1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/mount.c - kernfs mount implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/mount.h> 12 #include <linux/init.h> 13 #include <linux/magic.h> 14 #include <linux/slab.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/seq_file.h> 18 #include <linux/exportfs.h> 19 #include <linux/uuid.h> 20 #include <linux/statfs.h> 21 22 #include "kernfs-internal.h" 23 24 struct kmem_cache *kernfs_node_cache __ro_after_init; 25 struct kmem_cache *kernfs_iattrs_cache __ro_after_init; 26 struct kernfs_global_locks *kernfs_locks __ro_after_init; 27 28 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry) 29 { 30 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry)); 31 struct kernfs_syscall_ops *scops = root->syscall_ops; 32 33 if (scops && scops->show_options) 34 return scops->show_options(sf, root); 35 return 0; 36 } 37 38 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry) 39 { 40 struct kernfs_node *node = kernfs_dentry_node(dentry); 41 struct kernfs_root *root = kernfs_root(node); 42 struct kernfs_syscall_ops *scops = root->syscall_ops; 43 44 if (scops && scops->show_path) 45 return scops->show_path(sf, node, root); 46 47 seq_dentry(sf, dentry, " \t\n\\"); 48 return 0; 49 } 50 51 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf) 52 { 53 simple_statfs(dentry, buf); 54 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 55 return 0; 56 } 57 58 const struct super_operations kernfs_sops = { 59 .statfs = kernfs_statfs, 60 .drop_inode = generic_delete_inode, 61 .evict_inode = kernfs_evict_inode, 62 63 .show_options = kernfs_sop_show_options, 64 .show_path = kernfs_sop_show_path, 65 }; 66 67 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len, 68 struct inode *parent) 69 { 70 struct kernfs_node *kn = inode->i_private; 71 72 if (*max_len < 2) { 73 *max_len = 2; 74 return FILEID_INVALID; 75 } 76 77 *max_len = 2; 78 *(u64 *)fh = kn->id; 79 return FILEID_KERNFS; 80 } 81 82 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb, 83 struct fid *fid, int fh_len, 84 int fh_type, bool get_parent) 85 { 86 struct kernfs_super_info *info = kernfs_info(sb); 87 struct kernfs_node *kn; 88 struct inode *inode; 89 u64 id; 90 91 if (fh_len < 2) 92 return NULL; 93 94 switch (fh_type) { 95 case FILEID_KERNFS: 96 id = *(u64 *)fid; 97 break; 98 case FILEID_INO32_GEN: 99 case FILEID_INO32_GEN_PARENT: 100 /* 101 * blk_log_action() exposes "LOW32,HIGH32" pair without 102 * type and userland can call us with generic fid 103 * constructed from them. Combine it back to ID. See 104 * blk_log_action(). 105 */ 106 id = ((u64)fid->i32.gen << 32) | fid->i32.ino; 107 break; 108 default: 109 return NULL; 110 } 111 112 kn = kernfs_find_and_get_node_by_id(info->root, id); 113 if (!kn) 114 return ERR_PTR(-ESTALE); 115 116 if (get_parent) { 117 struct kernfs_node *parent; 118 119 parent = kernfs_get_parent(kn); 120 kernfs_put(kn); 121 kn = parent; 122 if (!kn) 123 return ERR_PTR(-ESTALE); 124 } 125 126 inode = kernfs_get_inode(sb, kn); 127 kernfs_put(kn); 128 return d_obtain_alias(inode); 129 } 130 131 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, 132 struct fid *fid, int fh_len, 133 int fh_type) 134 { 135 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false); 136 } 137 138 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, 139 struct fid *fid, int fh_len, 140 int fh_type) 141 { 142 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true); 143 } 144 145 static struct dentry *kernfs_get_parent_dentry(struct dentry *child) 146 { 147 struct kernfs_node *kn = kernfs_dentry_node(child); 148 struct kernfs_root *root = kernfs_root(kn); 149 150 guard(rwsem_read)(&root->kernfs_rwsem); 151 return d_obtain_alias(kernfs_get_inode(child->d_sb, kernfs_parent(kn))); 152 } 153 154 static const struct export_operations kernfs_export_ops = { 155 .encode_fh = kernfs_encode_fh, 156 .fh_to_dentry = kernfs_fh_to_dentry, 157 .fh_to_parent = kernfs_fh_to_parent, 158 .get_parent = kernfs_get_parent_dentry, 159 }; 160 161 /** 162 * kernfs_root_from_sb - determine kernfs_root associated with a super_block 163 * @sb: the super_block in question 164 * 165 * Return: the kernfs_root associated with @sb. If @sb is not a kernfs one, 166 * %NULL is returned. 167 */ 168 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) 169 { 170 if (sb->s_op == &kernfs_sops) 171 return kernfs_info(sb)->root; 172 return NULL; 173 } 174 175 /* 176 * find the next ancestor in the path down to @child, where @parent was the 177 * ancestor whose descendant we want to find. 178 * 179 * Say the path is /a/b/c/d. @child is d, @parent is %NULL. We return the root 180 * node. If @parent is b, then we return the node for c. 181 * Passing in d as @parent is not ok. 182 */ 183 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child, 184 struct kernfs_node *parent) 185 { 186 if (child == parent) { 187 pr_crit_once("BUG in find_next_ancestor: called with parent == child"); 188 return NULL; 189 } 190 191 while (kernfs_parent(child) != parent) { 192 child = kernfs_parent(child); 193 if (!child) 194 return NULL; 195 } 196 197 return child; 198 } 199 200 /** 201 * kernfs_node_dentry - get a dentry for the given kernfs_node 202 * @kn: kernfs_node for which a dentry is needed 203 * @sb: the kernfs super_block 204 * 205 * Return: the dentry pointer 206 */ 207 struct dentry *kernfs_node_dentry(struct kernfs_node *kn, 208 struct super_block *sb) 209 { 210 struct dentry *dentry; 211 struct kernfs_node *knparent; 212 struct kernfs_root *root; 213 214 BUG_ON(sb->s_op != &kernfs_sops); 215 216 dentry = dget(sb->s_root); 217 218 /* Check if this is the root kernfs_node */ 219 if (!rcu_access_pointer(kn->__parent)) 220 return dentry; 221 222 root = kernfs_root(kn); 223 /* 224 * As long as kn is valid, its parent can not vanish. This is cgroup's 225 * kn so it can't have its parent replaced. Therefore it is safe to use 226 * the ancestor node outside of the RCU or locked section. 227 */ 228 if (WARN_ON_ONCE(!(root->flags & KERNFS_ROOT_INVARIANT_PARENT))) 229 return ERR_PTR(-EINVAL); 230 scoped_guard(rcu) { 231 knparent = find_next_ancestor(kn, NULL); 232 } 233 if (WARN_ON(!knparent)) { 234 dput(dentry); 235 return ERR_PTR(-EINVAL); 236 } 237 238 do { 239 struct dentry *dtmp; 240 struct kernfs_node *kntmp; 241 const char *name; 242 243 if (kn == knparent) 244 return dentry; 245 246 scoped_guard(rwsem_read, &root->kernfs_rwsem) { 247 kntmp = find_next_ancestor(kn, knparent); 248 if (WARN_ON(!kntmp)) { 249 dput(dentry); 250 return ERR_PTR(-EINVAL); 251 } 252 name = kstrdup(kernfs_rcu_name(kntmp), GFP_KERNEL); 253 } 254 if (!name) { 255 dput(dentry); 256 return ERR_PTR(-ENOMEM); 257 } 258 dtmp = lookup_positive_unlocked(name, dentry, strlen(name)); 259 dput(dentry); 260 kfree(name); 261 if (IS_ERR(dtmp)) 262 return dtmp; 263 knparent = kntmp; 264 dentry = dtmp; 265 } while (true); 266 } 267 268 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc) 269 { 270 struct kernfs_super_info *info = kernfs_info(sb); 271 struct kernfs_root *kf_root = kfc->root; 272 struct inode *inode; 273 struct dentry *root; 274 275 info->sb = sb; 276 /* Userspace would break if executables or devices appear on sysfs */ 277 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 278 sb->s_blocksize = PAGE_SIZE; 279 sb->s_blocksize_bits = PAGE_SHIFT; 280 sb->s_magic = kfc->magic; 281 sb->s_op = &kernfs_sops; 282 sb->s_xattr = kernfs_xattr_handlers; 283 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP) 284 sb->s_export_op = &kernfs_export_ops; 285 sb->s_time_gran = 1; 286 287 /* sysfs dentries and inodes don't require IO to create */ 288 sb->s_shrink->seeks = 0; 289 290 /* get root inode, initialize and unlock it */ 291 down_read(&kf_root->kernfs_rwsem); 292 inode = kernfs_get_inode(sb, info->root->kn); 293 up_read(&kf_root->kernfs_rwsem); 294 if (!inode) { 295 pr_debug("kernfs: could not get root inode\n"); 296 return -ENOMEM; 297 } 298 299 /* instantiate and link root dentry */ 300 root = d_make_root(inode); 301 if (!root) { 302 pr_debug("%s: could not get root dentry!\n", __func__); 303 return -ENOMEM; 304 } 305 sb->s_root = root; 306 sb->s_d_op = &kernfs_dops; 307 return 0; 308 } 309 310 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc) 311 { 312 struct kernfs_super_info *sb_info = kernfs_info(sb); 313 struct kernfs_super_info *info = fc->s_fs_info; 314 315 return sb_info->root == info->root && sb_info->ns == info->ns; 316 } 317 318 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc) 319 { 320 struct kernfs_fs_context *kfc = fc->fs_private; 321 322 kfc->ns_tag = NULL; 323 return set_anon_super_fc(sb, fc); 324 } 325 326 /** 327 * kernfs_super_ns - determine the namespace tag of a kernfs super_block 328 * @sb: super_block of interest 329 * 330 * Return: the namespace tag associated with kernfs super_block @sb. 331 */ 332 const void *kernfs_super_ns(struct super_block *sb) 333 { 334 struct kernfs_super_info *info = kernfs_info(sb); 335 336 return info->ns; 337 } 338 339 /** 340 * kernfs_get_tree - kernfs filesystem access/retrieval helper 341 * @fc: The filesystem context. 342 * 343 * This is to be called from each kernfs user's fs_context->ops->get_tree() 344 * implementation, which should set the specified ->@fs_type and ->@flags, and 345 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns, 346 * respectively. 347 * 348 * Return: %0 on success, -errno on failure. 349 */ 350 int kernfs_get_tree(struct fs_context *fc) 351 { 352 struct kernfs_fs_context *kfc = fc->fs_private; 353 struct super_block *sb; 354 struct kernfs_super_info *info; 355 int error; 356 357 info = kzalloc(sizeof(*info), GFP_KERNEL); 358 if (!info) 359 return -ENOMEM; 360 361 info->root = kfc->root; 362 info->ns = kfc->ns_tag; 363 INIT_LIST_HEAD(&info->node); 364 365 fc->s_fs_info = info; 366 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super); 367 if (IS_ERR(sb)) 368 return PTR_ERR(sb); 369 370 if (!sb->s_root) { 371 struct kernfs_super_info *info = kernfs_info(sb); 372 struct kernfs_root *root = kfc->root; 373 374 kfc->new_sb_created = true; 375 376 error = kernfs_fill_super(sb, kfc); 377 if (error) { 378 deactivate_locked_super(sb); 379 return error; 380 } 381 sb->s_flags |= SB_ACTIVE; 382 383 uuid_t uuid; 384 uuid_gen(&uuid); 385 super_set_uuid(sb, uuid.b, sizeof(uuid)); 386 387 down_write(&root->kernfs_supers_rwsem); 388 list_add(&info->node, &info->root->supers); 389 up_write(&root->kernfs_supers_rwsem); 390 } 391 392 fc->root = dget(sb->s_root); 393 return 0; 394 } 395 396 void kernfs_free_fs_context(struct fs_context *fc) 397 { 398 /* Note that we don't deal with kfc->ns_tag here. */ 399 kfree(fc->s_fs_info); 400 fc->s_fs_info = NULL; 401 } 402 403 /** 404 * kernfs_kill_sb - kill_sb for kernfs 405 * @sb: super_block being killed 406 * 407 * This can be used directly for file_system_type->kill_sb(). If a kernfs 408 * user needs extra cleanup, it can implement its own kill_sb() and call 409 * this function at the end. 410 */ 411 void kernfs_kill_sb(struct super_block *sb) 412 { 413 struct kernfs_super_info *info = kernfs_info(sb); 414 struct kernfs_root *root = info->root; 415 416 down_write(&root->kernfs_supers_rwsem); 417 list_del(&info->node); 418 up_write(&root->kernfs_supers_rwsem); 419 420 /* 421 * Remove the superblock from fs_supers/s_instances 422 * so we can't find it, before freeing kernfs_super_info. 423 */ 424 kill_anon_super(sb); 425 kfree(info); 426 } 427 428 static void __init kernfs_mutex_init(void) 429 { 430 int count; 431 432 for (count = 0; count < NR_KERNFS_LOCKS; count++) 433 mutex_init(&kernfs_locks->open_file_mutex[count]); 434 } 435 436 static void __init kernfs_lock_init(void) 437 { 438 kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL); 439 WARN_ON(!kernfs_locks); 440 441 kernfs_mutex_init(); 442 } 443 444 void __init kernfs_init(void) 445 { 446 kernfs_node_cache = kmem_cache_create("kernfs_node_cache", 447 sizeof(struct kernfs_node), 448 0, SLAB_PANIC, NULL); 449 450 /* Creates slab cache for kernfs inode attributes */ 451 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache", 452 sizeof(struct kernfs_iattrs), 453 0, SLAB_PANIC, NULL); 454 455 kernfs_lock_init(); 456 } 457