d_make_root(inode); 936 if (!root) 937 return -ENOMEM; 938 for (i = 0; !files->name || files->name[0]; i++, files++) { 939 if (!files->name) 940 continue; 941 942 /* warn if it tries to conflict with the root inode */ 943 if (unlikely(i == 1)) 944 printk(KERN_WARNING "%s: %s passed in a files array" 945 "with an index of 1!\n", __func__, 946 s->s_type->name); 947 948 dentry = d_alloc_name(root, files->name); 949 if (!dentry) 950 goto out; 951 inode = new_inode(s); 952 if (!inode) { 953 dput(dentry); 954 goto out; 955 } 956 inode->i_mode = S_IFREG | files->mode; 957 simple_inode_init_ts(inode); 958 inode->i_fop = files->ops; 959 inode->i_ino = i; 960 d_add(dentry, inode); 961 } 962 s->s_root = root; 963 return 0; 964 out: 965 d_genocide(root); 966 shrink_dcache_parent(root); 967 dput(root); 968 return -ENOMEM; 969 } 970 EXPORT_SYMBOL(simple_fill_super); 971 972 static DEFINE_SPINLOCK(pin_fs_lock); 973 974 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 975 { 976 struct vfsmount *mnt = NULL; 977 spin_lock(&pin_fs_lock); 978 if (unlikely(!*mount)) { 979 spin_unlock(&pin_fs_lock); 980 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 981 if (IS_ERR(mnt)) 982 return PTR_ERR(mnt); 983 spin_lock(&pin_fs_lock); 984 if (!*mount) 985 *mount = mnt; 986 } 987 mntget(*mount); 988 ++*count; 989 spin_unlock(&pin_fs_lock); 990 mntput(mnt); 991 return 0; 992 } 993 EXPORT_SYMBOL(simple_pin_fs); 994 995 void simple_release_fs(struct vfsmount **mount, int *count) 996 { 997 struct vfsmount *mnt; 998 spin_lock(&pin_fs_lock); 999 mnt = *mount; 1000 if (!--*count) 1001 *mount = NULL; 1002 spin_unlock(&pin_fs_lock); 1003 mntput(mnt); 1004 } 1005 EXPORT_SYMBOL(simple_release_fs); 1006 1007 /** 1008 * simple_read_from_buffer - copy data from the buffer to user space 1009 * @to: the user space buffer to read to 1010 * @count: the maximum number of bytes to read 1011 * @ppos: the current position in the buffer 1012 * @from: the buffer to read from 1013 * @available: the size of the buffer 1014 * 1015 * The simple_read_from_buffer() function reads up to @count bytes from the 1016 * buffer @from at offset @ppos into the user space address starting at @to. 1017 * 1018 * On success, the number of bytes read is returned and the offset @ppos is 1019 * advanced by this number, or negative value is returned on error. 1020 **/ 1021 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1022 const void *from, size_t available) 1023 { 1024 loff_t pos = *ppos; 1025 size_t ret; 1026 1027 if (pos < 0) 1028 return -EINVAL; 1029 if (pos >= available || !count) 1030 return 0; 1031 if (count > available - pos) 1032 count = available - pos; 1033 ret = copy_to_user(to, from + pos, count); 1034 if (ret == count) 1035 return -EFAULT; 1036 count -= ret; 1037 *ppos = pos + count; 1038 return count; 1039 } 1040 EXPORT_SYMBOL(simple_read_from_buffer); 1041 1042 /** 1043 * simple_write_to_buffer - copy data from user space to the buffer 1044 * @to: the buffer to write to 1045 * @available: the size of the buffer 1046 * @ppos: the current position in the buffer 1047 * @from: the user space buffer to read from 1048 * @count: the maximum number of bytes to read 1049 * 1050 * The simple_write_to_buffer() function reads up to @count bytes from the user 1051 * space address starting at @from into the buffer @to at offset @ppos. 1052 * 1053 * On success, the number of bytes written is returned and the offset @ppos is 1054 * advanced by this number, or negative value is returned on error. 1055 **/ 1056 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1057 const void __user *from, size_t count) 1058 { 1059 loff_t pos = *ppos; 1060 size_t res; 1061 1062 if (pos < 0) 1063 return -EINVAL; 1064 if (pos >= available || !count) 1065 return 0; 1066 if (count > available - pos) 1067 count = available - pos; 1068 res = copy_from_user(to + pos, from, count); 1069 if (res == count) 1070 return -EFAULT; 1071 count -= res; 1072 *ppos = pos + count; 1073 return count; 1074 } 1075 EXPORT_SYMBOL(simple_write_to_buffer); 1076 1077 /** 1078 * memory_read_from_buffer - copy data from the buffer 1079 * @to: the kernel space buffer to read to 1080 * @count: the maximum number of bytes to read 1081 * @ppos: the current position in the buffer 1082 * @from: the buffer to read from 1083 * @available: the size of the buffer 1084 * 1085 * The memory_read_from_buffer() function reads up to @count bytes from the 1086 * buffer @from at offset @ppos into the kernel space address starting at @to. 1087 * 1088 * On success, the number of bytes read is returned and the offset @ppos is 1089 * advanced by this number, or negative value is returned on error. 1090 **/ 1091 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1092 const void *from, size_t available) 1093 { 1094 loff_t pos = *ppos; 1095 1096 if (pos < 0) 1097 return -EINVAL; 1098 if (pos >= available) 1099 return 0; 1100 if (count > available - pos) 1101 count = available - pos; 1102 memcpy(to, from + pos, count); 1103 *ppos = pos + count; 1104 1105 return count; 1106 } 1107 EXPORT_SYMBOL(memory_read_from_buffer); 1108 1109 /* 1110 * Transaction based IO. 1111 * The file expects a single write which triggers the transaction, and then 1112 * possibly a read which collects the result - which is stored in a 1113 * file-local buffer. 1114 */ 1115 1116 void simple_transaction_set(struct file *file, size_t n) 1117 { 1118 struct simple_transaction_argresp *ar = file->private_data; 1119 1120 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1121 1122 /* 1123 * The barrier ensures that ar->size will really remain zero until 1124 * ar->data is ready for reading. 1125 */ 1126 smp_mb(); 1127 ar->size = n; 1128 } 1129 EXPORT_SYMBOL(simple_transaction_set); 1130 1131 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1132 { 1133 struct simple_transaction_argresp *ar; 1134 static DEFINE_SPINLOCK(simple_transaction_lock); 1135 1136 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1137 return ERR_PTR(-EFBIG); 1138 1139 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1140 if (!ar) 1141 return ERR_PTR(-ENOMEM); 1142 1143 spin_lock(&simple_transaction_lock); 1144 1145 /* only one write allowed per open */ 1146 if (file->private_data) { 1147 spin_unlock(&simple_transaction_lock); 1148 free_page((unsigned long)ar); 1149 return ERR_PTR(-EBUSY); 1150 } 1151 1152 file->private_data = ar; 1153 1154 spin_unlock(&simple_transaction_lock); 1155 1156 if (copy_from_user(ar->data, buf, size)) 1157 return ERR_PTR(-EFAULT); 1158 1159 return ar->data; 1160 } 1161 EXPORT_SYMBOL(simple_transaction_get); 1162 1163 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1164 { 1165 struct simple_transaction_argresp *ar = file->private_data; 1166 1167 if (!ar) 1168 return 0; 1169 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1170 } 1171 EXPORT_SYMBOL(simple_transaction_read); 1172 1173 int simple_transaction_release(struct inode *inode, struct file *file) 1174 { 1175 free_page((unsigned long)file->private_data); 1176 return 0; 1177 } 1178 EXPORT_SYMBOL(simple_transaction_release); 1179 1180 /* Simple attribute files */ 1181 1182 struct simple_attr { 1183 int (*get)(void *, u64 *); 1184 int (*set)(void *, u64); 1185 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1186 char set_buf[24]; 1187 void *data; 1188 const char *fmt; /* format for read operation */ 1189 struct mutex mutex; /* protects access to these buffers */ 1190 }; 1191 1192 /* simple_attr_open is called by an actual attribute open file operation 1193 * to set the attribute specific access operations. */ 1194 int simple_attr_open(struct inode *inode, struct file *file, 1195 int (*get)(void *, u64 *), int (*set)(void *, u64), 1196 const char *fmt) 1197 { 1198 struct simple_attr *attr; 1199 1200 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1201 if (!attr) 1202 return -ENOMEM; 1203 1204 attr->get = get; 1205 attr->set = set; 1206 attr->data = inode->i_private; 1207 attr->fmt = fmt; 1208 mutex_init(&attr->mutex); 1209 1210 file->private_data = attr; 1211 1212 return nonseekable_open(inode, file); 1213 } 1214 EXPORT_SYMBOL_GPL(simple_attr_open); 1215 1216 int simple_attr_release(struct inode *inode, struct file *file) 1217 { 1218 kfree(file->private_data); 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1222 1223 /* read from the buffer that is filled with the get function */ 1224 ssize_t simple_attr_read(struct file *file, char __user *buf, 1225 size_t len, loff_t *ppos) 1226 { 1227 struct simple_attr *attr; 1228 size_t size; 1229 ssize_t ret; 1230 1231 attr = file->private_data; 1232 1233 if (!attr->get) 1234 return -EACCES; 1235 1236 ret = mutex_lock_interruptible(&attr->mutex); 1237 if (ret) 1238 return ret; 1239 1240 if (*ppos && attr->get_buf[0]) { 1241 /* continued read */ 1242 size = strlen(attr->get_buf); 1243 } else { 1244 /* first read */ 1245 u64 val; 1246 ret = attr->get(attr->data, &val); 1247 if (ret) 1248 goto out; 1249 1250 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1251 attr->fmt, (unsigned long long)val); 1252 } 1253 1254 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1255 out: 1256 mutex_unlock(&attr->mutex); 1257 return ret; 1258 } 1259 EXPORT_SYMBOL_GPL(simple_attr_read); 1260 1261 /* interpret the buffer as a number to call the set function with */ 1262 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1263 size_t len, loff_t *ppos, bool is_signed) 1264 { 1265 struct simple_attr *attr; 1266 unsigned long long val; 1267 size_t size; 1268 ssize_t ret; 1269 1270 attr = file->private_data; 1271 if (!attr->set) 1272 return -EACCES; 1273 1274 ret = mutex_lock_interruptible(&attr->mutex); 1275 if (ret) 1276 return ret; 1277 1278 ret = -EFAULT; 1279 size = min(sizeof(attr->set_buf) - 1, len); 1280 if (copy_from_user(attr->set_buf, buf, size)) 1281 goto out; 1282 1283 attr->set_buf[size] = '\0'; 1284 if (is_signed) 1285 ret = kstrtoll(attr->set_buf, 0, &val); 1286 else 1287 ret = kstrtoull(attr->set_buf, 0, &val); 1288 if (ret) 1289 goto out; 1290 ret = attr->set(attr->data, val); 1291 if (ret == 0) 1292 ret = len; /* on success, claim we got the whole input */ 1293 out: 1294 mutex_unlock(&attr->mutex); 1295 return ret; 1296 } 1297 1298 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1299 size_t len, loff_t *ppos) 1300 { 1301 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1302 } 1303 EXPORT_SYMBOL_GPL(simple_attr_write); 1304 1305 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1306 size_t len, loff_t *ppos) 1307 { 1308 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1309 } 1310 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1311 1312 /** 1313 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1314 * @sb: filesystem to do the file handle conversion on 1315 * @fid: file handle to convert 1316 * @fh_len: length of the file handle in bytes 1317 * @fh_type: type of file handle 1318 * @get_inode: filesystem callback to retrieve inode 1319 * 1320 * This function decodes @fid as long as it has one of the well-known 1321 * Linux filehandle types and calls @get_inode on it to retrieve the 1322 * inode for the object specified in the file handle. 1323 */ 1324 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1325 int fh_len, int fh_type, struct inode *(*get_inode) 1326 (struct super_block *sb, u64 ino, u32 gen)) 1327 { 1328 struct inode *inode = NULL; 1329 1330 if (fh_len < 2) 1331 return NULL; 1332 1333 switch (fh_type) { 1334 case FILEID_INO32_GEN: 1335 case FILEID_INO32_GEN_PARENT: 1336 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1337 break; 1338 } 1339 1340 return d_obtain_alias(inode); 1341 } 1342 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1343 1344 /** 1345 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1346 * @sb: filesystem to do the file handle conversion on 1347 * @fid: file handle to convert 1348 * @fh_len: length of the file handle in bytes 1349 * @fh_type: type of file handle 1350 * @get_inode: filesystem callback to retrieve inode 1351 * 1352 * This function decodes @fid as long as it has one of the well-known 1353 * Linux filehandle types and calls @get_inode on it to retrieve the 1354 * inode for the _parent_ object specified in the file handle if it 1355 * is specified in the file handle, or NULL otherwise. 1356 */ 1357 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1358 int fh_len, int fh_type, struct inode *(*get_inode) 1359 (struct super_block *sb, u64 ino, u32 gen)) 1360 { 1361 struct inode *inode = NULL; 1362 1363 if (fh_len <= 2) 1364 return NULL; 1365 1366 switch (fh_type) { 1367 case FILEID_INO32_GEN_PARENT: 1368 inode = get_inode(sb, fid->i32.parent_ino, 1369 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1370 break; 1371 } 1372 1373 return d_obtain_alias(inode); 1374 } 1375 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1376 1377 /** 1378 * __generic_file_fsync - generic fsync implementation for simple filesystems 1379 * 1380 * @file: file to synchronize 1381 * @start: start offset in bytes 1382 * @end: end offset in bytes (inclusive) 1383 * @datasync: only synchronize essential metadata if true 1384 * 1385 * This is a generic implementation of the fsync method for simple 1386 * filesystems which track all non-inode metadata in the buffers list 1387 * hanging off the address_space structure. 1388 */ 1389 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1390 int datasync) 1391 { 1392 struct inode *inode = file->f_mapping->host; 1393 int err; 1394 int ret; 1395 1396 err = file_write_and_wait_range(file, start, end); 1397 if (err) 1398 return err; 1399 1400 inode_lock(inode); 1401 ret = sync_mapping_buffers(inode->i_mapping); 1402 if (!(inode->i_state & I_DIRTY_ALL)) 1403 goto out; 1404 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1405 goto out; 1406 1407 err = sync_inode_metadata(inode, 1); 1408 if (ret == 0) 1409 ret = err; 1410 1411 out: 1412 inode_unlock(inode); 1413 /* check and advance again to catch errors after syncing out buffers */ 1414 err = file_check_and_advance_wb_err(file); 1415 if (ret == 0) 1416 ret = err; 1417 return ret; 1418 } 1419 EXPORT_SYMBOL(__generic_file_fsync); 1420 1421 /** 1422 * generic_file_fsync - generic fsync implementation for simple filesystems 1423 * with flush 1424 * @file: file to synchronize 1425 * @start: start offset in bytes 1426 * @end: end offset in bytes (inclusive) 1427 * @datasync: only synchronize essential metadata if true 1428 * 1429 */ 1430 1431 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1432 int datasync) 1433 { 1434 struct inode *inode = file->f_mapping->host; 1435 int err; 1436 1437 err = __generic_file_fsync(file, start, end, datasync); 1438 if (err) 1439 return err; 1440 return blkdev_issue_flush(inode->i_sb->s_bdev); 1441 } 1442 EXPORT_SYMBOL(generic_file_fsync); 1443 1444 /** 1445 * generic_check_addressable - Check addressability of file system 1446 * @blocksize_bits: log of file system block size 1447 * @num_blocks: number of blocks in file system 1448 * 1449 * Determine whether a file system with @num_blocks blocks (and a 1450 * block size of 2**@blocksize_bits) is addressable by the sector_t 1451 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1452 */ 1453 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1454 { 1455 u64 last_fs_block = num_blocks - 1; 1456 u64 last_fs_page = 1457 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1458 1459 if (unlikely(num_blocks == 0)) 1460 return 0; 1461 1462 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1463 return -EINVAL; 1464 1465 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1466 (last_fs_page > (pgoff_t)(~0ULL))) { 1467 return -EFBIG; 1468 } 1469 return 0; 1470 } 1471 EXPORT_SYMBOL(generic_check_addressable); 1472 1473 /* 1474 * No-op implementation of ->fsync for in-memory filesystems. 1475 */ 1476 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1477 { 1478 return 0; 1479 } 1480 EXPORT_SYMBOL(noop_fsync); 1481 1482 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1483 { 1484 /* 1485 * iomap based filesystems support direct I/O without need for 1486 * this callback. However, it still needs to be set in 1487 * inode->a_ops so that open/fcntl know that direct I/O is 1488 * generally supported. 1489 */ 1490 return -EINVAL; 1491 } 1492 EXPORT_SYMBOL_GPL(noop_direct_IO); 1493 1494 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1495 void kfree_link(void *p) 1496 { 1497 kfree(p); 1498 } 1499 EXPORT_SYMBOL(kfree_link); 1500 1501 struct inode *alloc_anon_inode(struct super_block *s) 1502 { 1503 static const struct address_space_operations anon_aops = { 1504 .dirty_folio = noop_dirty_folio, 1505 }; 1506 struct inode *inode = new_inode_pseudo(s); 1507 1508 if (!inode) 1509 return ERR_PTR(-ENOMEM); 1510 1511 inode->i_ino = get_next_ino(); 1512 inode->i_mapping->a_ops = &anon_aops; 1513 1514 /* 1515 * Mark the inode dirty from the very beginning, 1516 * that way it will never be moved to the dirty 1517 * list because mark_inode_dirty() will think 1518 * that it already _is_ on the dirty list. 1519 */ 1520 inode->i_state = I_DIRTY; 1521 inode->i_mode = S_IRUSR | S_IWUSR; 1522 inode->i_uid = current_fsuid(); 1523 inode->i_gid = current_fsgid(); 1524 inode->i_flags |= S_PRIVATE; 1525 simple_inode_init_ts(inode); 1526 return inode; 1527 } 1528 EXPORT_SYMBOL(alloc_anon_inode); 1529 1530 /** 1531 * simple_nosetlease - generic helper for prohibiting leases 1532 * @filp: file pointer 1533 * @arg: type of lease to obtain 1534 * @flp: new lease supplied for insertion 1535 * @priv: private data for lm_setup operation 1536 * 1537 * Generic helper for filesystems that do not wish to allow leases to be set. 1538 * All arguments are ignored and it just returns -EINVAL. 1539 */ 1540 int 1541 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp, 1542 void **priv) 1543 { 1544 return -EINVAL; 1545 } 1546 EXPORT_SYMBOL(simple_nosetlease); 1547 1548 /** 1549 * simple_get_link - generic helper to get the target of "fast" symlinks 1550 * @dentry: not used here 1551 * @inode: the symlink inode 1552 * @done: not used here 1553 * 1554 * Generic helper for filesystems to use for symlink inodes where a pointer to 1555 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1556 * since as an optimization the path lookup code uses any non-NULL ->i_link 1557 * directly, without calling ->get_link(). But ->get_link() still must be set, 1558 * to mark the inode_operations as being for a symlink. 1559 * 1560 * Return: the symlink target 1561 */ 1562 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1563 struct delayed_call *done) 1564 { 1565 return inode->i_link; 1566 } 1567 EXPORT_SYMBOL(simple_get_link); 1568 1569 const struct inode_operations simple_symlink_inode_operations = { 1570 .get_link = simple_get_link, 1571 }; 1572 EXPORT_SYMBOL(simple_symlink_inode_operations); 1573 1574 /* 1575 * Operations for a permanently empty directory. 1576 */ 1577 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1578 { 1579 return ERR_PTR(-ENOENT); 1580 } 1581 1582 static int empty_dir_getattr(struct mnt_idmap *idmap, 1583 const struct path *path, struct kstat *stat, 1584 u32 request_mask, unsigned int query_flags) 1585 { 1586 struct inode *inode = d_inode(path->dentry); 1587 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1588 return 0; 1589 } 1590 1591 static int empty_dir_setattr(struct mnt_idmap *idmap, 1592 struct dentry *dentry, struct iattr *attr) 1593 { 1594 return -EPERM; 1595 } 1596 1597 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1598 { 1599 return -EOPNOTSUPP; 1600 } 1601 1602 static const struct inode_operations empty_dir_inode_operations = { 1603 .lookup = empty_dir_lookup, 1604 .permission = generic_permission, 1605 .setattr = empty_dir_setattr, 1606 .getattr = empty_dir_getattr, 1607 .listxattr = empty_dir_listxattr, 1608 }; 1609 1610 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1611 { 1612 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1613 return generic_file_llseek_size(file, offset, whence, 2, 2); 1614 } 1615 1616 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1617 { 1618 dir_emit_dots(file, ctx); 1619 return 0; 1620 } 1621 1622 static const struct file_operations empty_dir_operations = { 1623 .llseek = empty_dir_llseek, 1624 .read = generic_read_dir, 1625 .iterate_shared = empty_dir_readdir, 1626 .fsync = noop_fsync, 1627 }; 1628 1629 1630 void make_empty_dir_inode(struct inode *inode) 1631 { 1632 set_nlink(inode, 2); 1633 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1634 inode->i_uid = GLOBAL_ROOT_UID; 1635 inode->i_gid = GLOBAL_ROOT_GID; 1636 inode->i_rdev = 0; 1637 inode->i_size = 0; 1638 inode->i_blkbits = PAGE_SHIFT; 1639 inode->i_blocks = 0; 1640 1641 inode->i_op = &empty_dir_inode_operations; 1642 inode->i_opflags &= ~IOP_XATTR; 1643 inode->i_fop = &empty_dir_operations; 1644 } 1645 1646 bool is_empty_dir_inode(struct inode *inode) 1647 { 1648 return (inode->i_fop == &empty_dir_operations) && 1649 (inode->i_op == &empty_dir_inode_operations); 1650 } 1651 1652 #if IS_ENABLED(CONFIG_UNICODE) 1653 /** 1654 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1655 * @dentry: dentry whose name we are checking against 1656 * @len: len of name of dentry 1657 * @str: str pointer to name of dentry 1658 * @name: Name to compare against 1659 * 1660 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1661 */ 1662 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1663 const char *str, const struct qstr *name) 1664 { 1665 const struct dentry *parent = READ_ONCE(dentry->d_parent); 1666 const struct inode *dir = READ_ONCE(parent->d_inode); 1667 const struct super_block *sb = dentry->d_sb; 1668 const struct unicode_map *um = sb->s_encoding; 1669 struct qstr qstr = QSTR_INIT(str, len); 1670 char strbuf[DNAME_INLINE_LEN]; 1671 int ret; 1672 1673 if (!dir || !IS_CASEFOLDED(dir)) 1674 goto fallback; 1675 /* 1676 * If the dentry name is stored in-line, then it may be concurrently 1677 * modified by a rename. If this happens, the VFS will eventually retry 1678 * the lookup, so it doesn't matter what ->d_compare() returns. 1679 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1680 * string. Therefore, we have to copy the name into a temporary buffer. 1681 */ 1682 if (len <= DNAME_INLINE_LEN - 1) { 1683 memcpy(strbuf, str, len); 1684 strbuf[len] = 0; 1685 qstr.name = strbuf; 1686 /* prevent compiler from optimizing out the temporary buffer */ 1687 barrier(); 1688 } 1689 ret = utf8_strncasecmp(um, name, &qstr); 1690 if (ret >= 0) 1691 return ret; 1692 1693 if (sb_has_strict_encoding(sb)) 1694 return -EINVAL; 1695 fallback: 1696 if (len != name->len) 1697 return 1; 1698 return !!memcmp(str, name->name, len); 1699 } 1700 1701 /** 1702 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1703 * @dentry: dentry of the parent directory 1704 * @str: qstr of name whose hash we should fill in 1705 * 1706 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1707 */ 1708 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1709 { 1710 const struct inode *dir = READ_ONCE(dentry->d_inode); 1711 struct super_block *sb = dentry->d_sb; 1712 const struct unicode_map *um = sb->s_encoding; 1713 int ret = 0; 1714 1715 if (!dir || !IS_CASEFOLDED(dir)) 1716 return 0; 1717 1718 ret = utf8_casefold_hash(um, dentry, str); 1719 if (ret < 0 && sb_has_strict_encoding(sb)) 1720 return -EINVAL; 1721 return 0; 1722 } 1723 1724 static const struct dentry_operations generic_ci_dentry_ops = { 1725 .d_hash = generic_ci_d_hash, 1726 .d_compare = generic_ci_d_compare, 1727 }; 1728 #endif 1729 1730 #ifdef CONFIG_FS_ENCRYPTION 1731 static const struct dentry_operations generic_encrypted_dentry_ops = { 1732 .d_revalidate = fscrypt_d_revalidate, 1733 }; 1734 #endif 1735 1736 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1737 static const struct dentry_operations generic_encrypted_ci_dentry_ops = { 1738 .d_hash = generic_ci_d_hash, 1739 .d_compare = generic_ci_d_compare, 1740 .d_revalidate = fscrypt_d_revalidate, 1741 }; 1742 #endif 1743 1744 /** 1745 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry 1746 * @dentry: dentry to set ops on 1747 * 1748 * Casefolded directories need d_hash and d_compare set, so that the dentries 1749 * contained in them are handled case-insensitively. Note that these operations 1750 * are needed on the parent directory rather than on the dentries in it, and 1751 * while the casefolding flag can be toggled on and off on an empty directory, 1752 * dentry_operations can't be changed later. As a result, if the filesystem has 1753 * casefolding support enabled at all, we have to give all dentries the 1754 * casefolding operations even if their inode doesn't have the casefolding flag 1755 * currently (and thus the casefolding ops would be no-ops for now). 1756 * 1757 * Encryption works differently in that the only dentry operation it needs is 1758 * d_revalidate, which it only needs on dentries that have the no-key name flag. 1759 * The no-key flag can't be set "later", so we don't have to worry about that. 1760 * 1761 * Finally, to maximize compatibility with overlayfs (which isn't compatible 1762 * with certain dentry operations) and to avoid taking an unnecessary 1763 * performance hit, we use custom dentry_operations for each possible 1764 * combination rather than always installing all operations. 1765 */ 1766 void generic_set_encrypted_ci_d_ops(struct dentry *dentry) 1767 { 1768 #ifdef CONFIG_FS_ENCRYPTION 1769 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; 1770 #endif 1771 #if IS_ENABLED(CONFIG_UNICODE) 1772 bool needs_ci_ops = dentry->d_sb->s_encoding; 1773 #endif 1774 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1775 if (needs_encrypt_ops && needs_ci_ops) { 1776 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); 1777 return; 1778 } 1779 #endif 1780 #ifdef CONFIG_FS_ENCRYPTION 1781 if (needs_encrypt_ops) { 1782 d_set_d_op(dentry, &generic_encrypted_dentry_ops); 1783 return; 1784 } 1785 #endif 1786 #if IS_ENABLED(CONFIG_UNICODE) 1787 if (needs_ci_ops) { 1788 d_set_d_op(dentry, &generic_ci_dentry_ops); 1789 return; 1790 } 1791 #endif 1792 } 1793 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops); 1794 1795 /** 1796 * inode_maybe_inc_iversion - increments i_version 1797 * @inode: inode with the i_version that should be updated 1798 * @force: increment the counter even if it's not necessary? 1799 * 1800 * Every time the inode is modified, the i_version field must be seen to have 1801 * changed by any observer. 1802 * 1803 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1804 * the value, and clear the queried flag. 1805 * 1806 * In the common case where neither is set, then we can return "false" without 1807 * updating i_version. 1808 * 1809 * If this function returns false, and no other metadata has changed, then we 1810 * can avoid logging the metadata. 1811 */ 1812 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1813 { 1814 u64 cur, new; 1815 1816 /* 1817 * The i_version field is not strictly ordered with any other inode 1818 * information, but the legacy inode_inc_iversion code used a spinlock 1819 * to serialize increments. 1820 * 1821 * Here, we add full memory barriers to ensure that any de-facto 1822 * ordering with other info is preserved. 1823 * 1824 * This barrier pairs with the barrier in inode_query_iversion() 1825 */ 1826 smp_mb(); 1827 cur = inode_peek_iversion_raw(inode); 1828 do { 1829 /* If flag is clear then we needn't do anything */ 1830 if (!force && !(cur & I_VERSION_QUERIED)) 1831 return false; 1832 1833 /* Since lowest bit is flag, add 2 to avoid it */ 1834 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 1835 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1836 return true; 1837 } 1838 EXPORT_SYMBOL(inode_maybe_inc_iversion); 1839 1840 /** 1841 * inode_query_iversion - read i_version for later use 1842 * @inode: inode from which i_version should be read 1843 * 1844 * Read the inode i_version counter. This should be used by callers that wish 1845 * to store the returned i_version for later comparison. This will guarantee 1846 * that a later query of the i_version will result in a different value if 1847 * anything has changed. 1848 * 1849 * In this implementation, we fetch the current value, set the QUERIED flag and 1850 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 1851 * that fails, we try again with the newly fetched value from the cmpxchg. 1852 */ 1853 u64 inode_query_iversion(struct inode *inode) 1854 { 1855 u64 cur, new; 1856 1857 cur = inode_peek_iversion_raw(inode); 1858 do { 1859 /* If flag is already set, then no need to swap */ 1860 if (cur & I_VERSION_QUERIED) { 1861 /* 1862 * This barrier (and the implicit barrier in the 1863 * cmpxchg below) pairs with the barrier in 1864 * inode_maybe_inc_iversion(). 1865 */ 1866 smp_mb(); 1867 break; 1868 } 1869 1870 new = cur | I_VERSION_QUERIED; 1871 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1872 return cur >> I_VERSION_QUERIED_SHIFT; 1873 } 1874 EXPORT_SYMBOL(inode_query_iversion); 1875 1876 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 1877 ssize_t direct_written, ssize_t buffered_written) 1878 { 1879 struct address_space *mapping = iocb->ki_filp->f_mapping; 1880 loff_t pos = iocb->ki_pos - buffered_written; 1881 loff_t end = iocb->ki_pos - 1; 1882 int err; 1883 1884 /* 1885 * If the buffered write fallback returned an error, we want to return 1886 * the number of bytes which were written by direct I/O, or the error 1887 * code if that was zero. 1888 * 1889 * Note that this differs from normal direct-io semantics, which will 1890 * return -EFOO even if some bytes were written. 1891 */ 1892 if (unlikely(buffered_written < 0)) { 1893 if (direct_written) 1894 return direct_written; 1895 return buffered_written; 1896 } 1897 1898 /* 1899 * We need to ensure that the page cache pages are written to disk and 1900 * invalidated to preserve the expected O_DIRECT semantics. 1901 */ 1902 err = filemap_write_and_wait_range(mapping, pos, end); 1903 if (err < 0) { 1904 /* 1905 * We don't know how much we wrote, so just return the number of 1906 * bytes which were direct-written 1907 */ 1908 iocb->ki_pos -= buffered_written; 1909 if (direct_written) 1910 return direct_written; 1911 return err; 1912 } 1913 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 1914 return direct_written + buffered_written; 1915 } 1916 EXPORT_SYMBOL_GPL(direct_write_fallback); 1917 1918 /** 1919 * simple_inode_init_ts - initialize the timestamps for a new inode 1920 * @inode: inode to be initialized 1921 * 1922 * When a new inode is created, most filesystems set the timestamps to the 1923 * current time. Add a helper to do this. 1924 */ 1925 struct timespec64 simple_inode_init_ts(struct inode *inode) 1926 { 1927 struct timespec64 ts = inode_set_ctime_current(inode); 1928 1929 inode_set_atime_to_ts(inode, ts); 1930 inode_set_mtime_to_ts(inode, ts); 1931 return ts; 1932 } 1933 EXPORT_SYMBOL(simple_inode_init_ts); 1934