xref: /linux/fs/libfs.c (revision 7cd122b55283d3ceef71a5b723ccaa03a72284b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 #include "internal.h"
31 
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 		   struct kstat *stat, u32 request_mask,
34 		   unsigned int query_flags)
35 {
36 	struct inode *inode = d_inode(path->dentry);
37 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 	return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42 
simple_statfs(struct dentry * dentry,struct kstatfs * buf)43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46 
47 	buf->f_fsid = u64_to_fsid(id);
48 	buf->f_type = dentry->d_sb->s_magic;
49 	buf->f_bsize = PAGE_SIZE;
50 	buf->f_namelen = NAME_MAX;
51 	return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54 
55 /*
56  * Retaining negative dentries for an in-memory filesystem just wastes
57  * memory and lookup time: arrange for them to be deleted immediately.
58  */
always_delete_dentry(const struct dentry * dentry)59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 	return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64 
65 /*
66  * Lookup the data. This is trivial - if the dentry didn't already
67  * exist, we know it is negative.  Set d_op to delete negative dentries.
68  */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 	if (dentry->d_name.len > NAME_MAX)
72 		return ERR_PTR(-ENAMETOOLONG);
73 	if (!dentry->d_op && !(dentry->d_flags & DCACHE_DONTCACHE)) {
74 		spin_lock(&dentry->d_lock);
75 		dentry->d_flags |= DCACHE_DONTCACHE;
76 		spin_unlock(&dentry->d_lock);
77 	}
78 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
79 		return NULL;
80 
81 	d_add(dentry, NULL);
82 	return NULL;
83 }
84 EXPORT_SYMBOL(simple_lookup);
85 
dcache_dir_open(struct inode * inode,struct file * file)86 int dcache_dir_open(struct inode *inode, struct file *file)
87 {
88 	file->private_data = d_alloc_cursor(file->f_path.dentry);
89 
90 	return file->private_data ? 0 : -ENOMEM;
91 }
92 EXPORT_SYMBOL(dcache_dir_open);
93 
dcache_dir_close(struct inode * inode,struct file * file)94 int dcache_dir_close(struct inode *inode, struct file *file)
95 {
96 	dput(file->private_data);
97 	return 0;
98 }
99 EXPORT_SYMBOL(dcache_dir_close);
100 
101 /* parent is locked at least shared */
102 /*
103  * Returns an element of siblings' list.
104  * We are looking for <count>th positive after <p>; if
105  * found, dentry is grabbed and returned to caller.
106  * If no such element exists, NULL is returned.
107  */
scan_positives(struct dentry * cursor,struct hlist_node ** p,loff_t count,struct dentry * last)108 static struct dentry *scan_positives(struct dentry *cursor,
109 					struct hlist_node **p,
110 					loff_t count,
111 					struct dentry *last)
112 {
113 	struct dentry *dentry = cursor->d_parent, *found = NULL;
114 
115 	spin_lock(&dentry->d_lock);
116 	while (*p) {
117 		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
118 		p = &d->d_sib.next;
119 		// we must at least skip cursors, to avoid livelocks
120 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
121 			continue;
122 		if (simple_positive(d) && !--count) {
123 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
124 			if (simple_positive(d))
125 				found = dget_dlock(d);
126 			spin_unlock(&d->d_lock);
127 			if (likely(found))
128 				break;
129 			count = 1;
130 		}
131 		if (need_resched()) {
132 			if (!hlist_unhashed(&cursor->d_sib))
133 				__hlist_del(&cursor->d_sib);
134 			hlist_add_behind(&cursor->d_sib, &d->d_sib);
135 			p = &cursor->d_sib.next;
136 			spin_unlock(&dentry->d_lock);
137 			cond_resched();
138 			spin_lock(&dentry->d_lock);
139 		}
140 	}
141 	spin_unlock(&dentry->d_lock);
142 	dput(last);
143 	return found;
144 }
145 
dcache_dir_lseek(struct file * file,loff_t offset,int whence)146 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
147 {
148 	struct dentry *dentry = file->f_path.dentry;
149 	switch (whence) {
150 		case 1:
151 			offset += file->f_pos;
152 			fallthrough;
153 		case 0:
154 			if (offset >= 0)
155 				break;
156 			fallthrough;
157 		default:
158 			return -EINVAL;
159 	}
160 	if (offset != file->f_pos) {
161 		struct dentry *cursor = file->private_data;
162 		struct dentry *to = NULL;
163 
164 		inode_lock_shared(dentry->d_inode);
165 
166 		if (offset > 2)
167 			to = scan_positives(cursor, &dentry->d_children.first,
168 					    offset - 2, NULL);
169 		spin_lock(&dentry->d_lock);
170 		hlist_del_init(&cursor->d_sib);
171 		if (to)
172 			hlist_add_behind(&cursor->d_sib, &to->d_sib);
173 		spin_unlock(&dentry->d_lock);
174 		dput(to);
175 
176 		file->f_pos = offset;
177 
178 		inode_unlock_shared(dentry->d_inode);
179 	}
180 	return offset;
181 }
182 EXPORT_SYMBOL(dcache_dir_lseek);
183 
184 /*
185  * Directory is locked and all positive dentries in it are safe, since
186  * for ramfs-type trees they can't go away without unlink() or rmdir(),
187  * both impossible due to the lock on directory.
188  */
189 
dcache_readdir(struct file * file,struct dir_context * ctx)190 int dcache_readdir(struct file *file, struct dir_context *ctx)
191 {
192 	struct dentry *dentry = file->f_path.dentry;
193 	struct dentry *cursor = file->private_data;
194 	struct dentry *next = NULL;
195 	struct hlist_node **p;
196 
197 	if (!dir_emit_dots(file, ctx))
198 		return 0;
199 
200 	if (ctx->pos == 2)
201 		p = &dentry->d_children.first;
202 	else
203 		p = &cursor->d_sib.next;
204 
205 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
206 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
207 			      d_inode(next)->i_ino,
208 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
209 			break;
210 		ctx->pos++;
211 		p = &next->d_sib.next;
212 	}
213 	spin_lock(&dentry->d_lock);
214 	hlist_del_init(&cursor->d_sib);
215 	if (next)
216 		hlist_add_before(&cursor->d_sib, &next->d_sib);
217 	spin_unlock(&dentry->d_lock);
218 	dput(next);
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL(dcache_readdir);
223 
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225 {
226 	return -EISDIR;
227 }
228 EXPORT_SYMBOL(generic_read_dir);
229 
230 const struct file_operations simple_dir_operations = {
231 	.open		= dcache_dir_open,
232 	.release	= dcache_dir_close,
233 	.llseek		= dcache_dir_lseek,
234 	.read		= generic_read_dir,
235 	.iterate_shared	= dcache_readdir,
236 	.fsync		= noop_fsync,
237 };
238 EXPORT_SYMBOL(simple_dir_operations);
239 
240 const struct inode_operations simple_dir_inode_operations = {
241 	.lookup		= simple_lookup,
242 };
243 EXPORT_SYMBOL(simple_dir_inode_operations);
244 
245 /* simple_offset_add() never assigns these to a dentry */
246 enum {
247 	DIR_OFFSET_FIRST	= 2,		/* Find first real entry */
248 	DIR_OFFSET_EOD		= S32_MAX,
249 };
250 
251 /* simple_offset_add() allocation range */
252 enum {
253 	DIR_OFFSET_MIN		= DIR_OFFSET_FIRST + 1,
254 	DIR_OFFSET_MAX		= DIR_OFFSET_EOD - 1,
255 };
256 
offset_set(struct dentry * dentry,long offset)257 static void offset_set(struct dentry *dentry, long offset)
258 {
259 	dentry->d_fsdata = (void *)offset;
260 }
261 
dentry2offset(struct dentry * dentry)262 static long dentry2offset(struct dentry *dentry)
263 {
264 	return (long)dentry->d_fsdata;
265 }
266 
267 static struct lock_class_key simple_offset_lock_class;
268 
269 /**
270  * simple_offset_init - initialize an offset_ctx
271  * @octx: directory offset map to be initialized
272  *
273  */
simple_offset_init(struct offset_ctx * octx)274 void simple_offset_init(struct offset_ctx *octx)
275 {
276 	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
277 	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
278 	octx->next_offset = DIR_OFFSET_MIN;
279 }
280 
281 /**
282  * simple_offset_add - Add an entry to a directory's offset map
283  * @octx: directory offset ctx to be updated
284  * @dentry: new dentry being added
285  *
286  * Returns zero on success. @octx and the dentry's offset are updated.
287  * Otherwise, a negative errno value is returned.
288  */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)289 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
290 {
291 	unsigned long offset;
292 	int ret;
293 
294 	if (dentry2offset(dentry) != 0)
295 		return -EBUSY;
296 
297 	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
298 				 DIR_OFFSET_MAX, &octx->next_offset,
299 				 GFP_KERNEL);
300 	if (unlikely(ret < 0))
301 		return ret == -EBUSY ? -ENOSPC : ret;
302 
303 	offset_set(dentry, offset);
304 	return 0;
305 }
306 
simple_offset_replace(struct offset_ctx * octx,struct dentry * dentry,long offset)307 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
308 				 long offset)
309 {
310 	int ret;
311 
312 	ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
313 	if (ret)
314 		return ret;
315 	offset_set(dentry, offset);
316 	return 0;
317 }
318 
319 /**
320  * simple_offset_remove - Remove an entry to a directory's offset map
321  * @octx: directory offset ctx to be updated
322  * @dentry: dentry being removed
323  *
324  */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)325 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
326 {
327 	long offset;
328 
329 	offset = dentry2offset(dentry);
330 	if (offset == 0)
331 		return;
332 
333 	mtree_erase(&octx->mt, offset);
334 	offset_set(dentry, 0);
335 }
336 
337 /**
338  * simple_offset_rename - handle directory offsets for rename
339  * @old_dir: parent directory of source entry
340  * @old_dentry: dentry of source entry
341  * @new_dir: parent_directory of destination entry
342  * @new_dentry: dentry of destination
343  *
344  * Caller provides appropriate serialization.
345  *
346  * User space expects the directory offset value of the replaced
347  * (new) directory entry to be unchanged after a rename.
348  *
349  * Returns zero on success, a negative errno value on failure.
350  */
simple_offset_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)351 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
352 			 struct inode *new_dir, struct dentry *new_dentry)
353 {
354 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
355 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
356 	long new_offset = dentry2offset(new_dentry);
357 
358 	simple_offset_remove(old_ctx, old_dentry);
359 
360 	if (new_offset) {
361 		offset_set(new_dentry, 0);
362 		return simple_offset_replace(new_ctx, old_dentry, new_offset);
363 	}
364 	return simple_offset_add(new_ctx, old_dentry);
365 }
366 
367 /**
368  * simple_offset_rename_exchange - exchange rename with directory offsets
369  * @old_dir: parent of dentry being moved
370  * @old_dentry: dentry being moved
371  * @new_dir: destination parent
372  * @new_dentry: destination dentry
373  *
374  * This API preserves the directory offset values. Caller provides
375  * appropriate serialization.
376  *
377  * Returns zero on success. Otherwise a negative errno is returned and the
378  * rename is rolled back.
379  */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)380 int simple_offset_rename_exchange(struct inode *old_dir,
381 				  struct dentry *old_dentry,
382 				  struct inode *new_dir,
383 				  struct dentry *new_dentry)
384 {
385 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
386 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
387 	long old_index = dentry2offset(old_dentry);
388 	long new_index = dentry2offset(new_dentry);
389 	int ret;
390 
391 	simple_offset_remove(old_ctx, old_dentry);
392 	simple_offset_remove(new_ctx, new_dentry);
393 
394 	ret = simple_offset_replace(new_ctx, old_dentry, new_index);
395 	if (ret)
396 		goto out_restore;
397 
398 	ret = simple_offset_replace(old_ctx, new_dentry, old_index);
399 	if (ret) {
400 		simple_offset_remove(new_ctx, old_dentry);
401 		goto out_restore;
402 	}
403 
404 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
405 	if (ret) {
406 		simple_offset_remove(new_ctx, old_dentry);
407 		simple_offset_remove(old_ctx, new_dentry);
408 		goto out_restore;
409 	}
410 	return 0;
411 
412 out_restore:
413 	(void)simple_offset_replace(old_ctx, old_dentry, old_index);
414 	(void)simple_offset_replace(new_ctx, new_dentry, new_index);
415 	return ret;
416 }
417 
418 /**
419  * simple_offset_destroy - Release offset map
420  * @octx: directory offset ctx that is about to be destroyed
421  *
422  * During fs teardown (eg. umount), a directory's offset map might still
423  * contain entries. xa_destroy() cleans out anything that remains.
424  */
simple_offset_destroy(struct offset_ctx * octx)425 void simple_offset_destroy(struct offset_ctx *octx)
426 {
427 	mtree_destroy(&octx->mt);
428 }
429 
430 /**
431  * offset_dir_llseek - Advance the read position of a directory descriptor
432  * @file: an open directory whose position is to be updated
433  * @offset: a byte offset
434  * @whence: enumerator describing the starting position for this update
435  *
436  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
437  *
438  * Returns the updated read position if successful; otherwise a
439  * negative errno is returned and the read position remains unchanged.
440  */
offset_dir_llseek(struct file * file,loff_t offset,int whence)441 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
442 {
443 	switch (whence) {
444 	case SEEK_CUR:
445 		offset += file->f_pos;
446 		fallthrough;
447 	case SEEK_SET:
448 		if (offset >= 0)
449 			break;
450 		fallthrough;
451 	default:
452 		return -EINVAL;
453 	}
454 
455 	return vfs_setpos(file, offset, LONG_MAX);
456 }
457 
find_positive_dentry(struct dentry * parent,struct dentry * dentry,bool next)458 static struct dentry *find_positive_dentry(struct dentry *parent,
459 					   struct dentry *dentry,
460 					   bool next)
461 {
462 	struct dentry *found = NULL;
463 
464 	spin_lock(&parent->d_lock);
465 	if (next)
466 		dentry = d_next_sibling(dentry);
467 	else if (!dentry)
468 		dentry = d_first_child(parent);
469 	hlist_for_each_entry_from(dentry, d_sib) {
470 		if (!simple_positive(dentry))
471 			continue;
472 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
473 		if (simple_positive(dentry))
474 			found = dget_dlock(dentry);
475 		spin_unlock(&dentry->d_lock);
476 		if (likely(found))
477 			break;
478 	}
479 	spin_unlock(&parent->d_lock);
480 	return found;
481 }
482 
483 static noinline_for_stack struct dentry *
offset_dir_lookup(struct dentry * parent,loff_t offset)484 offset_dir_lookup(struct dentry *parent, loff_t offset)
485 {
486 	struct inode *inode = d_inode(parent);
487 	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
488 	struct dentry *child, *found = NULL;
489 
490 	MA_STATE(mas, &octx->mt, offset, offset);
491 
492 	if (offset == DIR_OFFSET_FIRST)
493 		found = find_positive_dentry(parent, NULL, false);
494 	else {
495 		rcu_read_lock();
496 		child = mas_find_rev(&mas, DIR_OFFSET_MIN);
497 		found = find_positive_dentry(parent, child, false);
498 		rcu_read_unlock();
499 	}
500 	return found;
501 }
502 
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)503 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
504 {
505 	struct inode *inode = d_inode(dentry);
506 
507 	return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
508 			inode->i_ino, fs_umode_to_dtype(inode->i_mode));
509 }
510 
offset_iterate_dir(struct file * file,struct dir_context * ctx)511 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
512 {
513 	struct dentry *dir = file->f_path.dentry;
514 	struct dentry *dentry;
515 
516 	dentry = offset_dir_lookup(dir, ctx->pos);
517 	if (!dentry)
518 		goto out_eod;
519 	while (true) {
520 		struct dentry *next;
521 
522 		ctx->pos = dentry2offset(dentry);
523 		if (!offset_dir_emit(ctx, dentry))
524 			break;
525 
526 		next = find_positive_dentry(dir, dentry, true);
527 		dput(dentry);
528 
529 		if (!next)
530 			goto out_eod;
531 		dentry = next;
532 	}
533 	dput(dentry);
534 	return;
535 
536 out_eod:
537 	ctx->pos = DIR_OFFSET_EOD;
538 }
539 
540 /**
541  * offset_readdir - Emit entries starting at offset @ctx->pos
542  * @file: an open directory to iterate over
543  * @ctx: directory iteration context
544  *
545  * Caller must hold @file's i_rwsem to prevent insertion or removal of
546  * entries during this call.
547  *
548  * On entry, @ctx->pos contains an offset that represents the first entry
549  * to be read from the directory.
550  *
551  * The operation continues until there are no more entries to read, or
552  * until the ctx->actor indicates there is no more space in the caller's
553  * output buffer.
554  *
555  * On return, @ctx->pos contains an offset that will read the next entry
556  * in this directory when offset_readdir() is called again with @ctx.
557  * Caller places this value in the d_off field of the last entry in the
558  * user's buffer.
559  *
560  * Return values:
561  *   %0 - Complete
562  */
offset_readdir(struct file * file,struct dir_context * ctx)563 static int offset_readdir(struct file *file, struct dir_context *ctx)
564 {
565 	struct dentry *dir = file->f_path.dentry;
566 
567 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
568 
569 	if (!dir_emit_dots(file, ctx))
570 		return 0;
571 	if (ctx->pos != DIR_OFFSET_EOD)
572 		offset_iterate_dir(file, ctx);
573 	return 0;
574 }
575 
576 const struct file_operations simple_offset_dir_operations = {
577 	.llseek		= offset_dir_llseek,
578 	.iterate_shared	= offset_readdir,
579 	.read		= generic_read_dir,
580 	.fsync		= noop_fsync,
581 };
582 
find_next_child(struct dentry * parent,struct dentry * prev)583 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
584 {
585 	struct dentry *child = NULL, *d;
586 
587 	spin_lock(&parent->d_lock);
588 	d = prev ? d_next_sibling(prev) : d_first_child(parent);
589 	hlist_for_each_entry_from(d, d_sib) {
590 		if (simple_positive(d)) {
591 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
592 			if (simple_positive(d))
593 				child = dget_dlock(d);
594 			spin_unlock(&d->d_lock);
595 			if (likely(child))
596 				break;
597 		}
598 	}
599 	spin_unlock(&parent->d_lock);
600 	dput(prev);
601 	return child;
602 }
603 EXPORT_SYMBOL(find_next_child);
604 
__simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *),bool locked)605 static void __simple_recursive_removal(struct dentry *dentry,
606                               void (*callback)(struct dentry *),
607 			      bool locked)
608 {
609 	struct dentry *this = dget(dentry);
610 	while (true) {
611 		struct dentry *victim = NULL, *child;
612 		struct inode *inode = this->d_inode;
613 
614 		inode_lock_nested(inode, I_MUTEX_CHILD);
615 		if (d_is_dir(this))
616 			inode->i_flags |= S_DEAD;
617 		while ((child = find_next_child(this, victim)) == NULL) {
618 			// kill and ascend
619 			// update metadata while it's still locked
620 			inode_set_ctime_current(inode);
621 			clear_nlink(inode);
622 			inode_unlock(inode);
623 			victim = this;
624 			this = this->d_parent;
625 			inode = this->d_inode;
626 			if (!locked || victim != dentry)
627 				inode_lock_nested(inode, I_MUTEX_CHILD);
628 			if (simple_positive(victim)) {
629 				d_invalidate(victim);	// avoid lost mounts
630 				if (callback)
631 					callback(victim);
632 				fsnotify_delete(inode, d_inode(victim), victim);
633 				d_make_discardable(victim);
634 			}
635 			if (victim == dentry) {
636 				inode_set_mtime_to_ts(inode,
637 						      inode_set_ctime_current(inode));
638 				if (d_is_dir(dentry))
639 					drop_nlink(inode);
640 				if (!locked)
641 					inode_unlock(inode);
642 				dput(dentry);
643 				return;
644 			}
645 		}
646 		inode_unlock(inode);
647 		this = child;
648 	}
649 }
650 
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))651 void simple_recursive_removal(struct dentry *dentry,
652                               void (*callback)(struct dentry *))
653 {
654 	return __simple_recursive_removal(dentry, callback, false);
655 }
656 EXPORT_SYMBOL(simple_recursive_removal);
657 
simple_remove_by_name(struct dentry * parent,const char * name,void (* callback)(struct dentry *))658 void simple_remove_by_name(struct dentry *parent, const char *name,
659                            void (*callback)(struct dentry *))
660 {
661 	struct dentry *dentry;
662 
663 	dentry = lookup_noperm_positive_unlocked(&QSTR(name), parent);
664 	if (!IS_ERR(dentry)) {
665 		simple_recursive_removal(dentry, callback);
666 		dput(dentry);	// paired with lookup_noperm_positive_unlocked()
667 	}
668 }
669 EXPORT_SYMBOL(simple_remove_by_name);
670 
671 /* caller holds parent directory with I_MUTEX_PARENT */
locked_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))672 void locked_recursive_removal(struct dentry *dentry,
673                               void (*callback)(struct dentry *))
674 {
675 	return __simple_recursive_removal(dentry, callback, true);
676 }
677 EXPORT_SYMBOL(locked_recursive_removal);
678 
679 static const struct super_operations simple_super_operations = {
680 	.statfs		= simple_statfs,
681 };
682 
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)683 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
684 {
685 	struct pseudo_fs_context *ctx = fc->fs_private;
686 	struct inode *root;
687 
688 	s->s_maxbytes = MAX_LFS_FILESIZE;
689 	s->s_blocksize = PAGE_SIZE;
690 	s->s_blocksize_bits = PAGE_SHIFT;
691 	s->s_magic = ctx->magic;
692 	s->s_op = ctx->ops ?: &simple_super_operations;
693 	s->s_export_op = ctx->eops;
694 	s->s_xattr = ctx->xattr;
695 	s->s_time_gran = 1;
696 	s->s_d_flags |= ctx->s_d_flags;
697 	root = new_inode(s);
698 	if (!root)
699 		return -ENOMEM;
700 
701 	/*
702 	 * since this is the first inode, make it number 1. New inodes created
703 	 * after this must take care not to collide with it (by passing
704 	 * max_reserved of 1 to iunique).
705 	 */
706 	root->i_ino = 1;
707 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
708 	simple_inode_init_ts(root);
709 	s->s_root = d_make_root(root);
710 	if (!s->s_root)
711 		return -ENOMEM;
712 	set_default_d_op(s, ctx->dops);
713 	return 0;
714 }
715 
pseudo_fs_get_tree(struct fs_context * fc)716 static int pseudo_fs_get_tree(struct fs_context *fc)
717 {
718 	return get_tree_nodev(fc, pseudo_fs_fill_super);
719 }
720 
pseudo_fs_free(struct fs_context * fc)721 static void pseudo_fs_free(struct fs_context *fc)
722 {
723 	kfree(fc->fs_private);
724 }
725 
726 static const struct fs_context_operations pseudo_fs_context_ops = {
727 	.free		= pseudo_fs_free,
728 	.get_tree	= pseudo_fs_get_tree,
729 };
730 
731 /*
732  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
733  * will never be mountable)
734  */
init_pseudo(struct fs_context * fc,unsigned long magic)735 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
736 					unsigned long magic)
737 {
738 	struct pseudo_fs_context *ctx;
739 
740 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
741 	if (likely(ctx)) {
742 		ctx->magic = magic;
743 		fc->fs_private = ctx;
744 		fc->ops = &pseudo_fs_context_ops;
745 		fc->sb_flags |= SB_NOUSER;
746 		fc->global = true;
747 	}
748 	return ctx;
749 }
750 EXPORT_SYMBOL(init_pseudo);
751 
simple_open(struct inode * inode,struct file * file)752 int simple_open(struct inode *inode, struct file *file)
753 {
754 	if (inode->i_private)
755 		file->private_data = inode->i_private;
756 	return 0;
757 }
758 EXPORT_SYMBOL(simple_open);
759 
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)760 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
761 {
762 	struct inode *inode = d_inode(old_dentry);
763 
764 	inode_set_mtime_to_ts(dir,
765 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
766 	inc_nlink(inode);
767 	ihold(inode);
768 	d_make_persistent(dentry, inode);
769 	return 0;
770 }
771 EXPORT_SYMBOL(simple_link);
772 
simple_empty(struct dentry * dentry)773 int simple_empty(struct dentry *dentry)
774 {
775 	struct dentry *child;
776 	int ret = 0;
777 
778 	spin_lock(&dentry->d_lock);
779 	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
780 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
781 		if (simple_positive(child)) {
782 			spin_unlock(&child->d_lock);
783 			goto out;
784 		}
785 		spin_unlock(&child->d_lock);
786 	}
787 	ret = 1;
788 out:
789 	spin_unlock(&dentry->d_lock);
790 	return ret;
791 }
792 EXPORT_SYMBOL(simple_empty);
793 
__simple_unlink(struct inode * dir,struct dentry * dentry)794 void __simple_unlink(struct inode *dir, struct dentry *dentry)
795 {
796 	struct inode *inode = d_inode(dentry);
797 
798 	inode_set_mtime_to_ts(dir,
799 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
800 	drop_nlink(inode);
801 }
802 EXPORT_SYMBOL(__simple_unlink);
803 
__simple_rmdir(struct inode * dir,struct dentry * dentry)804 void __simple_rmdir(struct inode *dir, struct dentry *dentry)
805 {
806 	drop_nlink(d_inode(dentry));
807 	__simple_unlink(dir, dentry);
808 	drop_nlink(dir);
809 }
810 EXPORT_SYMBOL(__simple_rmdir);
811 
simple_unlink(struct inode * dir,struct dentry * dentry)812 int simple_unlink(struct inode *dir, struct dentry *dentry)
813 {
814 	__simple_unlink(dir, dentry);
815 	d_make_discardable(dentry);
816 	return 0;
817 }
818 EXPORT_SYMBOL(simple_unlink);
819 
simple_rmdir(struct inode * dir,struct dentry * dentry)820 int simple_rmdir(struct inode *dir, struct dentry *dentry)
821 {
822 	if (!simple_empty(dentry))
823 		return -ENOTEMPTY;
824 
825 	__simple_rmdir(dir, dentry);
826 	d_make_discardable(dentry);
827 	return 0;
828 }
829 EXPORT_SYMBOL(simple_rmdir);
830 
831 /**
832  * simple_rename_timestamp - update the various inode timestamps for rename
833  * @old_dir: old parent directory
834  * @old_dentry: dentry that is being renamed
835  * @new_dir: new parent directory
836  * @new_dentry: target for rename
837  *
838  * POSIX mandates that the old and new parent directories have their ctime and
839  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
840  * their ctime updated.
841  */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)842 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
843 			     struct inode *new_dir, struct dentry *new_dentry)
844 {
845 	struct inode *newino = d_inode(new_dentry);
846 
847 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
848 	if (new_dir != old_dir)
849 		inode_set_mtime_to_ts(new_dir,
850 				      inode_set_ctime_current(new_dir));
851 	inode_set_ctime_current(d_inode(old_dentry));
852 	if (newino)
853 		inode_set_ctime_current(newino);
854 }
855 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
856 
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)857 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
858 			   struct inode *new_dir, struct dentry *new_dentry)
859 {
860 	bool old_is_dir = d_is_dir(old_dentry);
861 	bool new_is_dir = d_is_dir(new_dentry);
862 
863 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
864 		if (old_is_dir) {
865 			drop_nlink(old_dir);
866 			inc_nlink(new_dir);
867 		} else {
868 			drop_nlink(new_dir);
869 			inc_nlink(old_dir);
870 		}
871 	}
872 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
873 	return 0;
874 }
875 EXPORT_SYMBOL_GPL(simple_rename_exchange);
876 
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)877 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
878 		  struct dentry *old_dentry, struct inode *new_dir,
879 		  struct dentry *new_dentry, unsigned int flags)
880 {
881 	int they_are_dirs = d_is_dir(old_dentry);
882 
883 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
884 		return -EINVAL;
885 
886 	if (flags & RENAME_EXCHANGE)
887 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
888 
889 	if (!simple_empty(new_dentry))
890 		return -ENOTEMPTY;
891 
892 	if (d_really_is_positive(new_dentry)) {
893 		simple_unlink(new_dir, new_dentry);
894 		if (they_are_dirs) {
895 			drop_nlink(d_inode(new_dentry));
896 			drop_nlink(old_dir);
897 		}
898 	} else if (they_are_dirs) {
899 		drop_nlink(old_dir);
900 		inc_nlink(new_dir);
901 	}
902 
903 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
904 	return 0;
905 }
906 EXPORT_SYMBOL(simple_rename);
907 
908 /**
909  * simple_setattr - setattr for simple filesystem
910  * @idmap: idmap of the target mount
911  * @dentry: dentry
912  * @iattr: iattr structure
913  *
914  * Returns 0 on success, -error on failure.
915  *
916  * simple_setattr is a simple ->setattr implementation without a proper
917  * implementation of size changes.
918  *
919  * It can either be used for in-memory filesystems or special files
920  * on simple regular filesystems.  Anything that needs to change on-disk
921  * or wire state on size changes needs its own setattr method.
922  */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)923 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
924 		   struct iattr *iattr)
925 {
926 	struct inode *inode = d_inode(dentry);
927 	int error;
928 
929 	error = setattr_prepare(idmap, dentry, iattr);
930 	if (error)
931 		return error;
932 
933 	if (iattr->ia_valid & ATTR_SIZE)
934 		truncate_setsize(inode, iattr->ia_size);
935 	setattr_copy(idmap, inode, iattr);
936 	mark_inode_dirty(inode);
937 	return 0;
938 }
939 EXPORT_SYMBOL(simple_setattr);
940 
simple_read_folio(struct file * file,struct folio * folio)941 static int simple_read_folio(struct file *file, struct folio *folio)
942 {
943 	folio_zero_range(folio, 0, folio_size(folio));
944 	flush_dcache_folio(folio);
945 	folio_mark_uptodate(folio);
946 	folio_unlock(folio);
947 	return 0;
948 }
949 
simple_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)950 int simple_write_begin(const struct kiocb *iocb, struct address_space *mapping,
951 			loff_t pos, unsigned len,
952 			struct folio **foliop, void **fsdata)
953 {
954 	struct folio *folio;
955 
956 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
957 			mapping_gfp_mask(mapping));
958 	if (IS_ERR(folio))
959 		return PTR_ERR(folio);
960 
961 	*foliop = folio;
962 
963 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
964 		size_t from = offset_in_folio(folio, pos);
965 
966 		folio_zero_segments(folio, 0, from,
967 				from + len, folio_size(folio));
968 	}
969 	return 0;
970 }
971 EXPORT_SYMBOL(simple_write_begin);
972 
973 /**
974  * simple_write_end - .write_end helper for non-block-device FSes
975  * @iocb: kernel I/O control block
976  * @mapping: 		"
977  * @pos: 		"
978  * @len: 		"
979  * @copied: 		"
980  * @folio: 		"
981  * @fsdata: 		"
982  *
983  * simple_write_end does the minimum needed for updating a folio after
984  * writing is done. It has the same API signature as the .write_end of
985  * address_space_operations vector. So it can just be set onto .write_end for
986  * FSes that don't need any other processing. i_rwsem is assumed to be held
987  * exclusively.
988  * Block based filesystems should use generic_write_end().
989  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
990  * is not called, so a filesystem that actually does store data in .write_inode
991  * should extend on what's done here with a call to mark_inode_dirty() in the
992  * case that i_size has changed.
993  *
994  * Use *ONLY* with simple_read_folio()
995  */
simple_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)996 static int simple_write_end(const struct kiocb *iocb,
997 			    struct address_space *mapping,
998 			    loff_t pos, unsigned len, unsigned copied,
999 			    struct folio *folio, void *fsdata)
1000 {
1001 	struct inode *inode = folio->mapping->host;
1002 	loff_t last_pos = pos + copied;
1003 
1004 	/* zero the stale part of the folio if we did a short copy */
1005 	if (!folio_test_uptodate(folio)) {
1006 		if (copied < len) {
1007 			size_t from = offset_in_folio(folio, pos);
1008 
1009 			folio_zero_range(folio, from + copied, len - copied);
1010 		}
1011 		folio_mark_uptodate(folio);
1012 	}
1013 	/*
1014 	 * No need to use i_size_read() here, the i_size
1015 	 * cannot change under us because we hold the i_rwsem.
1016 	 */
1017 	if (last_pos > inode->i_size)
1018 		i_size_write(inode, last_pos);
1019 
1020 	folio_mark_dirty(folio);
1021 	folio_unlock(folio);
1022 	folio_put(folio);
1023 
1024 	return copied;
1025 }
1026 
1027 /*
1028  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
1029  */
1030 const struct address_space_operations ram_aops = {
1031 	.read_folio	= simple_read_folio,
1032 	.write_begin	= simple_write_begin,
1033 	.write_end	= simple_write_end,
1034 	.dirty_folio	= noop_dirty_folio,
1035 };
1036 EXPORT_SYMBOL(ram_aops);
1037 
1038 /*
1039  * the inodes created here are not hashed. If you use iunique to generate
1040  * unique inode values later for this filesystem, then you must take care
1041  * to pass it an appropriate max_reserved value to avoid collisions.
1042  */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)1043 int simple_fill_super(struct super_block *s, unsigned long magic,
1044 		      const struct tree_descr *files)
1045 {
1046 	struct inode *inode;
1047 	struct dentry *dentry;
1048 	int i;
1049 
1050 	s->s_blocksize = PAGE_SIZE;
1051 	s->s_blocksize_bits = PAGE_SHIFT;
1052 	s->s_magic = magic;
1053 	s->s_op = &simple_super_operations;
1054 	s->s_time_gran = 1;
1055 
1056 	inode = new_inode(s);
1057 	if (!inode)
1058 		return -ENOMEM;
1059 	/*
1060 	 * because the root inode is 1, the files array must not contain an
1061 	 * entry at index 1
1062 	 */
1063 	inode->i_ino = 1;
1064 	inode->i_mode = S_IFDIR | 0755;
1065 	simple_inode_init_ts(inode);
1066 	inode->i_op = &simple_dir_inode_operations;
1067 	inode->i_fop = &simple_dir_operations;
1068 	set_nlink(inode, 2);
1069 	s->s_root = d_make_root(inode);
1070 	if (!s->s_root)
1071 		return -ENOMEM;
1072 	for (i = 0; !files->name || files->name[0]; i++, files++) {
1073 		if (!files->name)
1074 			continue;
1075 
1076 		/* warn if it tries to conflict with the root inode */
1077 		if (unlikely(i == 1))
1078 			printk(KERN_WARNING "%s: %s passed in a files array"
1079 				"with an index of 1!\n", __func__,
1080 				s->s_type->name);
1081 
1082 		dentry = d_alloc_name(s->s_root, files->name);
1083 		if (!dentry)
1084 			return -ENOMEM;
1085 		inode = new_inode(s);
1086 		if (!inode) {
1087 			dput(dentry);
1088 			return -ENOMEM;
1089 		}
1090 		inode->i_mode = S_IFREG | files->mode;
1091 		simple_inode_init_ts(inode);
1092 		inode->i_fop = files->ops;
1093 		inode->i_ino = i;
1094 		d_make_persistent(dentry, inode);
1095 		dput(dentry);
1096 	}
1097 	return 0;
1098 }
1099 EXPORT_SYMBOL(simple_fill_super);
1100 
1101 static DEFINE_SPINLOCK(pin_fs_lock);
1102 
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)1103 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1104 {
1105 	struct vfsmount *mnt = NULL;
1106 	spin_lock(&pin_fs_lock);
1107 	if (unlikely(!*mount)) {
1108 		spin_unlock(&pin_fs_lock);
1109 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1110 		if (IS_ERR(mnt))
1111 			return PTR_ERR(mnt);
1112 		spin_lock(&pin_fs_lock);
1113 		if (!*mount)
1114 			*mount = mnt;
1115 	}
1116 	mntget(*mount);
1117 	++*count;
1118 	spin_unlock(&pin_fs_lock);
1119 	mntput(mnt);
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL(simple_pin_fs);
1123 
simple_release_fs(struct vfsmount ** mount,int * count)1124 void simple_release_fs(struct vfsmount **mount, int *count)
1125 {
1126 	struct vfsmount *mnt;
1127 	spin_lock(&pin_fs_lock);
1128 	mnt = *mount;
1129 	if (!--*count)
1130 		*mount = NULL;
1131 	spin_unlock(&pin_fs_lock);
1132 	mntput(mnt);
1133 }
1134 EXPORT_SYMBOL(simple_release_fs);
1135 
1136 /**
1137  * simple_read_from_buffer - copy data from the buffer to user space
1138  * @to: the user space buffer to read to
1139  * @count: the maximum number of bytes to read
1140  * @ppos: the current position in the buffer
1141  * @from: the buffer to read from
1142  * @available: the size of the buffer
1143  *
1144  * The simple_read_from_buffer() function reads up to @count bytes from the
1145  * buffer @from at offset @ppos into the user space address starting at @to.
1146  *
1147  * On success, the number of bytes read is returned and the offset @ppos is
1148  * advanced by this number, or negative value is returned on error.
1149  **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1150 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1151 				const void *from, size_t available)
1152 {
1153 	loff_t pos = *ppos;
1154 	size_t ret;
1155 
1156 	if (pos < 0)
1157 		return -EINVAL;
1158 	if (pos >= available || !count)
1159 		return 0;
1160 	if (count > available - pos)
1161 		count = available - pos;
1162 	ret = copy_to_user(to, from + pos, count);
1163 	if (ret == count)
1164 		return -EFAULT;
1165 	count -= ret;
1166 	*ppos = pos + count;
1167 	return count;
1168 }
1169 EXPORT_SYMBOL(simple_read_from_buffer);
1170 
1171 /**
1172  * simple_write_to_buffer - copy data from user space to the buffer
1173  * @to: the buffer to write to
1174  * @available: the size of the buffer
1175  * @ppos: the current position in the buffer
1176  * @from: the user space buffer to read from
1177  * @count: the maximum number of bytes to read
1178  *
1179  * The simple_write_to_buffer() function reads up to @count bytes from the user
1180  * space address starting at @from into the buffer @to at offset @ppos.
1181  *
1182  * On success, the number of bytes written is returned and the offset @ppos is
1183  * advanced by this number, or negative value is returned on error.
1184  **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1185 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1186 		const void __user *from, size_t count)
1187 {
1188 	loff_t pos = *ppos;
1189 	size_t res;
1190 
1191 	if (pos < 0)
1192 		return -EINVAL;
1193 	if (pos >= available || !count)
1194 		return 0;
1195 	if (count > available - pos)
1196 		count = available - pos;
1197 	res = copy_from_user(to + pos, from, count);
1198 	if (res == count)
1199 		return -EFAULT;
1200 	count -= res;
1201 	*ppos = pos + count;
1202 	return count;
1203 }
1204 EXPORT_SYMBOL(simple_write_to_buffer);
1205 
1206 /**
1207  * memory_read_from_buffer - copy data from the buffer
1208  * @to: the kernel space buffer to read to
1209  * @count: the maximum number of bytes to read
1210  * @ppos: the current position in the buffer
1211  * @from: the buffer to read from
1212  * @available: the size of the buffer
1213  *
1214  * The memory_read_from_buffer() function reads up to @count bytes from the
1215  * buffer @from at offset @ppos into the kernel space address starting at @to.
1216  *
1217  * On success, the number of bytes read is returned and the offset @ppos is
1218  * advanced by this number, or negative value is returned on error.
1219  **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1220 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1221 				const void *from, size_t available)
1222 {
1223 	loff_t pos = *ppos;
1224 
1225 	if (pos < 0)
1226 		return -EINVAL;
1227 	if (pos >= available)
1228 		return 0;
1229 	if (count > available - pos)
1230 		count = available - pos;
1231 	memcpy(to, from + pos, count);
1232 	*ppos = pos + count;
1233 
1234 	return count;
1235 }
1236 EXPORT_SYMBOL(memory_read_from_buffer);
1237 
1238 /*
1239  * Transaction based IO.
1240  * The file expects a single write which triggers the transaction, and then
1241  * possibly a read which collects the result - which is stored in a
1242  * file-local buffer.
1243  */
1244 
simple_transaction_set(struct file * file,size_t n)1245 void simple_transaction_set(struct file *file, size_t n)
1246 {
1247 	struct simple_transaction_argresp *ar = file->private_data;
1248 
1249 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1250 
1251 	/*
1252 	 * The barrier ensures that ar->size will really remain zero until
1253 	 * ar->data is ready for reading.
1254 	 */
1255 	smp_mb();
1256 	ar->size = n;
1257 }
1258 EXPORT_SYMBOL(simple_transaction_set);
1259 
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1260 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1261 {
1262 	struct simple_transaction_argresp *ar;
1263 	static DEFINE_SPINLOCK(simple_transaction_lock);
1264 
1265 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1266 		return ERR_PTR(-EFBIG);
1267 
1268 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1269 	if (!ar)
1270 		return ERR_PTR(-ENOMEM);
1271 
1272 	spin_lock(&simple_transaction_lock);
1273 
1274 	/* only one write allowed per open */
1275 	if (file->private_data) {
1276 		spin_unlock(&simple_transaction_lock);
1277 		free_page((unsigned long)ar);
1278 		return ERR_PTR(-EBUSY);
1279 	}
1280 
1281 	file->private_data = ar;
1282 
1283 	spin_unlock(&simple_transaction_lock);
1284 
1285 	if (copy_from_user(ar->data, buf, size))
1286 		return ERR_PTR(-EFAULT);
1287 
1288 	return ar->data;
1289 }
1290 EXPORT_SYMBOL(simple_transaction_get);
1291 
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1292 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1293 {
1294 	struct simple_transaction_argresp *ar = file->private_data;
1295 
1296 	if (!ar)
1297 		return 0;
1298 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1299 }
1300 EXPORT_SYMBOL(simple_transaction_read);
1301 
simple_transaction_release(struct inode * inode,struct file * file)1302 int simple_transaction_release(struct inode *inode, struct file *file)
1303 {
1304 	free_page((unsigned long)file->private_data);
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL(simple_transaction_release);
1308 
1309 /* Simple attribute files */
1310 
1311 struct simple_attr {
1312 	int (*get)(void *, u64 *);
1313 	int (*set)(void *, u64);
1314 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1315 	char set_buf[24];
1316 	void *data;
1317 	const char *fmt;	/* format for read operation */
1318 	struct mutex mutex;	/* protects access to these buffers */
1319 };
1320 
1321 /* simple_attr_open is called by an actual attribute open file operation
1322  * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1323 int simple_attr_open(struct inode *inode, struct file *file,
1324 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1325 		     const char *fmt)
1326 {
1327 	struct simple_attr *attr;
1328 
1329 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1330 	if (!attr)
1331 		return -ENOMEM;
1332 
1333 	attr->get = get;
1334 	attr->set = set;
1335 	attr->data = inode->i_private;
1336 	attr->fmt = fmt;
1337 	mutex_init(&attr->mutex);
1338 
1339 	file->private_data = attr;
1340 
1341 	return nonseekable_open(inode, file);
1342 }
1343 EXPORT_SYMBOL_GPL(simple_attr_open);
1344 
simple_attr_release(struct inode * inode,struct file * file)1345 int simple_attr_release(struct inode *inode, struct file *file)
1346 {
1347 	kfree(file->private_data);
1348 	return 0;
1349 }
1350 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1351 
1352 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1353 ssize_t simple_attr_read(struct file *file, char __user *buf,
1354 			 size_t len, loff_t *ppos)
1355 {
1356 	struct simple_attr *attr;
1357 	size_t size;
1358 	ssize_t ret;
1359 
1360 	attr = file->private_data;
1361 
1362 	if (!attr->get)
1363 		return -EACCES;
1364 
1365 	ret = mutex_lock_interruptible(&attr->mutex);
1366 	if (ret)
1367 		return ret;
1368 
1369 	if (*ppos && attr->get_buf[0]) {
1370 		/* continued read */
1371 		size = strlen(attr->get_buf);
1372 	} else {
1373 		/* first read */
1374 		u64 val;
1375 		ret = attr->get(attr->data, &val);
1376 		if (ret)
1377 			goto out;
1378 
1379 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1380 				 attr->fmt, (unsigned long long)val);
1381 	}
1382 
1383 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1384 out:
1385 	mutex_unlock(&attr->mutex);
1386 	return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(simple_attr_read);
1389 
1390 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1391 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1392 			  size_t len, loff_t *ppos, bool is_signed)
1393 {
1394 	struct simple_attr *attr;
1395 	unsigned long long val;
1396 	size_t size;
1397 	ssize_t ret;
1398 
1399 	attr = file->private_data;
1400 	if (!attr->set)
1401 		return -EACCES;
1402 
1403 	ret = mutex_lock_interruptible(&attr->mutex);
1404 	if (ret)
1405 		return ret;
1406 
1407 	ret = -EFAULT;
1408 	size = min(sizeof(attr->set_buf) - 1, len);
1409 	if (copy_from_user(attr->set_buf, buf, size))
1410 		goto out;
1411 
1412 	attr->set_buf[size] = '\0';
1413 	if (is_signed)
1414 		ret = kstrtoll(attr->set_buf, 0, &val);
1415 	else
1416 		ret = kstrtoull(attr->set_buf, 0, &val);
1417 	if (ret)
1418 		goto out;
1419 	ret = attr->set(attr->data, val);
1420 	if (ret == 0)
1421 		ret = len; /* on success, claim we got the whole input */
1422 out:
1423 	mutex_unlock(&attr->mutex);
1424 	return ret;
1425 }
1426 
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1427 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1428 			  size_t len, loff_t *ppos)
1429 {
1430 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1431 }
1432 EXPORT_SYMBOL_GPL(simple_attr_write);
1433 
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1434 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1435 			  size_t len, loff_t *ppos)
1436 {
1437 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1438 }
1439 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1440 
1441 /**
1442  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1443  * @inode:   the object to encode
1444  * @fh:      where to store the file handle fragment
1445  * @max_len: maximum length to store there (in 4 byte units)
1446  * @parent:  parent directory inode, if wanted
1447  *
1448  * This generic encode_fh function assumes that the 32 inode number
1449  * is suitable for locating an inode, and that the generation number
1450  * can be used to check that it is still valid.  It places them in the
1451  * filehandle fragment where export_decode_fh expects to find them.
1452  */
generic_encode_ino32_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)1453 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1454 			    struct inode *parent)
1455 {
1456 	struct fid *fid = (void *)fh;
1457 	int len = *max_len;
1458 	int type = FILEID_INO32_GEN;
1459 
1460 	if (parent && (len < 4)) {
1461 		*max_len = 4;
1462 		return FILEID_INVALID;
1463 	} else if (len < 2) {
1464 		*max_len = 2;
1465 		return FILEID_INVALID;
1466 	}
1467 
1468 	len = 2;
1469 	fid->i32.ino = inode->i_ino;
1470 	fid->i32.gen = inode->i_generation;
1471 	if (parent) {
1472 		fid->i32.parent_ino = parent->i_ino;
1473 		fid->i32.parent_gen = parent->i_generation;
1474 		len = 4;
1475 		type = FILEID_INO32_GEN_PARENT;
1476 	}
1477 	*max_len = len;
1478 	return type;
1479 }
1480 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1481 
1482 /**
1483  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1484  * @sb:		filesystem to do the file handle conversion on
1485  * @fid:	file handle to convert
1486  * @fh_len:	length of the file handle in bytes
1487  * @fh_type:	type of file handle
1488  * @get_inode:	filesystem callback to retrieve inode
1489  *
1490  * This function decodes @fid as long as it has one of the well-known
1491  * Linux filehandle types and calls @get_inode on it to retrieve the
1492  * inode for the object specified in the file handle.
1493  */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1494 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1495 		int fh_len, int fh_type, struct inode *(*get_inode)
1496 			(struct super_block *sb, u64 ino, u32 gen))
1497 {
1498 	struct inode *inode = NULL;
1499 
1500 	if (fh_len < 2)
1501 		return NULL;
1502 
1503 	switch (fh_type) {
1504 	case FILEID_INO32_GEN:
1505 	case FILEID_INO32_GEN_PARENT:
1506 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1507 		break;
1508 	}
1509 
1510 	return d_obtain_alias(inode);
1511 }
1512 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1513 
1514 /**
1515  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1516  * @sb:		filesystem to do the file handle conversion on
1517  * @fid:	file handle to convert
1518  * @fh_len:	length of the file handle in bytes
1519  * @fh_type:	type of file handle
1520  * @get_inode:	filesystem callback to retrieve inode
1521  *
1522  * This function decodes @fid as long as it has one of the well-known
1523  * Linux filehandle types and calls @get_inode on it to retrieve the
1524  * inode for the _parent_ object specified in the file handle if it
1525  * is specified in the file handle, or NULL otherwise.
1526  */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1527 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1528 		int fh_len, int fh_type, struct inode *(*get_inode)
1529 			(struct super_block *sb, u64 ino, u32 gen))
1530 {
1531 	struct inode *inode = NULL;
1532 
1533 	if (fh_len <= 2)
1534 		return NULL;
1535 
1536 	switch (fh_type) {
1537 	case FILEID_INO32_GEN_PARENT:
1538 		inode = get_inode(sb, fid->i32.parent_ino,
1539 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1540 		break;
1541 	}
1542 
1543 	return d_obtain_alias(inode);
1544 }
1545 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1546 
1547 /**
1548  * __generic_file_fsync - generic fsync implementation for simple filesystems
1549  *
1550  * @file:	file to synchronize
1551  * @start:	start offset in bytes
1552  * @end:	end offset in bytes (inclusive)
1553  * @datasync:	only synchronize essential metadata if true
1554  *
1555  * This is a generic implementation of the fsync method for simple
1556  * filesystems which track all non-inode metadata in the buffers list
1557  * hanging off the address_space structure.
1558  */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1559 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1560 				 int datasync)
1561 {
1562 	struct inode *inode = file->f_mapping->host;
1563 	int err;
1564 	int ret;
1565 
1566 	err = file_write_and_wait_range(file, start, end);
1567 	if (err)
1568 		return err;
1569 
1570 	inode_lock(inode);
1571 	ret = sync_mapping_buffers(inode->i_mapping);
1572 	if (!(inode_state_read_once(inode) & I_DIRTY_ALL))
1573 		goto out;
1574 	if (datasync && !(inode_state_read_once(inode) & I_DIRTY_DATASYNC))
1575 		goto out;
1576 
1577 	err = sync_inode_metadata(inode, 1);
1578 	if (ret == 0)
1579 		ret = err;
1580 
1581 out:
1582 	inode_unlock(inode);
1583 	/* check and advance again to catch errors after syncing out buffers */
1584 	err = file_check_and_advance_wb_err(file);
1585 	if (ret == 0)
1586 		ret = err;
1587 	return ret;
1588 }
1589 EXPORT_SYMBOL(__generic_file_fsync);
1590 
1591 /**
1592  * generic_file_fsync - generic fsync implementation for simple filesystems
1593  *			with flush
1594  * @file:	file to synchronize
1595  * @start:	start offset in bytes
1596  * @end:	end offset in bytes (inclusive)
1597  * @datasync:	only synchronize essential metadata if true
1598  *
1599  */
1600 
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1601 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1602 		       int datasync)
1603 {
1604 	struct inode *inode = file->f_mapping->host;
1605 	int err;
1606 
1607 	err = __generic_file_fsync(file, start, end, datasync);
1608 	if (err)
1609 		return err;
1610 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1611 }
1612 EXPORT_SYMBOL(generic_file_fsync);
1613 
1614 /**
1615  * generic_check_addressable - Check addressability of file system
1616  * @blocksize_bits:	log of file system block size
1617  * @num_blocks:		number of blocks in file system
1618  *
1619  * Determine whether a file system with @num_blocks blocks (and a
1620  * block size of 2**@blocksize_bits) is addressable by the sector_t
1621  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1622  */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1623 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1624 {
1625 	u64 last_fs_block = num_blocks - 1;
1626 	u64 last_fs_page, max_bytes;
1627 
1628 	if (check_shl_overflow(num_blocks, blocksize_bits, &max_bytes))
1629 		return -EFBIG;
1630 
1631 	last_fs_page = (max_bytes >> PAGE_SHIFT) - 1;
1632 
1633 	if (unlikely(num_blocks == 0))
1634 		return 0;
1635 
1636 	if (blocksize_bits < 9)
1637 		return -EINVAL;
1638 
1639 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1640 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1641 		return -EFBIG;
1642 	}
1643 	return 0;
1644 }
1645 EXPORT_SYMBOL(generic_check_addressable);
1646 
1647 /*
1648  * No-op implementation of ->fsync for in-memory filesystems.
1649  */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1650 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1651 {
1652 	return 0;
1653 }
1654 EXPORT_SYMBOL(noop_fsync);
1655 
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1656 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1657 {
1658 	/*
1659 	 * iomap based filesystems support direct I/O without need for
1660 	 * this callback. However, it still needs to be set in
1661 	 * inode->a_ops so that open/fcntl know that direct I/O is
1662 	 * generally supported.
1663 	 */
1664 	return -EINVAL;
1665 }
1666 EXPORT_SYMBOL_GPL(noop_direct_IO);
1667 
1668 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1669 void kfree_link(void *p)
1670 {
1671 	kfree(p);
1672 }
1673 EXPORT_SYMBOL(kfree_link);
1674 
alloc_anon_inode(struct super_block * s)1675 struct inode *alloc_anon_inode(struct super_block *s)
1676 {
1677 	static const struct address_space_operations anon_aops = {
1678 		.dirty_folio	= noop_dirty_folio,
1679 	};
1680 	struct inode *inode = new_inode_pseudo(s);
1681 
1682 	if (!inode)
1683 		return ERR_PTR(-ENOMEM);
1684 
1685 	inode->i_ino = get_next_ino();
1686 	inode->i_mapping->a_ops = &anon_aops;
1687 
1688 	/*
1689 	 * Mark the inode dirty from the very beginning,
1690 	 * that way it will never be moved to the dirty
1691 	 * list because mark_inode_dirty() will think
1692 	 * that it already _is_ on the dirty list.
1693 	 */
1694 	inode_state_assign_raw(inode, I_DIRTY);
1695 	/*
1696 	 * Historically anonymous inodes don't have a type at all and
1697 	 * userspace has come to rely on this.
1698 	 */
1699 	inode->i_mode = S_IRUSR | S_IWUSR;
1700 	inode->i_uid = current_fsuid();
1701 	inode->i_gid = current_fsgid();
1702 	inode->i_flags |= S_PRIVATE | S_ANON_INODE;
1703 	simple_inode_init_ts(inode);
1704 	return inode;
1705 }
1706 EXPORT_SYMBOL(alloc_anon_inode);
1707 
1708 /**
1709  * simple_nosetlease - generic helper for prohibiting leases
1710  * @filp: file pointer
1711  * @arg: type of lease to obtain
1712  * @flp: new lease supplied for insertion
1713  * @priv: private data for lm_setup operation
1714  *
1715  * Generic helper for filesystems that do not wish to allow leases to be set.
1716  * All arguments are ignored and it just returns -EINVAL.
1717  */
1718 int
simple_nosetlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1719 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1720 		  void **priv)
1721 {
1722 	return -EINVAL;
1723 }
1724 EXPORT_SYMBOL(simple_nosetlease);
1725 
1726 /**
1727  * simple_get_link - generic helper to get the target of "fast" symlinks
1728  * @dentry: not used here
1729  * @inode: the symlink inode
1730  * @done: not used here
1731  *
1732  * Generic helper for filesystems to use for symlink inodes where a pointer to
1733  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1734  * since as an optimization the path lookup code uses any non-NULL ->i_link
1735  * directly, without calling ->get_link().  But ->get_link() still must be set,
1736  * to mark the inode_operations as being for a symlink.
1737  *
1738  * Return: the symlink target
1739  */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1740 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1741 			    struct delayed_call *done)
1742 {
1743 	return inode->i_link;
1744 }
1745 EXPORT_SYMBOL(simple_get_link);
1746 
1747 const struct inode_operations simple_symlink_inode_operations = {
1748 	.get_link = simple_get_link,
1749 };
1750 EXPORT_SYMBOL(simple_symlink_inode_operations);
1751 
1752 /*
1753  * Operations for a permanently empty directory.
1754  */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1755 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1756 {
1757 	return ERR_PTR(-ENOENT);
1758 }
1759 
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1760 static int empty_dir_setattr(struct mnt_idmap *idmap,
1761 			     struct dentry *dentry, struct iattr *attr)
1762 {
1763 	return -EPERM;
1764 }
1765 
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1766 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1767 {
1768 	return -EOPNOTSUPP;
1769 }
1770 
1771 static const struct inode_operations empty_dir_inode_operations = {
1772 	.lookup		= empty_dir_lookup,
1773 	.setattr	= empty_dir_setattr,
1774 	.listxattr	= empty_dir_listxattr,
1775 };
1776 
empty_dir_llseek(struct file * file,loff_t offset,int whence)1777 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1778 {
1779 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1780 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1781 }
1782 
empty_dir_readdir(struct file * file,struct dir_context * ctx)1783 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1784 {
1785 	dir_emit_dots(file, ctx);
1786 	return 0;
1787 }
1788 
1789 static const struct file_operations empty_dir_operations = {
1790 	.llseek		= empty_dir_llseek,
1791 	.read		= generic_read_dir,
1792 	.iterate_shared	= empty_dir_readdir,
1793 	.fsync		= noop_fsync,
1794 };
1795 
1796 
make_empty_dir_inode(struct inode * inode)1797 void make_empty_dir_inode(struct inode *inode)
1798 {
1799 	set_nlink(inode, 2);
1800 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1801 	inode->i_uid = GLOBAL_ROOT_UID;
1802 	inode->i_gid = GLOBAL_ROOT_GID;
1803 	inode->i_rdev = 0;
1804 	inode->i_size = 0;
1805 	inode->i_blkbits = PAGE_SHIFT;
1806 	inode->i_blocks = 0;
1807 
1808 	inode->i_op = &empty_dir_inode_operations;
1809 	inode->i_opflags &= ~IOP_XATTR;
1810 	inode->i_fop = &empty_dir_operations;
1811 }
1812 
is_empty_dir_inode(struct inode * inode)1813 bool is_empty_dir_inode(struct inode *inode)
1814 {
1815 	return (inode->i_fop == &empty_dir_operations) &&
1816 		(inode->i_op == &empty_dir_inode_operations);
1817 }
1818 
1819 #if IS_ENABLED(CONFIG_UNICODE)
1820 /**
1821  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1822  * @dentry:	dentry whose name we are checking against
1823  * @len:	len of name of dentry
1824  * @str:	str pointer to name of dentry
1825  * @name:	Name to compare against
1826  *
1827  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1828  */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1829 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1830 			 const char *str, const struct qstr *name)
1831 {
1832 	const struct dentry *parent;
1833 	const struct inode *dir;
1834 	union shortname_store strbuf;
1835 	struct qstr qstr;
1836 
1837 	/*
1838 	 * Attempt a case-sensitive match first. It is cheaper and
1839 	 * should cover most lookups, including all the sane
1840 	 * applications that expect a case-sensitive filesystem.
1841 	 *
1842 	 * This comparison is safe under RCU because the caller
1843 	 * guarantees the consistency between str and len. See
1844 	 * __d_lookup_rcu_op_compare() for details.
1845 	 */
1846 	if (len == name->len && !memcmp(str, name->name, len))
1847 		return 0;
1848 
1849 	parent = READ_ONCE(dentry->d_parent);
1850 	dir = READ_ONCE(parent->d_inode);
1851 	if (!dir || !IS_CASEFOLDED(dir))
1852 		return 1;
1853 
1854 	qstr.len = len;
1855 	qstr.name = str;
1856 	/*
1857 	 * If the dentry name is stored in-line, then it may be concurrently
1858 	 * modified by a rename.  If this happens, the VFS will eventually retry
1859 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1860 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1861 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1862 	 * As above, len is guaranteed to match str, so the shortname case
1863 	 * is exactly when str points to ->d_shortname.
1864 	 */
1865 	if (qstr.name == dentry->d_shortname.string) {
1866 		strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1867 		qstr.name = strbuf.string;
1868 		/* prevent compiler from optimizing out the temporary buffer */
1869 		barrier();
1870 	}
1871 
1872 	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1873 }
1874 EXPORT_SYMBOL(generic_ci_d_compare);
1875 
1876 /**
1877  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1878  * @dentry:	dentry of the parent directory
1879  * @str:	qstr of name whose hash we should fill in
1880  *
1881  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1882  */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1883 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1884 {
1885 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1886 	struct super_block *sb = dentry->d_sb;
1887 	const struct unicode_map *um = sb->s_encoding;
1888 	int ret;
1889 
1890 	if (!dir || !IS_CASEFOLDED(dir))
1891 		return 0;
1892 
1893 	ret = utf8_casefold_hash(um, dentry, str);
1894 	if (ret < 0 && sb_has_strict_encoding(sb))
1895 		return -EINVAL;
1896 	return 0;
1897 }
1898 EXPORT_SYMBOL(generic_ci_d_hash);
1899 
1900 static const struct dentry_operations generic_ci_dentry_ops = {
1901 	.d_hash = generic_ci_d_hash,
1902 	.d_compare = generic_ci_d_compare,
1903 #ifdef CONFIG_FS_ENCRYPTION
1904 	.d_revalidate = fscrypt_d_revalidate,
1905 #endif
1906 };
1907 
1908 /**
1909  * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1910  * This is a filesystem helper for comparison with directory entries.
1911  * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1912  *
1913  * @parent: Inode of the parent of the dirent under comparison
1914  * @name: name under lookup.
1915  * @folded_name: Optional pre-folded name under lookup
1916  * @de_name: Dirent name.
1917  * @de_name_len: dirent name length.
1918  *
1919  * Test whether a case-insensitive directory entry matches the filename
1920  * being searched.  If @folded_name is provided, it is used instead of
1921  * recalculating the casefold of @name.
1922  *
1923  * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1924  * < 0 on error.
1925  */
generic_ci_match(const struct inode * parent,const struct qstr * name,const struct qstr * folded_name,const u8 * de_name,u32 de_name_len)1926 int generic_ci_match(const struct inode *parent,
1927 		     const struct qstr *name,
1928 		     const struct qstr *folded_name,
1929 		     const u8 *de_name, u32 de_name_len)
1930 {
1931 	const struct super_block *sb = parent->i_sb;
1932 	const struct unicode_map *um = sb->s_encoding;
1933 	struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1934 	struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1935 	int res = 0;
1936 
1937 	if (IS_ENCRYPTED(parent)) {
1938 		const struct fscrypt_str encrypted_name =
1939 			FSTR_INIT((u8 *) de_name, de_name_len);
1940 
1941 		if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1942 			return -EINVAL;
1943 
1944 		decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1945 		if (!decrypted_name.name)
1946 			return -ENOMEM;
1947 		res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1948 						&decrypted_name);
1949 		if (res < 0) {
1950 			kfree(decrypted_name.name);
1951 			return res;
1952 		}
1953 		dirent.name = decrypted_name.name;
1954 		dirent.len = decrypted_name.len;
1955 	}
1956 
1957 	/*
1958 	 * Attempt a case-sensitive match first. It is cheaper and
1959 	 * should cover most lookups, including all the sane
1960 	 * applications that expect a case-sensitive filesystem.
1961 	 */
1962 
1963 	if (dirent.len == name->len &&
1964 	    !memcmp(name->name, dirent.name, dirent.len))
1965 		goto out;
1966 
1967 	if (folded_name->name)
1968 		res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1969 	else
1970 		res = utf8_strncasecmp(um, name, &dirent);
1971 
1972 out:
1973 	kfree(decrypted_name.name);
1974 	if (res < 0 && sb_has_strict_encoding(sb)) {
1975 		pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1976 		return 0;
1977 	}
1978 	return !res;
1979 }
1980 EXPORT_SYMBOL(generic_ci_match);
1981 #endif
1982 
1983 #ifdef CONFIG_FS_ENCRYPTION
1984 static const struct dentry_operations generic_encrypted_dentry_ops = {
1985 	.d_revalidate = fscrypt_d_revalidate,
1986 };
1987 #endif
1988 
1989 /**
1990  * generic_set_sb_d_ops - helper for choosing the set of
1991  * filesystem-wide dentry operations for the enabled features
1992  * @sb: superblock to be configured
1993  *
1994  * Filesystems supporting casefolding and/or fscrypt can call this
1995  * helper at mount-time to configure default dentry_operations to the
1996  * best set of dentry operations required for the enabled features.
1997  * The helper must be called after these have been configured, but
1998  * before the root dentry is created.
1999  */
generic_set_sb_d_ops(struct super_block * sb)2000 void generic_set_sb_d_ops(struct super_block *sb)
2001 {
2002 #if IS_ENABLED(CONFIG_UNICODE)
2003 	if (sb->s_encoding) {
2004 		set_default_d_op(sb, &generic_ci_dentry_ops);
2005 		return;
2006 	}
2007 #endif
2008 #ifdef CONFIG_FS_ENCRYPTION
2009 	if (sb->s_cop) {
2010 		set_default_d_op(sb, &generic_encrypted_dentry_ops);
2011 		return;
2012 	}
2013 #endif
2014 }
2015 EXPORT_SYMBOL(generic_set_sb_d_ops);
2016 
2017 /**
2018  * inode_maybe_inc_iversion - increments i_version
2019  * @inode: inode with the i_version that should be updated
2020  * @force: increment the counter even if it's not necessary?
2021  *
2022  * Every time the inode is modified, the i_version field must be seen to have
2023  * changed by any observer.
2024  *
2025  * If "force" is set or the QUERIED flag is set, then ensure that we increment
2026  * the value, and clear the queried flag.
2027  *
2028  * In the common case where neither is set, then we can return "false" without
2029  * updating i_version.
2030  *
2031  * If this function returns false, and no other metadata has changed, then we
2032  * can avoid logging the metadata.
2033  */
inode_maybe_inc_iversion(struct inode * inode,bool force)2034 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
2035 {
2036 	u64 cur, new;
2037 
2038 	/*
2039 	 * The i_version field is not strictly ordered with any other inode
2040 	 * information, but the legacy inode_inc_iversion code used a spinlock
2041 	 * to serialize increments.
2042 	 *
2043 	 * We add a full memory barrier to ensure that any de facto ordering
2044 	 * with other state is preserved (either implicitly coming from cmpxchg
2045 	 * or explicitly from smp_mb if we don't know upfront if we will execute
2046 	 * the former).
2047 	 *
2048 	 * These barriers pair with inode_query_iversion().
2049 	 */
2050 	cur = inode_peek_iversion_raw(inode);
2051 	if (!force && !(cur & I_VERSION_QUERIED)) {
2052 		smp_mb();
2053 		cur = inode_peek_iversion_raw(inode);
2054 	}
2055 
2056 	do {
2057 		/* If flag is clear then we needn't do anything */
2058 		if (!force && !(cur & I_VERSION_QUERIED))
2059 			return false;
2060 
2061 		/* Since lowest bit is flag, add 2 to avoid it */
2062 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2063 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2064 	return true;
2065 }
2066 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2067 
2068 /**
2069  * inode_query_iversion - read i_version for later use
2070  * @inode: inode from which i_version should be read
2071  *
2072  * Read the inode i_version counter. This should be used by callers that wish
2073  * to store the returned i_version for later comparison. This will guarantee
2074  * that a later query of the i_version will result in a different value if
2075  * anything has changed.
2076  *
2077  * In this implementation, we fetch the current value, set the QUERIED flag and
2078  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2079  * that fails, we try again with the newly fetched value from the cmpxchg.
2080  */
inode_query_iversion(struct inode * inode)2081 u64 inode_query_iversion(struct inode *inode)
2082 {
2083 	u64 cur, new;
2084 	bool fenced = false;
2085 
2086 	/*
2087 	 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2088 	 * inode_maybe_inc_iversion(), see that routine for more details.
2089 	 */
2090 	cur = inode_peek_iversion_raw(inode);
2091 	do {
2092 		/* If flag is already set, then no need to swap */
2093 		if (cur & I_VERSION_QUERIED) {
2094 			if (!fenced)
2095 				smp_mb();
2096 			break;
2097 		}
2098 
2099 		fenced = true;
2100 		new = cur | I_VERSION_QUERIED;
2101 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2102 	return cur >> I_VERSION_QUERIED_SHIFT;
2103 }
2104 EXPORT_SYMBOL(inode_query_iversion);
2105 
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)2106 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2107 		ssize_t direct_written, ssize_t buffered_written)
2108 {
2109 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2110 	loff_t pos = iocb->ki_pos - buffered_written;
2111 	loff_t end = iocb->ki_pos - 1;
2112 	int err;
2113 
2114 	/*
2115 	 * If the buffered write fallback returned an error, we want to return
2116 	 * the number of bytes which were written by direct I/O, or the error
2117 	 * code if that was zero.
2118 	 *
2119 	 * Note that this differs from normal direct-io semantics, which will
2120 	 * return -EFOO even if some bytes were written.
2121 	 */
2122 	if (unlikely(buffered_written < 0)) {
2123 		if (direct_written)
2124 			return direct_written;
2125 		return buffered_written;
2126 	}
2127 
2128 	/*
2129 	 * We need to ensure that the page cache pages are written to disk and
2130 	 * invalidated to preserve the expected O_DIRECT semantics.
2131 	 */
2132 	err = filemap_write_and_wait_range(mapping, pos, end);
2133 	if (err < 0) {
2134 		/*
2135 		 * We don't know how much we wrote, so just return the number of
2136 		 * bytes which were direct-written
2137 		 */
2138 		iocb->ki_pos -= buffered_written;
2139 		if (direct_written)
2140 			return direct_written;
2141 		return err;
2142 	}
2143 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2144 	return direct_written + buffered_written;
2145 }
2146 EXPORT_SYMBOL_GPL(direct_write_fallback);
2147 
2148 /**
2149  * simple_inode_init_ts - initialize the timestamps for a new inode
2150  * @inode: inode to be initialized
2151  *
2152  * When a new inode is created, most filesystems set the timestamps to the
2153  * current time. Add a helper to do this.
2154  */
simple_inode_init_ts(struct inode * inode)2155 struct timespec64 simple_inode_init_ts(struct inode *inode)
2156 {
2157 	struct timespec64 ts = inode_set_ctime_current(inode);
2158 
2159 	inode_set_atime_to_ts(inode, ts);
2160 	inode_set_mtime_to_ts(inode, ts);
2161 	return ts;
2162 }
2163 EXPORT_SYMBOL(simple_inode_init_ts);
2164 
stashed_dentry_get(struct dentry ** stashed)2165 struct dentry *stashed_dentry_get(struct dentry **stashed)
2166 {
2167 	struct dentry *dentry;
2168 
2169 	guard(rcu)();
2170 	dentry = rcu_dereference(*stashed);
2171 	if (!dentry)
2172 		return NULL;
2173 	if (IS_ERR(dentry))
2174 		return dentry;
2175 	if (!lockref_get_not_dead(&dentry->d_lockref))
2176 		return NULL;
2177 	return dentry;
2178 }
2179 
prepare_anon_dentry(struct dentry ** stashed,struct super_block * sb,void * data)2180 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2181 					  struct super_block *sb,
2182 					  void *data)
2183 {
2184 	struct dentry *dentry;
2185 	struct inode *inode;
2186 	const struct stashed_operations *sops = sb->s_fs_info;
2187 	int ret;
2188 
2189 	inode = new_inode_pseudo(sb);
2190 	if (!inode) {
2191 		sops->put_data(data);
2192 		return ERR_PTR(-ENOMEM);
2193 	}
2194 
2195 	inode->i_flags |= S_IMMUTABLE;
2196 	inode->i_mode = S_IFREG;
2197 	simple_inode_init_ts(inode);
2198 
2199 	ret = sops->init_inode(inode, data);
2200 	if (ret < 0) {
2201 		iput(inode);
2202 		return ERR_PTR(ret);
2203 	}
2204 
2205 	/* Notice when this is changed. */
2206 	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2207 
2208 	dentry = d_alloc_anon(sb);
2209 	if (!dentry) {
2210 		iput(inode);
2211 		return ERR_PTR(-ENOMEM);
2212 	}
2213 
2214 	/* Store address of location where dentry's supposed to be stashed. */
2215 	dentry->d_fsdata = stashed;
2216 
2217 	/* @data is now owned by the fs */
2218 	d_instantiate(dentry, inode);
2219 	return dentry;
2220 }
2221 
stash_dentry(struct dentry ** stashed,struct dentry * dentry)2222 struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry)
2223 {
2224 	guard(rcu)();
2225 	for (;;) {
2226 		struct dentry *old;
2227 
2228 		/* Assume any old dentry was cleared out. */
2229 		old = cmpxchg(stashed, NULL, dentry);
2230 		if (likely(!old))
2231 			return dentry;
2232 
2233 		/* Check if somebody else installed a reusable dentry. */
2234 		if (lockref_get_not_dead(&old->d_lockref))
2235 			return old;
2236 
2237 		/* There's an old dead dentry there, try to take it over. */
2238 		if (likely(try_cmpxchg(stashed, &old, dentry)))
2239 			return dentry;
2240 	}
2241 }
2242 
2243 /**
2244  * path_from_stashed - create path from stashed or new dentry
2245  * @stashed:    where to retrieve or stash dentry
2246  * @mnt:        mnt of the filesystems to use
2247  * @data:       data to store in inode->i_private
2248  * @path:       path to create
2249  *
2250  * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2251  * is still valid then it will be reused. If the dentry isn't able the function
2252  * will allocate a new dentry and inode. It will then check again whether it
2253  * can reuse an existing dentry in case one has been added in the meantime or
2254  * update @stashed with the newly added dentry.
2255  *
2256  * Special-purpose helper for nsfs and pidfs.
2257  *
2258  * Return: On success zero and on failure a negative error is returned.
2259  */
path_from_stashed(struct dentry ** stashed,struct vfsmount * mnt,void * data,struct path * path)2260 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2261 		      struct path *path)
2262 {
2263 	struct dentry *dentry, *res;
2264 	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2265 
2266 	/* See if dentry can be reused. */
2267 	res = stashed_dentry_get(stashed);
2268 	if (IS_ERR(res))
2269 		return PTR_ERR(res);
2270 	if (res) {
2271 		sops->put_data(data);
2272 		goto make_path;
2273 	}
2274 
2275 	/* Allocate a new dentry. */
2276 	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2277 	if (IS_ERR(dentry))
2278 		return PTR_ERR(dentry);
2279 
2280 	/* Added a new dentry. @data is now owned by the filesystem. */
2281 	if (sops->stash_dentry)
2282 		res = sops->stash_dentry(stashed, dentry);
2283 	else
2284 		res = stash_dentry(stashed, dentry);
2285 	if (IS_ERR(res)) {
2286 		dput(dentry);
2287 		return PTR_ERR(res);
2288 	}
2289 	if (res != dentry)
2290 		dput(dentry);
2291 
2292 make_path:
2293 	path->dentry = res;
2294 	path->mnt = mntget(mnt);
2295 	VFS_WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2296 	VFS_WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2297 	return 0;
2298 }
2299 
stashed_dentry_prune(struct dentry * dentry)2300 void stashed_dentry_prune(struct dentry *dentry)
2301 {
2302 	struct dentry **stashed = dentry->d_fsdata;
2303 	struct inode *inode = d_inode(dentry);
2304 
2305 	if (WARN_ON_ONCE(!stashed))
2306 		return;
2307 
2308 	if (!inode)
2309 		return;
2310 
2311 	/*
2312 	 * Only replace our own @dentry as someone else might've
2313 	 * already cleared out @dentry and stashed their own
2314 	 * dentry in there.
2315 	 */
2316 	cmpxchg(stashed, dentry, NULL);
2317 }
2318 
2319 /**
2320  * simple_start_creating - prepare to create a given name
2321  * @parent: directory in which to prepare to create the name
2322  * @name:   the name to be created
2323  *
2324  * Required lock is taken and a lookup in performed prior to creating an
2325  * object in a directory.  No permission checking is performed.
2326  *
2327  * Returns: a negative dentry on which vfs_create() or similar may
2328  *  be attempted, or an error.
2329  */
simple_start_creating(struct dentry * parent,const char * name)2330 struct dentry *simple_start_creating(struct dentry *parent, const char *name)
2331 {
2332 	struct qstr qname = QSTR(name);
2333 	int err;
2334 
2335 	err = lookup_noperm_common(&qname, parent);
2336 	if (err)
2337 		return ERR_PTR(err);
2338 	return start_dirop(parent, &qname, LOOKUP_CREATE | LOOKUP_EXCL);
2339 }
2340 EXPORT_SYMBOL(simple_start_creating);
2341 
2342 /* parent must have been held exclusive since simple_start_creating() */
simple_done_creating(struct dentry * child)2343 void simple_done_creating(struct dentry *child)
2344 {
2345 	inode_unlock(child->d_parent->d_inode);
2346 	dput(child);
2347 }
2348 EXPORT_SYMBOL(simple_done_creating);
2349