1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/mount.c - kernfs mount implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/mount.h> 12 #include <linux/init.h> 13 #include <linux/magic.h> 14 #include <linux/slab.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/seq_file.h> 18 #include <linux/exportfs.h> 19 #include <linux/uuid.h> 20 #include <linux/statfs.h> 21 22 #include "kernfs-internal.h" 23 24 struct kmem_cache *kernfs_node_cache __ro_after_init; 25 struct kmem_cache *kernfs_iattrs_cache __ro_after_init; 26 struct kernfs_global_locks *kernfs_locks __ro_after_init; 27 28 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry) 29 { 30 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry)); 31 struct kernfs_syscall_ops *scops = root->syscall_ops; 32 33 if (scops && scops->show_options) 34 return scops->show_options(sf, root); 35 return 0; 36 } 37 38 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry) 39 { 40 struct kernfs_node *node = kernfs_dentry_node(dentry); 41 struct kernfs_root *root = kernfs_root(node); 42 struct kernfs_syscall_ops *scops = root->syscall_ops; 43 44 if (scops && scops->show_path) 45 return scops->show_path(sf, node, root); 46 47 seq_dentry(sf, dentry, " \t\n\\"); 48 return 0; 49 } 50 51 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf) 52 { 53 simple_statfs(dentry, buf); 54 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 55 return 0; 56 } 57 58 const struct super_operations kernfs_sops = { 59 .statfs = kernfs_statfs, 60 .drop_inode = inode_just_drop, 61 .evict_inode = kernfs_evict_inode, 62 63 .show_options = kernfs_sop_show_options, 64 .show_path = kernfs_sop_show_path, 65 66 /* 67 * sysfs is built on top of kernfs and sysfs provides the power 68 * management infrastructure to support suspend/hibernate by 69 * writing to various files in /sys/power/. As filesystems may 70 * be automatically frozen during suspend/hibernate implementing 71 * freeze/thaw support for kernfs generically will cause 72 * deadlocks as the suspending/hibernation initiating task will 73 * hold a VFS lock that it will then wait upon to be released. 74 * If freeze/thaw for kernfs is needed talk to the VFS. 75 */ 76 .freeze_fs = NULL, 77 .unfreeze_fs = NULL, 78 .freeze_super = NULL, 79 .thaw_super = NULL, 80 }; 81 82 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len, 83 struct inode *parent) 84 { 85 struct kernfs_node *kn = inode->i_private; 86 87 if (*max_len < 2) { 88 *max_len = 2; 89 return FILEID_INVALID; 90 } 91 92 *max_len = 2; 93 *(u64 *)fh = kn->id; 94 return FILEID_KERNFS; 95 } 96 97 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb, 98 struct fid *fid, int fh_len, 99 int fh_type, bool get_parent) 100 { 101 struct kernfs_super_info *info = kernfs_info(sb); 102 struct kernfs_node *kn; 103 struct inode *inode; 104 u64 id; 105 106 if (fh_len < 2) 107 return NULL; 108 109 switch (fh_type) { 110 case FILEID_KERNFS: 111 id = *(u64 *)fid; 112 break; 113 case FILEID_INO32_GEN: 114 case FILEID_INO32_GEN_PARENT: 115 /* 116 * blk_log_action() exposes "LOW32,HIGH32" pair without 117 * type and userland can call us with generic fid 118 * constructed from them. Combine it back to ID. See 119 * blk_log_action(). 120 */ 121 id = ((u64)fid->i32.gen << 32) | fid->i32.ino; 122 break; 123 default: 124 return NULL; 125 } 126 127 kn = kernfs_find_and_get_node_by_id(info->root, id); 128 if (!kn) 129 return ERR_PTR(-ESTALE); 130 131 if (get_parent) { 132 struct kernfs_node *parent; 133 134 parent = kernfs_get_parent(kn); 135 kernfs_put(kn); 136 kn = parent; 137 if (!kn) 138 return ERR_PTR(-ESTALE); 139 } 140 141 inode = kernfs_get_inode(sb, kn); 142 kernfs_put(kn); 143 return d_obtain_alias(inode); 144 } 145 146 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, 147 struct fid *fid, int fh_len, 148 int fh_type) 149 { 150 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false); 151 } 152 153 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, 154 struct fid *fid, int fh_len, 155 int fh_type) 156 { 157 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true); 158 } 159 160 static struct dentry *kernfs_get_parent_dentry(struct dentry *child) 161 { 162 struct kernfs_node *kn = kernfs_dentry_node(child); 163 struct kernfs_root *root = kernfs_root(kn); 164 165 guard(rwsem_read)(&root->kernfs_rwsem); 166 return d_obtain_alias(kernfs_get_inode(child->d_sb, kernfs_parent(kn))); 167 } 168 169 static const struct export_operations kernfs_export_ops = { 170 .encode_fh = kernfs_encode_fh, 171 .fh_to_dentry = kernfs_fh_to_dentry, 172 .fh_to_parent = kernfs_fh_to_parent, 173 .get_parent = kernfs_get_parent_dentry, 174 }; 175 176 /** 177 * kernfs_root_from_sb - determine kernfs_root associated with a super_block 178 * @sb: the super_block in question 179 * 180 * Return: the kernfs_root associated with @sb. If @sb is not a kernfs one, 181 * %NULL is returned. 182 */ 183 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) 184 { 185 if (sb->s_op == &kernfs_sops) 186 return kernfs_info(sb)->root; 187 return NULL; 188 } 189 190 /* 191 * find the next ancestor in the path down to @child, where @parent was the 192 * ancestor whose descendant we want to find. 193 * 194 * Say the path is /a/b/c/d. @child is d, @parent is %NULL. We return the root 195 * node. If @parent is b, then we return the node for c. 196 * Passing in d as @parent is not ok. 197 */ 198 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child, 199 struct kernfs_node *parent) 200 { 201 if (child == parent) { 202 pr_crit_once("BUG in find_next_ancestor: called with parent == child"); 203 return NULL; 204 } 205 206 while (kernfs_parent(child) != parent) { 207 child = kernfs_parent(child); 208 if (!child) 209 return NULL; 210 } 211 212 return child; 213 } 214 215 /** 216 * kernfs_node_dentry - get a dentry for the given kernfs_node 217 * @kn: kernfs_node for which a dentry is needed 218 * @sb: the kernfs super_block 219 * 220 * Return: the dentry pointer 221 */ 222 struct dentry *kernfs_node_dentry(struct kernfs_node *kn, 223 struct super_block *sb) 224 { 225 struct dentry *dentry; 226 struct kernfs_node *knparent; 227 struct kernfs_root *root; 228 229 BUG_ON(sb->s_op != &kernfs_sops); 230 231 dentry = dget(sb->s_root); 232 233 /* Check if this is the root kernfs_node */ 234 if (!rcu_access_pointer(kn->__parent)) 235 return dentry; 236 237 root = kernfs_root(kn); 238 /* 239 * As long as kn is valid, its parent can not vanish. This is cgroup's 240 * kn so it can't have its parent replaced. Therefore it is safe to use 241 * the ancestor node outside of the RCU or locked section. 242 */ 243 if (WARN_ON_ONCE(!(root->flags & KERNFS_ROOT_INVARIANT_PARENT))) 244 return ERR_PTR(-EINVAL); 245 scoped_guard(rcu) { 246 knparent = find_next_ancestor(kn, NULL); 247 } 248 if (WARN_ON(!knparent)) { 249 dput(dentry); 250 return ERR_PTR(-EINVAL); 251 } 252 253 do { 254 struct dentry *dtmp; 255 struct kernfs_node *kntmp; 256 const char *name; 257 258 if (kn == knparent) 259 return dentry; 260 261 scoped_guard(rwsem_read, &root->kernfs_rwsem) { 262 kntmp = find_next_ancestor(kn, knparent); 263 if (WARN_ON(!kntmp)) { 264 dput(dentry); 265 return ERR_PTR(-EINVAL); 266 } 267 name = kstrdup(kernfs_rcu_name(kntmp), GFP_KERNEL); 268 } 269 if (!name) { 270 dput(dentry); 271 return ERR_PTR(-ENOMEM); 272 } 273 dtmp = lookup_noperm_positive_unlocked(&QSTR(name), dentry); 274 dput(dentry); 275 kfree(name); 276 if (IS_ERR(dtmp)) 277 return dtmp; 278 knparent = kntmp; 279 dentry = dtmp; 280 } while (true); 281 } 282 283 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc) 284 { 285 struct kernfs_super_info *info = kernfs_info(sb); 286 struct kernfs_root *kf_root = kfc->root; 287 struct inode *inode; 288 struct dentry *root; 289 290 info->sb = sb; 291 /* Userspace would break if executables or devices appear on sysfs */ 292 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 293 sb->s_blocksize = PAGE_SIZE; 294 sb->s_blocksize_bits = PAGE_SHIFT; 295 sb->s_magic = kfc->magic; 296 sb->s_op = &kernfs_sops; 297 sb->s_xattr = kernfs_xattr_handlers; 298 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP) 299 sb->s_export_op = &kernfs_export_ops; 300 sb->s_time_gran = 1; 301 sb->s_maxbytes = MAX_LFS_FILESIZE; 302 303 /* sysfs dentries and inodes don't require IO to create */ 304 sb->s_shrink->seeks = 0; 305 306 /* get root inode, initialize and unlock it */ 307 down_read(&kf_root->kernfs_rwsem); 308 inode = kernfs_get_inode(sb, info->root->kn); 309 up_read(&kf_root->kernfs_rwsem); 310 if (!inode) { 311 pr_debug("kernfs: could not get root inode\n"); 312 return -ENOMEM; 313 } 314 315 /* instantiate and link root dentry */ 316 root = d_make_root(inode); 317 if (!root) { 318 pr_debug("%s: could not get root dentry!\n", __func__); 319 return -ENOMEM; 320 } 321 sb->s_root = root; 322 set_default_d_op(sb, &kernfs_dops); 323 return 0; 324 } 325 326 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc) 327 { 328 struct kernfs_super_info *sb_info = kernfs_info(sb); 329 struct kernfs_super_info *info = fc->s_fs_info; 330 331 return sb_info->root == info->root && sb_info->ns == info->ns; 332 } 333 334 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc) 335 { 336 struct kernfs_fs_context *kfc = fc->fs_private; 337 338 kfc->ns_tag = NULL; 339 return set_anon_super_fc(sb, fc); 340 } 341 342 /** 343 * kernfs_super_ns - determine the namespace tag of a kernfs super_block 344 * @sb: super_block of interest 345 * 346 * Return: the namespace tag associated with kernfs super_block @sb. 347 */ 348 const void *kernfs_super_ns(struct super_block *sb) 349 { 350 struct kernfs_super_info *info = kernfs_info(sb); 351 352 return info->ns; 353 } 354 355 /** 356 * kernfs_get_tree - kernfs filesystem access/retrieval helper 357 * @fc: The filesystem context. 358 * 359 * This is to be called from each kernfs user's fs_context->ops->get_tree() 360 * implementation, which should set the specified ->@fs_type and ->@flags, and 361 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns, 362 * respectively. 363 * 364 * Return: %0 on success, -errno on failure. 365 */ 366 int kernfs_get_tree(struct fs_context *fc) 367 { 368 struct kernfs_fs_context *kfc = fc->fs_private; 369 struct super_block *sb; 370 struct kernfs_super_info *info; 371 int error; 372 373 info = kzalloc(sizeof(*info), GFP_KERNEL); 374 if (!info) 375 return -ENOMEM; 376 377 info->root = kfc->root; 378 info->ns = kfc->ns_tag; 379 INIT_LIST_HEAD(&info->node); 380 381 fc->s_fs_info = info; 382 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super); 383 if (IS_ERR(sb)) 384 return PTR_ERR(sb); 385 386 if (!sb->s_root) { 387 struct kernfs_super_info *info = kernfs_info(sb); 388 struct kernfs_root *root = kfc->root; 389 390 kfc->new_sb_created = true; 391 392 error = kernfs_fill_super(sb, kfc); 393 if (error) { 394 deactivate_locked_super(sb); 395 return error; 396 } 397 sb->s_flags |= SB_ACTIVE; 398 399 uuid_t uuid; 400 uuid_gen(&uuid); 401 super_set_uuid(sb, uuid.b, sizeof(uuid)); 402 403 down_write(&root->kernfs_supers_rwsem); 404 list_add(&info->node, &info->root->supers); 405 up_write(&root->kernfs_supers_rwsem); 406 } 407 408 fc->root = dget(sb->s_root); 409 return 0; 410 } 411 412 void kernfs_free_fs_context(struct fs_context *fc) 413 { 414 /* Note that we don't deal with kfc->ns_tag here. */ 415 kfree(fc->s_fs_info); 416 fc->s_fs_info = NULL; 417 } 418 419 /** 420 * kernfs_kill_sb - kill_sb for kernfs 421 * @sb: super_block being killed 422 * 423 * This can be used directly for file_system_type->kill_sb(). If a kernfs 424 * user needs extra cleanup, it can implement its own kill_sb() and call 425 * this function at the end. 426 */ 427 void kernfs_kill_sb(struct super_block *sb) 428 { 429 struct kernfs_super_info *info = kernfs_info(sb); 430 struct kernfs_root *root = info->root; 431 432 down_write(&root->kernfs_supers_rwsem); 433 list_del(&info->node); 434 up_write(&root->kernfs_supers_rwsem); 435 436 /* 437 * Remove the superblock from fs_supers/s_instances 438 * so we can't find it, before freeing kernfs_super_info. 439 */ 440 kill_anon_super(sb); 441 kfree(info); 442 } 443 444 static void __init kernfs_mutex_init(void) 445 { 446 int count; 447 448 for (count = 0; count < NR_KERNFS_LOCKS; count++) 449 mutex_init(&kernfs_locks->open_file_mutex[count]); 450 } 451 452 static void __init kernfs_lock_init(void) 453 { 454 kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL); 455 WARN_ON(!kernfs_locks); 456 457 kernfs_mutex_init(); 458 } 459 460 void __init kernfs_init(void) 461 { 462 kernfs_node_cache = kmem_cache_create("kernfs_node_cache", 463 sizeof(struct kernfs_node), 464 0, SLAB_PANIC, NULL); 465 466 /* Creates slab cache for kernfs inode attributes */ 467 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache", 468 sizeof(struct kernfs_iattrs), 469 0, SLAB_PANIC, NULL); 470 471 kernfs_lock_init(); 472 } 473