xref: /linux/fs/kernfs/mount.c (revision c411ed854584a71b0e86ac3019b60e4789d88086)
1 /*
2  * fs/kernfs/mount.c - kernfs mount implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mount.h>
13 #include <linux/init.h>
14 #include <linux/magic.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/seq_file.h>
19 
20 #include "kernfs-internal.h"
21 
22 struct kmem_cache *kernfs_node_cache;
23 
24 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
25 {
26 	struct kernfs_root *root = kernfs_info(sb)->root;
27 	struct kernfs_syscall_ops *scops = root->syscall_ops;
28 
29 	if (scops && scops->remount_fs)
30 		return scops->remount_fs(root, flags, data);
31 	return 0;
32 }
33 
34 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
35 {
36 	struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
37 	struct kernfs_syscall_ops *scops = root->syscall_ops;
38 
39 	if (scops && scops->show_options)
40 		return scops->show_options(sf, root);
41 	return 0;
42 }
43 
44 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
45 {
46 	struct kernfs_node *node = dentry->d_fsdata;
47 	struct kernfs_root *root = kernfs_root(node);
48 	struct kernfs_syscall_ops *scops = root->syscall_ops;
49 
50 	if (scops && scops->show_path)
51 		return scops->show_path(sf, node, root);
52 
53 	seq_dentry(sf, dentry, " \t\n\\");
54 	return 0;
55 }
56 
57 const struct super_operations kernfs_sops = {
58 	.statfs		= simple_statfs,
59 	.drop_inode	= generic_delete_inode,
60 	.evict_inode	= kernfs_evict_inode,
61 
62 	.remount_fs	= kernfs_sop_remount_fs,
63 	.show_options	= kernfs_sop_show_options,
64 	.show_path	= kernfs_sop_show_path,
65 };
66 
67 /**
68  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
69  * @sb: the super_block in question
70  *
71  * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
72  * %NULL is returned.
73  */
74 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
75 {
76 	if (sb->s_op == &kernfs_sops)
77 		return kernfs_info(sb)->root;
78 	return NULL;
79 }
80 
81 /*
82  * find the next ancestor in the path down to @child, where @parent was the
83  * ancestor whose descendant we want to find.
84  *
85  * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
86  * node.  If @parent is b, then we return the node for c.
87  * Passing in d as @parent is not ok.
88  */
89 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
90 					      struct kernfs_node *parent)
91 {
92 	if (child == parent) {
93 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
94 		return NULL;
95 	}
96 
97 	while (child->parent != parent) {
98 		if (!child->parent)
99 			return NULL;
100 		child = child->parent;
101 	}
102 
103 	return child;
104 }
105 
106 /**
107  * kernfs_node_dentry - get a dentry for the given kernfs_node
108  * @kn: kernfs_node for which a dentry is needed
109  * @sb: the kernfs super_block
110  */
111 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
112 				  struct super_block *sb)
113 {
114 	struct dentry *dentry;
115 	struct kernfs_node *knparent = NULL;
116 
117 	BUG_ON(sb->s_op != &kernfs_sops);
118 
119 	dentry = dget(sb->s_root);
120 
121 	/* Check if this is the root kernfs_node */
122 	if (!kn->parent)
123 		return dentry;
124 
125 	knparent = find_next_ancestor(kn, NULL);
126 	if (WARN_ON(!knparent))
127 		return ERR_PTR(-EINVAL);
128 
129 	do {
130 		struct dentry *dtmp;
131 		struct kernfs_node *kntmp;
132 
133 		if (kn == knparent)
134 			return dentry;
135 		kntmp = find_next_ancestor(kn, knparent);
136 		if (WARN_ON(!kntmp))
137 			return ERR_PTR(-EINVAL);
138 		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
139 					       strlen(kntmp->name));
140 		dput(dentry);
141 		if (IS_ERR(dtmp))
142 			return dtmp;
143 		knparent = kntmp;
144 		dentry = dtmp;
145 	} while (true);
146 }
147 
148 static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
149 {
150 	struct kernfs_super_info *info = kernfs_info(sb);
151 	struct inode *inode;
152 	struct dentry *root;
153 
154 	info->sb = sb;
155 	/* Userspace would break if executables or devices appear on sysfs */
156 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
157 	sb->s_blocksize = PAGE_SIZE;
158 	sb->s_blocksize_bits = PAGE_SHIFT;
159 	sb->s_magic = magic;
160 	sb->s_op = &kernfs_sops;
161 	sb->s_xattr = kernfs_xattr_handlers;
162 	sb->s_time_gran = 1;
163 
164 	/* get root inode, initialize and unlock it */
165 	mutex_lock(&kernfs_mutex);
166 	inode = kernfs_get_inode(sb, info->root->kn);
167 	mutex_unlock(&kernfs_mutex);
168 	if (!inode) {
169 		pr_debug("kernfs: could not get root inode\n");
170 		return -ENOMEM;
171 	}
172 
173 	/* instantiate and link root dentry */
174 	root = d_make_root(inode);
175 	if (!root) {
176 		pr_debug("%s: could not get root dentry!\n", __func__);
177 		return -ENOMEM;
178 	}
179 	kernfs_get(info->root->kn);
180 	root->d_fsdata = info->root->kn;
181 	sb->s_root = root;
182 	sb->s_d_op = &kernfs_dops;
183 	return 0;
184 }
185 
186 static int kernfs_test_super(struct super_block *sb, void *data)
187 {
188 	struct kernfs_super_info *sb_info = kernfs_info(sb);
189 	struct kernfs_super_info *info = data;
190 
191 	return sb_info->root == info->root && sb_info->ns == info->ns;
192 }
193 
194 static int kernfs_set_super(struct super_block *sb, void *data)
195 {
196 	int error;
197 	error = set_anon_super(sb, data);
198 	if (!error)
199 		sb->s_fs_info = data;
200 	return error;
201 }
202 
203 /**
204  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
205  * @sb: super_block of interest
206  *
207  * Return the namespace tag associated with kernfs super_block @sb.
208  */
209 const void *kernfs_super_ns(struct super_block *sb)
210 {
211 	struct kernfs_super_info *info = kernfs_info(sb);
212 
213 	return info->ns;
214 }
215 
216 /**
217  * kernfs_mount_ns - kernfs mount helper
218  * @fs_type: file_system_type of the fs being mounted
219  * @flags: mount flags specified for the mount
220  * @root: kernfs_root of the hierarchy being mounted
221  * @magic: file system specific magic number
222  * @new_sb_created: tell the caller if we allocated a new superblock
223  * @ns: optional namespace tag of the mount
224  *
225  * This is to be called from each kernfs user's file_system_type->mount()
226  * implementation, which should pass through the specified @fs_type and
227  * @flags, and specify the hierarchy and namespace tag to mount via @root
228  * and @ns, respectively.
229  *
230  * The return value can be passed to the vfs layer verbatim.
231  */
232 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
233 				struct kernfs_root *root, unsigned long magic,
234 				bool *new_sb_created, const void *ns)
235 {
236 	struct super_block *sb;
237 	struct kernfs_super_info *info;
238 	int error;
239 
240 	info = kzalloc(sizeof(*info), GFP_KERNEL);
241 	if (!info)
242 		return ERR_PTR(-ENOMEM);
243 
244 	info->root = root;
245 	info->ns = ns;
246 
247 	sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
248 			 &init_user_ns, info);
249 	if (IS_ERR(sb) || sb->s_fs_info != info)
250 		kfree(info);
251 	if (IS_ERR(sb))
252 		return ERR_CAST(sb);
253 
254 	if (new_sb_created)
255 		*new_sb_created = !sb->s_root;
256 
257 	if (!sb->s_root) {
258 		struct kernfs_super_info *info = kernfs_info(sb);
259 
260 		error = kernfs_fill_super(sb, magic);
261 		if (error) {
262 			deactivate_locked_super(sb);
263 			return ERR_PTR(error);
264 		}
265 		sb->s_flags |= MS_ACTIVE;
266 
267 		mutex_lock(&kernfs_mutex);
268 		list_add(&info->node, &root->supers);
269 		mutex_unlock(&kernfs_mutex);
270 	}
271 
272 	return dget(sb->s_root);
273 }
274 
275 /**
276  * kernfs_kill_sb - kill_sb for kernfs
277  * @sb: super_block being killed
278  *
279  * This can be used directly for file_system_type->kill_sb().  If a kernfs
280  * user needs extra cleanup, it can implement its own kill_sb() and call
281  * this function at the end.
282  */
283 void kernfs_kill_sb(struct super_block *sb)
284 {
285 	struct kernfs_super_info *info = kernfs_info(sb);
286 	struct kernfs_node *root_kn = sb->s_root->d_fsdata;
287 
288 	mutex_lock(&kernfs_mutex);
289 	list_del(&info->node);
290 	mutex_unlock(&kernfs_mutex);
291 
292 	/*
293 	 * Remove the superblock from fs_supers/s_instances
294 	 * so we can't find it, before freeing kernfs_super_info.
295 	 */
296 	kill_anon_super(sb);
297 	kfree(info);
298 	kernfs_put(root_kn);
299 }
300 
301 /**
302  * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
303  * @kernfs_root: the kernfs_root in question
304  * @ns: the namespace tag
305  *
306  * Pin the superblock so the superblock won't be destroyed in subsequent
307  * operations.  This can be used to block ->kill_sb() which may be useful
308  * for kernfs users which dynamically manage superblocks.
309  *
310  * Returns NULL if there's no superblock associated to this kernfs_root, or
311  * -EINVAL if the superblock is being freed.
312  */
313 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
314 {
315 	struct kernfs_super_info *info;
316 	struct super_block *sb = NULL;
317 
318 	mutex_lock(&kernfs_mutex);
319 	list_for_each_entry(info, &root->supers, node) {
320 		if (info->ns == ns) {
321 			sb = info->sb;
322 			if (!atomic_inc_not_zero(&info->sb->s_active))
323 				sb = ERR_PTR(-EINVAL);
324 			break;
325 		}
326 	}
327 	mutex_unlock(&kernfs_mutex);
328 	return sb;
329 }
330 
331 void __init kernfs_init(void)
332 {
333 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
334 					      sizeof(struct kernfs_node),
335 					      0, SLAB_PANIC, NULL);
336 }
337