1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/mount.c - kernfs mount implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/mount.h> 12 #include <linux/init.h> 13 #include <linux/magic.h> 14 #include <linux/slab.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/seq_file.h> 18 #include <linux/exportfs.h> 19 #include <linux/uuid.h> 20 #include <linux/statfs.h> 21 22 #include "kernfs-internal.h" 23 24 struct kmem_cache *kernfs_node_cache __ro_after_init; 25 struct kmem_cache *kernfs_iattrs_cache __ro_after_init; 26 struct kernfs_global_locks *kernfs_locks __ro_after_init; 27 28 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry) 29 { 30 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry)); 31 struct kernfs_syscall_ops *scops = root->syscall_ops; 32 33 if (scops && scops->show_options) 34 return scops->show_options(sf, root); 35 return 0; 36 } 37 38 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry) 39 { 40 struct kernfs_node *node = kernfs_dentry_node(dentry); 41 struct kernfs_root *root = kernfs_root(node); 42 struct kernfs_syscall_ops *scops = root->syscall_ops; 43 44 if (scops && scops->show_path) 45 return scops->show_path(sf, node, root); 46 47 seq_dentry(sf, dentry, " \t\n\\"); 48 return 0; 49 } 50 51 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf) 52 { 53 simple_statfs(dentry, buf); 54 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 55 return 0; 56 } 57 58 const struct super_operations kernfs_sops = { 59 .statfs = kernfs_statfs, 60 .drop_inode = generic_delete_inode, 61 .evict_inode = kernfs_evict_inode, 62 63 .show_options = kernfs_sop_show_options, 64 .show_path = kernfs_sop_show_path, 65 }; 66 67 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len, 68 struct inode *parent) 69 { 70 struct kernfs_node *kn = inode->i_private; 71 72 if (*max_len < 2) { 73 *max_len = 2; 74 return FILEID_INVALID; 75 } 76 77 *max_len = 2; 78 *(u64 *)fh = kn->id; 79 return FILEID_KERNFS; 80 } 81 82 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb, 83 struct fid *fid, int fh_len, 84 int fh_type, bool get_parent) 85 { 86 struct kernfs_super_info *info = kernfs_info(sb); 87 struct kernfs_node *kn; 88 struct inode *inode; 89 u64 id; 90 91 if (fh_len < 2) 92 return NULL; 93 94 switch (fh_type) { 95 case FILEID_KERNFS: 96 id = *(u64 *)fid; 97 break; 98 case FILEID_INO32_GEN: 99 case FILEID_INO32_GEN_PARENT: 100 /* 101 * blk_log_action() exposes "LOW32,HIGH32" pair without 102 * type and userland can call us with generic fid 103 * constructed from them. Combine it back to ID. See 104 * blk_log_action(). 105 */ 106 id = ((u64)fid->i32.gen << 32) | fid->i32.ino; 107 break; 108 default: 109 return NULL; 110 } 111 112 kn = kernfs_find_and_get_node_by_id(info->root, id); 113 if (!kn) 114 return ERR_PTR(-ESTALE); 115 116 if (get_parent) { 117 struct kernfs_node *parent; 118 119 parent = kernfs_get_parent(kn); 120 kernfs_put(kn); 121 kn = parent; 122 if (!kn) 123 return ERR_PTR(-ESTALE); 124 } 125 126 inode = kernfs_get_inode(sb, kn); 127 kernfs_put(kn); 128 if (!inode) 129 return ERR_PTR(-ESTALE); 130 131 return d_obtain_alias(inode); 132 } 133 134 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, 135 struct fid *fid, int fh_len, 136 int fh_type) 137 { 138 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false); 139 } 140 141 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, 142 struct fid *fid, int fh_len, 143 int fh_type) 144 { 145 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true); 146 } 147 148 static struct dentry *kernfs_get_parent_dentry(struct dentry *child) 149 { 150 struct kernfs_node *kn = kernfs_dentry_node(child); 151 152 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent)); 153 } 154 155 static const struct export_operations kernfs_export_ops = { 156 .encode_fh = kernfs_encode_fh, 157 .fh_to_dentry = kernfs_fh_to_dentry, 158 .fh_to_parent = kernfs_fh_to_parent, 159 .get_parent = kernfs_get_parent_dentry, 160 }; 161 162 /** 163 * kernfs_root_from_sb - determine kernfs_root associated with a super_block 164 * @sb: the super_block in question 165 * 166 * Return: the kernfs_root associated with @sb. If @sb is not a kernfs one, 167 * %NULL is returned. 168 */ 169 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) 170 { 171 if (sb->s_op == &kernfs_sops) 172 return kernfs_info(sb)->root; 173 return NULL; 174 } 175 176 /* 177 * find the next ancestor in the path down to @child, where @parent was the 178 * ancestor whose descendant we want to find. 179 * 180 * Say the path is /a/b/c/d. @child is d, @parent is %NULL. We return the root 181 * node. If @parent is b, then we return the node for c. 182 * Passing in d as @parent is not ok. 183 */ 184 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child, 185 struct kernfs_node *parent) 186 { 187 if (child == parent) { 188 pr_crit_once("BUG in find_next_ancestor: called with parent == child"); 189 return NULL; 190 } 191 192 while (child->parent != parent) { 193 if (!child->parent) 194 return NULL; 195 child = child->parent; 196 } 197 198 return child; 199 } 200 201 /** 202 * kernfs_node_dentry - get a dentry for the given kernfs_node 203 * @kn: kernfs_node for which a dentry is needed 204 * @sb: the kernfs super_block 205 * 206 * Return: the dentry pointer 207 */ 208 struct dentry *kernfs_node_dentry(struct kernfs_node *kn, 209 struct super_block *sb) 210 { 211 struct dentry *dentry; 212 struct kernfs_node *knparent = NULL; 213 214 BUG_ON(sb->s_op != &kernfs_sops); 215 216 dentry = dget(sb->s_root); 217 218 /* Check if this is the root kernfs_node */ 219 if (!kn->parent) 220 return dentry; 221 222 knparent = find_next_ancestor(kn, NULL); 223 if (WARN_ON(!knparent)) { 224 dput(dentry); 225 return ERR_PTR(-EINVAL); 226 } 227 228 do { 229 struct dentry *dtmp; 230 struct kernfs_node *kntmp; 231 232 if (kn == knparent) 233 return dentry; 234 kntmp = find_next_ancestor(kn, knparent); 235 if (WARN_ON(!kntmp)) { 236 dput(dentry); 237 return ERR_PTR(-EINVAL); 238 } 239 dtmp = lookup_positive_unlocked(kntmp->name, dentry, 240 strlen(kntmp->name)); 241 dput(dentry); 242 if (IS_ERR(dtmp)) 243 return dtmp; 244 knparent = kntmp; 245 dentry = dtmp; 246 } while (true); 247 } 248 249 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc) 250 { 251 struct kernfs_super_info *info = kernfs_info(sb); 252 struct kernfs_root *kf_root = kfc->root; 253 struct inode *inode; 254 struct dentry *root; 255 256 info->sb = sb; 257 /* Userspace would break if executables or devices appear on sysfs */ 258 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 259 sb->s_blocksize = PAGE_SIZE; 260 sb->s_blocksize_bits = PAGE_SHIFT; 261 sb->s_magic = kfc->magic; 262 sb->s_op = &kernfs_sops; 263 sb->s_xattr = kernfs_xattr_handlers; 264 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP) 265 sb->s_export_op = &kernfs_export_ops; 266 sb->s_time_gran = 1; 267 268 /* sysfs dentries and inodes don't require IO to create */ 269 sb->s_shrink->seeks = 0; 270 271 /* get root inode, initialize and unlock it */ 272 down_read(&kf_root->kernfs_rwsem); 273 inode = kernfs_get_inode(sb, info->root->kn); 274 up_read(&kf_root->kernfs_rwsem); 275 if (!inode) { 276 pr_debug("kernfs: could not get root inode\n"); 277 return -ENOMEM; 278 } 279 280 /* instantiate and link root dentry */ 281 root = d_make_root(inode); 282 if (!root) { 283 pr_debug("%s: could not get root dentry!\n", __func__); 284 return -ENOMEM; 285 } 286 sb->s_root = root; 287 sb->s_d_op = &kernfs_dops; 288 return 0; 289 } 290 291 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc) 292 { 293 struct kernfs_super_info *sb_info = kernfs_info(sb); 294 struct kernfs_super_info *info = fc->s_fs_info; 295 296 return sb_info->root == info->root && sb_info->ns == info->ns; 297 } 298 299 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc) 300 { 301 struct kernfs_fs_context *kfc = fc->fs_private; 302 303 kfc->ns_tag = NULL; 304 return set_anon_super_fc(sb, fc); 305 } 306 307 /** 308 * kernfs_super_ns - determine the namespace tag of a kernfs super_block 309 * @sb: super_block of interest 310 * 311 * Return: the namespace tag associated with kernfs super_block @sb. 312 */ 313 const void *kernfs_super_ns(struct super_block *sb) 314 { 315 struct kernfs_super_info *info = kernfs_info(sb); 316 317 return info->ns; 318 } 319 320 /** 321 * kernfs_get_tree - kernfs filesystem access/retrieval helper 322 * @fc: The filesystem context. 323 * 324 * This is to be called from each kernfs user's fs_context->ops->get_tree() 325 * implementation, which should set the specified ->@fs_type and ->@flags, and 326 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns, 327 * respectively. 328 * 329 * Return: %0 on success, -errno on failure. 330 */ 331 int kernfs_get_tree(struct fs_context *fc) 332 { 333 struct kernfs_fs_context *kfc = fc->fs_private; 334 struct super_block *sb; 335 struct kernfs_super_info *info; 336 int error; 337 338 info = kzalloc(sizeof(*info), GFP_KERNEL); 339 if (!info) 340 return -ENOMEM; 341 342 info->root = kfc->root; 343 info->ns = kfc->ns_tag; 344 INIT_LIST_HEAD(&info->node); 345 346 fc->s_fs_info = info; 347 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super); 348 if (IS_ERR(sb)) 349 return PTR_ERR(sb); 350 351 if (!sb->s_root) { 352 struct kernfs_super_info *info = kernfs_info(sb); 353 struct kernfs_root *root = kfc->root; 354 355 kfc->new_sb_created = true; 356 357 error = kernfs_fill_super(sb, kfc); 358 if (error) { 359 deactivate_locked_super(sb); 360 return error; 361 } 362 sb->s_flags |= SB_ACTIVE; 363 364 uuid_gen(&sb->s_uuid); 365 366 down_write(&root->kernfs_supers_rwsem); 367 list_add(&info->node, &info->root->supers); 368 up_write(&root->kernfs_supers_rwsem); 369 } 370 371 fc->root = dget(sb->s_root); 372 return 0; 373 } 374 375 void kernfs_free_fs_context(struct fs_context *fc) 376 { 377 /* Note that we don't deal with kfc->ns_tag here. */ 378 kfree(fc->s_fs_info); 379 fc->s_fs_info = NULL; 380 } 381 382 /** 383 * kernfs_kill_sb - kill_sb for kernfs 384 * @sb: super_block being killed 385 * 386 * This can be used directly for file_system_type->kill_sb(). If a kernfs 387 * user needs extra cleanup, it can implement its own kill_sb() and call 388 * this function at the end. 389 */ 390 void kernfs_kill_sb(struct super_block *sb) 391 { 392 struct kernfs_super_info *info = kernfs_info(sb); 393 struct kernfs_root *root = info->root; 394 395 down_write(&root->kernfs_supers_rwsem); 396 list_del(&info->node); 397 up_write(&root->kernfs_supers_rwsem); 398 399 /* 400 * Remove the superblock from fs_supers/s_instances 401 * so we can't find it, before freeing kernfs_super_info. 402 */ 403 kill_anon_super(sb); 404 kfree(info); 405 } 406 407 static void __init kernfs_mutex_init(void) 408 { 409 int count; 410 411 for (count = 0; count < NR_KERNFS_LOCKS; count++) 412 mutex_init(&kernfs_locks->open_file_mutex[count]); 413 } 414 415 static void __init kernfs_lock_init(void) 416 { 417 kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL); 418 WARN_ON(!kernfs_locks); 419 420 kernfs_mutex_init(); 421 } 422 423 void __init kernfs_init(void) 424 { 425 kernfs_node_cache = kmem_cache_create("kernfs_node_cache", 426 sizeof(struct kernfs_node), 427 0, SLAB_PANIC, NULL); 428 429 /* Creates slab cache for kernfs inode attributes */ 430 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache", 431 sizeof(struct kernfs_iattrs), 432 0, SLAB_PANIC, NULL); 433 434 kernfs_lock_init(); 435 } 436