xref: /linux/fs/kernfs/mount.c (revision bab2c80e5a6c855657482eac9e97f5f3eedb509a)
1 /*
2  * fs/kernfs/mount.c - kernfs mount implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mount.h>
13 #include <linux/init.h>
14 #include <linux/magic.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/seq_file.h>
19 #include <linux/exportfs.h>
20 
21 #include "kernfs-internal.h"
22 
23 struct kmem_cache *kernfs_node_cache;
24 
25 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
26 {
27 	struct kernfs_root *root = kernfs_info(sb)->root;
28 	struct kernfs_syscall_ops *scops = root->syscall_ops;
29 
30 	if (scops && scops->remount_fs)
31 		return scops->remount_fs(root, flags, data);
32 	return 0;
33 }
34 
35 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
36 {
37 	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
38 	struct kernfs_syscall_ops *scops = root->syscall_ops;
39 
40 	if (scops && scops->show_options)
41 		return scops->show_options(sf, root);
42 	return 0;
43 }
44 
45 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
46 {
47 	struct kernfs_node *node = kernfs_dentry_node(dentry);
48 	struct kernfs_root *root = kernfs_root(node);
49 	struct kernfs_syscall_ops *scops = root->syscall_ops;
50 
51 	if (scops && scops->show_path)
52 		return scops->show_path(sf, node, root);
53 
54 	seq_dentry(sf, dentry, " \t\n\\");
55 	return 0;
56 }
57 
58 const struct super_operations kernfs_sops = {
59 	.statfs		= simple_statfs,
60 	.drop_inode	= generic_delete_inode,
61 	.evict_inode	= kernfs_evict_inode,
62 
63 	.remount_fs	= kernfs_sop_remount_fs,
64 	.show_options	= kernfs_sop_show_options,
65 	.show_path	= kernfs_sop_show_path,
66 };
67 
68 /*
69  * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
70  * number and generation
71  */
72 struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
73 	const union kernfs_node_id *id)
74 {
75 	struct kernfs_node *kn;
76 
77 	kn = kernfs_find_and_get_node_by_ino(root, id->ino);
78 	if (!kn)
79 		return NULL;
80 	if (kn->id.generation != id->generation) {
81 		kernfs_put(kn);
82 		return NULL;
83 	}
84 	return kn;
85 }
86 
87 static struct inode *kernfs_fh_get_inode(struct super_block *sb,
88 		u64 ino, u32 generation)
89 {
90 	struct kernfs_super_info *info = kernfs_info(sb);
91 	struct inode *inode;
92 	struct kernfs_node *kn;
93 
94 	if (ino == 0)
95 		return ERR_PTR(-ESTALE);
96 
97 	kn = kernfs_find_and_get_node_by_ino(info->root, ino);
98 	if (!kn)
99 		return ERR_PTR(-ESTALE);
100 	inode = kernfs_get_inode(sb, kn);
101 	kernfs_put(kn);
102 	if (!inode)
103 		return ERR_PTR(-ESTALE);
104 
105 	if (generation && inode->i_generation != generation) {
106 		/* we didn't find the right inode.. */
107 		iput(inode);
108 		return ERR_PTR(-ESTALE);
109 	}
110 	return inode;
111 }
112 
113 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
114 		int fh_len, int fh_type)
115 {
116 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
117 				    kernfs_fh_get_inode);
118 }
119 
120 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
121 		int fh_len, int fh_type)
122 {
123 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
124 				    kernfs_fh_get_inode);
125 }
126 
127 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
128 {
129 	struct kernfs_node *kn = kernfs_dentry_node(child);
130 
131 	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
132 }
133 
134 static const struct export_operations kernfs_export_ops = {
135 	.fh_to_dentry	= kernfs_fh_to_dentry,
136 	.fh_to_parent	= kernfs_fh_to_parent,
137 	.get_parent	= kernfs_get_parent_dentry,
138 };
139 
140 /**
141  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
142  * @sb: the super_block in question
143  *
144  * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
145  * %NULL is returned.
146  */
147 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
148 {
149 	if (sb->s_op == &kernfs_sops)
150 		return kernfs_info(sb)->root;
151 	return NULL;
152 }
153 
154 /*
155  * find the next ancestor in the path down to @child, where @parent was the
156  * ancestor whose descendant we want to find.
157  *
158  * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
159  * node.  If @parent is b, then we return the node for c.
160  * Passing in d as @parent is not ok.
161  */
162 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
163 					      struct kernfs_node *parent)
164 {
165 	if (child == parent) {
166 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
167 		return NULL;
168 	}
169 
170 	while (child->parent != parent) {
171 		if (!child->parent)
172 			return NULL;
173 		child = child->parent;
174 	}
175 
176 	return child;
177 }
178 
179 /**
180  * kernfs_node_dentry - get a dentry for the given kernfs_node
181  * @kn: kernfs_node for which a dentry is needed
182  * @sb: the kernfs super_block
183  */
184 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
185 				  struct super_block *sb)
186 {
187 	struct dentry *dentry;
188 	struct kernfs_node *knparent = NULL;
189 
190 	BUG_ON(sb->s_op != &kernfs_sops);
191 
192 	dentry = dget(sb->s_root);
193 
194 	/* Check if this is the root kernfs_node */
195 	if (!kn->parent)
196 		return dentry;
197 
198 	knparent = find_next_ancestor(kn, NULL);
199 	if (WARN_ON(!knparent))
200 		return ERR_PTR(-EINVAL);
201 
202 	do {
203 		struct dentry *dtmp;
204 		struct kernfs_node *kntmp;
205 
206 		if (kn == knparent)
207 			return dentry;
208 		kntmp = find_next_ancestor(kn, knparent);
209 		if (WARN_ON(!kntmp))
210 			return ERR_PTR(-EINVAL);
211 		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
212 					       strlen(kntmp->name));
213 		dput(dentry);
214 		if (IS_ERR(dtmp))
215 			return dtmp;
216 		knparent = kntmp;
217 		dentry = dtmp;
218 	} while (true);
219 }
220 
221 static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
222 {
223 	struct kernfs_super_info *info = kernfs_info(sb);
224 	struct inode *inode;
225 	struct dentry *root;
226 
227 	info->sb = sb;
228 	/* Userspace would break if executables or devices appear on sysfs */
229 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
230 	sb->s_blocksize = PAGE_SIZE;
231 	sb->s_blocksize_bits = PAGE_SHIFT;
232 	sb->s_magic = magic;
233 	sb->s_op = &kernfs_sops;
234 	sb->s_xattr = kernfs_xattr_handlers;
235 	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
236 		sb->s_export_op = &kernfs_export_ops;
237 	sb->s_time_gran = 1;
238 
239 	/* get root inode, initialize and unlock it */
240 	mutex_lock(&kernfs_mutex);
241 	inode = kernfs_get_inode(sb, info->root->kn);
242 	mutex_unlock(&kernfs_mutex);
243 	if (!inode) {
244 		pr_debug("kernfs: could not get root inode\n");
245 		return -ENOMEM;
246 	}
247 
248 	/* instantiate and link root dentry */
249 	root = d_make_root(inode);
250 	if (!root) {
251 		pr_debug("%s: could not get root dentry!\n", __func__);
252 		return -ENOMEM;
253 	}
254 	sb->s_root = root;
255 	sb->s_d_op = &kernfs_dops;
256 	return 0;
257 }
258 
259 static int kernfs_test_super(struct super_block *sb, void *data)
260 {
261 	struct kernfs_super_info *sb_info = kernfs_info(sb);
262 	struct kernfs_super_info *info = data;
263 
264 	return sb_info->root == info->root && sb_info->ns == info->ns;
265 }
266 
267 static int kernfs_set_super(struct super_block *sb, void *data)
268 {
269 	int error;
270 	error = set_anon_super(sb, data);
271 	if (!error)
272 		sb->s_fs_info = data;
273 	return error;
274 }
275 
276 /**
277  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
278  * @sb: super_block of interest
279  *
280  * Return the namespace tag associated with kernfs super_block @sb.
281  */
282 const void *kernfs_super_ns(struct super_block *sb)
283 {
284 	struct kernfs_super_info *info = kernfs_info(sb);
285 
286 	return info->ns;
287 }
288 
289 /**
290  * kernfs_mount_ns - kernfs mount helper
291  * @fs_type: file_system_type of the fs being mounted
292  * @flags: mount flags specified for the mount
293  * @root: kernfs_root of the hierarchy being mounted
294  * @magic: file system specific magic number
295  * @new_sb_created: tell the caller if we allocated a new superblock
296  * @ns: optional namespace tag of the mount
297  *
298  * This is to be called from each kernfs user's file_system_type->mount()
299  * implementation, which should pass through the specified @fs_type and
300  * @flags, and specify the hierarchy and namespace tag to mount via @root
301  * and @ns, respectively.
302  *
303  * The return value can be passed to the vfs layer verbatim.
304  */
305 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
306 				struct kernfs_root *root, unsigned long magic,
307 				bool *new_sb_created, const void *ns)
308 {
309 	struct super_block *sb;
310 	struct kernfs_super_info *info;
311 	int error;
312 
313 	info = kzalloc(sizeof(*info), GFP_KERNEL);
314 	if (!info)
315 		return ERR_PTR(-ENOMEM);
316 
317 	info->root = root;
318 	info->ns = ns;
319 	INIT_LIST_HEAD(&info->node);
320 
321 	sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
322 			 &init_user_ns, info);
323 	if (IS_ERR(sb) || sb->s_fs_info != info)
324 		kfree(info);
325 	if (IS_ERR(sb))
326 		return ERR_CAST(sb);
327 
328 	if (new_sb_created)
329 		*new_sb_created = !sb->s_root;
330 
331 	if (!sb->s_root) {
332 		struct kernfs_super_info *info = kernfs_info(sb);
333 
334 		error = kernfs_fill_super(sb, magic);
335 		if (error) {
336 			deactivate_locked_super(sb);
337 			return ERR_PTR(error);
338 		}
339 		sb->s_flags |= SB_ACTIVE;
340 
341 		mutex_lock(&kernfs_mutex);
342 		list_add(&info->node, &root->supers);
343 		mutex_unlock(&kernfs_mutex);
344 	}
345 
346 	return dget(sb->s_root);
347 }
348 
349 /**
350  * kernfs_kill_sb - kill_sb for kernfs
351  * @sb: super_block being killed
352  *
353  * This can be used directly for file_system_type->kill_sb().  If a kernfs
354  * user needs extra cleanup, it can implement its own kill_sb() and call
355  * this function at the end.
356  */
357 void kernfs_kill_sb(struct super_block *sb)
358 {
359 	struct kernfs_super_info *info = kernfs_info(sb);
360 
361 	mutex_lock(&kernfs_mutex);
362 	list_del(&info->node);
363 	mutex_unlock(&kernfs_mutex);
364 
365 	/*
366 	 * Remove the superblock from fs_supers/s_instances
367 	 * so we can't find it, before freeing kernfs_super_info.
368 	 */
369 	kill_anon_super(sb);
370 	kfree(info);
371 }
372 
373 /**
374  * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
375  * @kernfs_root: the kernfs_root in question
376  * @ns: the namespace tag
377  *
378  * Pin the superblock so the superblock won't be destroyed in subsequent
379  * operations.  This can be used to block ->kill_sb() which may be useful
380  * for kernfs users which dynamically manage superblocks.
381  *
382  * Returns NULL if there's no superblock associated to this kernfs_root, or
383  * -EINVAL if the superblock is being freed.
384  */
385 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
386 {
387 	struct kernfs_super_info *info;
388 	struct super_block *sb = NULL;
389 
390 	mutex_lock(&kernfs_mutex);
391 	list_for_each_entry(info, &root->supers, node) {
392 		if (info->ns == ns) {
393 			sb = info->sb;
394 			if (!atomic_inc_not_zero(&info->sb->s_active))
395 				sb = ERR_PTR(-EINVAL);
396 			break;
397 		}
398 	}
399 	mutex_unlock(&kernfs_mutex);
400 	return sb;
401 }
402 
403 void __init kernfs_init(void)
404 {
405 
406 	/*
407 	 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
408 	 * can access the slab lock free. This could introduce stale nodes,
409 	 * please see how kernfs_find_and_get_node_by_ino filters out stale
410 	 * nodes.
411 	 */
412 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
413 					      sizeof(struct kernfs_node),
414 					      0,
415 					      SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
416 					      NULL);
417 }
418