1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/mount.c - kernfs mount implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/mount.h> 12 #include <linux/init.h> 13 #include <linux/magic.h> 14 #include <linux/slab.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/seq_file.h> 18 #include <linux/exportfs.h> 19 20 #include "kernfs-internal.h" 21 22 struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache; 23 struct kernfs_global_locks *kernfs_locks; 24 25 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry) 26 { 27 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry)); 28 struct kernfs_syscall_ops *scops = root->syscall_ops; 29 30 if (scops && scops->show_options) 31 return scops->show_options(sf, root); 32 return 0; 33 } 34 35 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry) 36 { 37 struct kernfs_node *node = kernfs_dentry_node(dentry); 38 struct kernfs_root *root = kernfs_root(node); 39 struct kernfs_syscall_ops *scops = root->syscall_ops; 40 41 if (scops && scops->show_path) 42 return scops->show_path(sf, node, root); 43 44 seq_dentry(sf, dentry, " \t\n\\"); 45 return 0; 46 } 47 48 const struct super_operations kernfs_sops = { 49 .statfs = simple_statfs, 50 .drop_inode = generic_delete_inode, 51 .evict_inode = kernfs_evict_inode, 52 53 .show_options = kernfs_sop_show_options, 54 .show_path = kernfs_sop_show_path, 55 }; 56 57 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len, 58 struct inode *parent) 59 { 60 struct kernfs_node *kn = inode->i_private; 61 62 if (*max_len < 2) { 63 *max_len = 2; 64 return FILEID_INVALID; 65 } 66 67 *max_len = 2; 68 *(u64 *)fh = kn->id; 69 return FILEID_KERNFS; 70 } 71 72 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb, 73 struct fid *fid, int fh_len, 74 int fh_type, bool get_parent) 75 { 76 struct kernfs_super_info *info = kernfs_info(sb); 77 struct kernfs_node *kn; 78 struct inode *inode; 79 u64 id; 80 81 if (fh_len < 2) 82 return NULL; 83 84 switch (fh_type) { 85 case FILEID_KERNFS: 86 id = *(u64 *)fid; 87 break; 88 case FILEID_INO32_GEN: 89 case FILEID_INO32_GEN_PARENT: 90 /* 91 * blk_log_action() exposes "LOW32,HIGH32" pair without 92 * type and userland can call us with generic fid 93 * constructed from them. Combine it back to ID. See 94 * blk_log_action(). 95 */ 96 id = ((u64)fid->i32.gen << 32) | fid->i32.ino; 97 break; 98 default: 99 return NULL; 100 } 101 102 kn = kernfs_find_and_get_node_by_id(info->root, id); 103 if (!kn) 104 return ERR_PTR(-ESTALE); 105 106 if (get_parent) { 107 struct kernfs_node *parent; 108 109 parent = kernfs_get_parent(kn); 110 kernfs_put(kn); 111 kn = parent; 112 if (!kn) 113 return ERR_PTR(-ESTALE); 114 } 115 116 inode = kernfs_get_inode(sb, kn); 117 kernfs_put(kn); 118 if (!inode) 119 return ERR_PTR(-ESTALE); 120 121 return d_obtain_alias(inode); 122 } 123 124 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, 125 struct fid *fid, int fh_len, 126 int fh_type) 127 { 128 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false); 129 } 130 131 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, 132 struct fid *fid, int fh_len, 133 int fh_type) 134 { 135 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true); 136 } 137 138 static struct dentry *kernfs_get_parent_dentry(struct dentry *child) 139 { 140 struct kernfs_node *kn = kernfs_dentry_node(child); 141 142 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent)); 143 } 144 145 static const struct export_operations kernfs_export_ops = { 146 .encode_fh = kernfs_encode_fh, 147 .fh_to_dentry = kernfs_fh_to_dentry, 148 .fh_to_parent = kernfs_fh_to_parent, 149 .get_parent = kernfs_get_parent_dentry, 150 }; 151 152 /** 153 * kernfs_root_from_sb - determine kernfs_root associated with a super_block 154 * @sb: the super_block in question 155 * 156 * Return: the kernfs_root associated with @sb. If @sb is not a kernfs one, 157 * %NULL is returned. 158 */ 159 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) 160 { 161 if (sb->s_op == &kernfs_sops) 162 return kernfs_info(sb)->root; 163 return NULL; 164 } 165 166 /* 167 * find the next ancestor in the path down to @child, where @parent was the 168 * ancestor whose descendant we want to find. 169 * 170 * Say the path is /a/b/c/d. @child is d, @parent is %NULL. We return the root 171 * node. If @parent is b, then we return the node for c. 172 * Passing in d as @parent is not ok. 173 */ 174 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child, 175 struct kernfs_node *parent) 176 { 177 if (child == parent) { 178 pr_crit_once("BUG in find_next_ancestor: called with parent == child"); 179 return NULL; 180 } 181 182 while (child->parent != parent) { 183 if (!child->parent) 184 return NULL; 185 child = child->parent; 186 } 187 188 return child; 189 } 190 191 /** 192 * kernfs_node_dentry - get a dentry for the given kernfs_node 193 * @kn: kernfs_node for which a dentry is needed 194 * @sb: the kernfs super_block 195 * 196 * Return: the dentry pointer 197 */ 198 struct dentry *kernfs_node_dentry(struct kernfs_node *kn, 199 struct super_block *sb) 200 { 201 struct dentry *dentry; 202 struct kernfs_node *knparent = NULL; 203 204 BUG_ON(sb->s_op != &kernfs_sops); 205 206 dentry = dget(sb->s_root); 207 208 /* Check if this is the root kernfs_node */ 209 if (!kn->parent) 210 return dentry; 211 212 knparent = find_next_ancestor(kn, NULL); 213 if (WARN_ON(!knparent)) { 214 dput(dentry); 215 return ERR_PTR(-EINVAL); 216 } 217 218 do { 219 struct dentry *dtmp; 220 struct kernfs_node *kntmp; 221 222 if (kn == knparent) 223 return dentry; 224 kntmp = find_next_ancestor(kn, knparent); 225 if (WARN_ON(!kntmp)) { 226 dput(dentry); 227 return ERR_PTR(-EINVAL); 228 } 229 dtmp = lookup_positive_unlocked(kntmp->name, dentry, 230 strlen(kntmp->name)); 231 dput(dentry); 232 if (IS_ERR(dtmp)) 233 return dtmp; 234 knparent = kntmp; 235 dentry = dtmp; 236 } while (true); 237 } 238 239 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc) 240 { 241 struct kernfs_super_info *info = kernfs_info(sb); 242 struct kernfs_root *kf_root = kfc->root; 243 struct inode *inode; 244 struct dentry *root; 245 246 info->sb = sb; 247 /* Userspace would break if executables or devices appear on sysfs */ 248 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 249 sb->s_blocksize = PAGE_SIZE; 250 sb->s_blocksize_bits = PAGE_SHIFT; 251 sb->s_magic = kfc->magic; 252 sb->s_op = &kernfs_sops; 253 sb->s_xattr = kernfs_xattr_handlers; 254 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP) 255 sb->s_export_op = &kernfs_export_ops; 256 sb->s_time_gran = 1; 257 258 /* sysfs dentries and inodes don't require IO to create */ 259 sb->s_shrink.seeks = 0; 260 261 /* get root inode, initialize and unlock it */ 262 down_read(&kf_root->kernfs_rwsem); 263 inode = kernfs_get_inode(sb, info->root->kn); 264 up_read(&kf_root->kernfs_rwsem); 265 if (!inode) { 266 pr_debug("kernfs: could not get root inode\n"); 267 return -ENOMEM; 268 } 269 270 /* instantiate and link root dentry */ 271 root = d_make_root(inode); 272 if (!root) { 273 pr_debug("%s: could not get root dentry!\n", __func__); 274 return -ENOMEM; 275 } 276 sb->s_root = root; 277 sb->s_d_op = &kernfs_dops; 278 return 0; 279 } 280 281 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc) 282 { 283 struct kernfs_super_info *sb_info = kernfs_info(sb); 284 struct kernfs_super_info *info = fc->s_fs_info; 285 286 return sb_info->root == info->root && sb_info->ns == info->ns; 287 } 288 289 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc) 290 { 291 struct kernfs_fs_context *kfc = fc->fs_private; 292 293 kfc->ns_tag = NULL; 294 return set_anon_super_fc(sb, fc); 295 } 296 297 /** 298 * kernfs_super_ns - determine the namespace tag of a kernfs super_block 299 * @sb: super_block of interest 300 * 301 * Return: the namespace tag associated with kernfs super_block @sb. 302 */ 303 const void *kernfs_super_ns(struct super_block *sb) 304 { 305 struct kernfs_super_info *info = kernfs_info(sb); 306 307 return info->ns; 308 } 309 310 /** 311 * kernfs_get_tree - kernfs filesystem access/retrieval helper 312 * @fc: The filesystem context. 313 * 314 * This is to be called from each kernfs user's fs_context->ops->get_tree() 315 * implementation, which should set the specified ->@fs_type and ->@flags, and 316 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns, 317 * respectively. 318 * 319 * Return: %0 on success, -errno on failure. 320 */ 321 int kernfs_get_tree(struct fs_context *fc) 322 { 323 struct kernfs_fs_context *kfc = fc->fs_private; 324 struct super_block *sb; 325 struct kernfs_super_info *info; 326 int error; 327 328 info = kzalloc(sizeof(*info), GFP_KERNEL); 329 if (!info) 330 return -ENOMEM; 331 332 info->root = kfc->root; 333 info->ns = kfc->ns_tag; 334 INIT_LIST_HEAD(&info->node); 335 336 fc->s_fs_info = info; 337 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super); 338 if (IS_ERR(sb)) 339 return PTR_ERR(sb); 340 341 if (!sb->s_root) { 342 struct kernfs_super_info *info = kernfs_info(sb); 343 struct kernfs_root *root = kfc->root; 344 345 kfc->new_sb_created = true; 346 347 error = kernfs_fill_super(sb, kfc); 348 if (error) { 349 deactivate_locked_super(sb); 350 return error; 351 } 352 sb->s_flags |= SB_ACTIVE; 353 354 down_write(&root->kernfs_rwsem); 355 list_add(&info->node, &info->root->supers); 356 up_write(&root->kernfs_rwsem); 357 } 358 359 fc->root = dget(sb->s_root); 360 return 0; 361 } 362 363 void kernfs_free_fs_context(struct fs_context *fc) 364 { 365 /* Note that we don't deal with kfc->ns_tag here. */ 366 kfree(fc->s_fs_info); 367 fc->s_fs_info = NULL; 368 } 369 370 /** 371 * kernfs_kill_sb - kill_sb for kernfs 372 * @sb: super_block being killed 373 * 374 * This can be used directly for file_system_type->kill_sb(). If a kernfs 375 * user needs extra cleanup, it can implement its own kill_sb() and call 376 * this function at the end. 377 */ 378 void kernfs_kill_sb(struct super_block *sb) 379 { 380 struct kernfs_super_info *info = kernfs_info(sb); 381 struct kernfs_root *root = info->root; 382 383 down_write(&root->kernfs_rwsem); 384 list_del(&info->node); 385 up_write(&root->kernfs_rwsem); 386 387 /* 388 * Remove the superblock from fs_supers/s_instances 389 * so we can't find it, before freeing kernfs_super_info. 390 */ 391 kill_anon_super(sb); 392 kfree(info); 393 } 394 395 static void __init kernfs_mutex_init(void) 396 { 397 int count; 398 399 for (count = 0; count < NR_KERNFS_LOCKS; count++) 400 mutex_init(&kernfs_locks->open_file_mutex[count]); 401 } 402 403 static void __init kernfs_lock_init(void) 404 { 405 kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL); 406 WARN_ON(!kernfs_locks); 407 408 kernfs_mutex_init(); 409 } 410 411 void __init kernfs_init(void) 412 { 413 kernfs_node_cache = kmem_cache_create("kernfs_node_cache", 414 sizeof(struct kernfs_node), 415 0, SLAB_PANIC, NULL); 416 417 /* Creates slab cache for kernfs inode attributes */ 418 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache", 419 sizeof(struct kernfs_iattrs), 420 0, SLAB_PANIC, NULL); 421 422 kernfs_lock_init(); 423 } 424