xref: /linux/fs/kernfs/mount.c (revision 63d6e721527e175edbbe8513cba8e4a0caf94da5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/mount.c - kernfs mount implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 
20 #include "kernfs-internal.h"
21 
22 struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
23 
24 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
25 {
26 	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
27 	struct kernfs_syscall_ops *scops = root->syscall_ops;
28 
29 	if (scops && scops->show_options)
30 		return scops->show_options(sf, root);
31 	return 0;
32 }
33 
34 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
35 {
36 	struct kernfs_node *node = kernfs_dentry_node(dentry);
37 	struct kernfs_root *root = kernfs_root(node);
38 	struct kernfs_syscall_ops *scops = root->syscall_ops;
39 
40 	if (scops && scops->show_path)
41 		return scops->show_path(sf, node, root);
42 
43 	seq_dentry(sf, dentry, " \t\n\\");
44 	return 0;
45 }
46 
47 const struct super_operations kernfs_sops = {
48 	.statfs		= simple_statfs,
49 	.drop_inode	= generic_delete_inode,
50 	.evict_inode	= kernfs_evict_inode,
51 
52 	.show_options	= kernfs_sop_show_options,
53 	.show_path	= kernfs_sop_show_path,
54 };
55 
56 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
57 			    struct inode *parent)
58 {
59 	struct kernfs_node *kn = inode->i_private;
60 
61 	if (*max_len < 2) {
62 		*max_len = 2;
63 		return FILEID_INVALID;
64 	}
65 
66 	*max_len = 2;
67 	*(u64 *)fh = kn->id;
68 	return FILEID_KERNFS;
69 }
70 
71 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
72 					    struct fid *fid, int fh_len,
73 					    int fh_type, bool get_parent)
74 {
75 	struct kernfs_super_info *info = kernfs_info(sb);
76 	struct kernfs_node *kn;
77 	struct inode *inode;
78 	u64 id;
79 
80 	if (fh_len < 2)
81 		return NULL;
82 
83 	switch (fh_type) {
84 	case FILEID_KERNFS:
85 		id = *(u64 *)fid;
86 		break;
87 	case FILEID_INO32_GEN:
88 	case FILEID_INO32_GEN_PARENT:
89 		/*
90 		 * blk_log_action() exposes "LOW32,HIGH32" pair without
91 		 * type and userland can call us with generic fid
92 		 * constructed from them.  Combine it back to ID.  See
93 		 * blk_log_action().
94 		 */
95 		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
96 		break;
97 	default:
98 		return NULL;
99 	}
100 
101 	kn = kernfs_find_and_get_node_by_id(info->root, id);
102 	if (!kn)
103 		return ERR_PTR(-ESTALE);
104 
105 	if (get_parent) {
106 		struct kernfs_node *parent;
107 
108 		parent = kernfs_get_parent(kn);
109 		kernfs_put(kn);
110 		kn = parent;
111 		if (!kn)
112 			return ERR_PTR(-ESTALE);
113 	}
114 
115 	inode = kernfs_get_inode(sb, kn);
116 	kernfs_put(kn);
117 	if (!inode)
118 		return ERR_PTR(-ESTALE);
119 
120 	return d_obtain_alias(inode);
121 }
122 
123 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
124 					  struct fid *fid, int fh_len,
125 					  int fh_type)
126 {
127 	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
128 }
129 
130 static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
131 					  struct fid *fid, int fh_len,
132 					  int fh_type)
133 {
134 	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
135 }
136 
137 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
138 {
139 	struct kernfs_node *kn = kernfs_dentry_node(child);
140 
141 	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
142 }
143 
144 static const struct export_operations kernfs_export_ops = {
145 	.encode_fh	= kernfs_encode_fh,
146 	.fh_to_dentry	= kernfs_fh_to_dentry,
147 	.fh_to_parent	= kernfs_fh_to_parent,
148 	.get_parent	= kernfs_get_parent_dentry,
149 };
150 
151 /**
152  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
153  * @sb: the super_block in question
154  *
155  * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
156  * %NULL is returned.
157  */
158 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
159 {
160 	if (sb->s_op == &kernfs_sops)
161 		return kernfs_info(sb)->root;
162 	return NULL;
163 }
164 
165 /*
166  * find the next ancestor in the path down to @child, where @parent was the
167  * ancestor whose descendant we want to find.
168  *
169  * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
170  * node.  If @parent is b, then we return the node for c.
171  * Passing in d as @parent is not ok.
172  */
173 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
174 					      struct kernfs_node *parent)
175 {
176 	if (child == parent) {
177 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
178 		return NULL;
179 	}
180 
181 	while (child->parent != parent) {
182 		if (!child->parent)
183 			return NULL;
184 		child = child->parent;
185 	}
186 
187 	return child;
188 }
189 
190 /**
191  * kernfs_node_dentry - get a dentry for the given kernfs_node
192  * @kn: kernfs_node for which a dentry is needed
193  * @sb: the kernfs super_block
194  */
195 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
196 				  struct super_block *sb)
197 {
198 	struct dentry *dentry;
199 	struct kernfs_node *knparent = NULL;
200 
201 	BUG_ON(sb->s_op != &kernfs_sops);
202 
203 	dentry = dget(sb->s_root);
204 
205 	/* Check if this is the root kernfs_node */
206 	if (!kn->parent)
207 		return dentry;
208 
209 	knparent = find_next_ancestor(kn, NULL);
210 	if (WARN_ON(!knparent)) {
211 		dput(dentry);
212 		return ERR_PTR(-EINVAL);
213 	}
214 
215 	do {
216 		struct dentry *dtmp;
217 		struct kernfs_node *kntmp;
218 
219 		if (kn == knparent)
220 			return dentry;
221 		kntmp = find_next_ancestor(kn, knparent);
222 		if (WARN_ON(!kntmp)) {
223 			dput(dentry);
224 			return ERR_PTR(-EINVAL);
225 		}
226 		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
227 					       strlen(kntmp->name));
228 		dput(dentry);
229 		if (IS_ERR(dtmp))
230 			return dtmp;
231 		knparent = kntmp;
232 		dentry = dtmp;
233 	} while (true);
234 }
235 
236 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
237 {
238 	struct kernfs_super_info *info = kernfs_info(sb);
239 	struct inode *inode;
240 	struct dentry *root;
241 
242 	info->sb = sb;
243 	/* Userspace would break if executables or devices appear on sysfs */
244 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
245 	sb->s_blocksize = PAGE_SIZE;
246 	sb->s_blocksize_bits = PAGE_SHIFT;
247 	sb->s_magic = kfc->magic;
248 	sb->s_op = &kernfs_sops;
249 	sb->s_xattr = kernfs_xattr_handlers;
250 	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
251 		sb->s_export_op = &kernfs_export_ops;
252 	sb->s_time_gran = 1;
253 
254 	/* sysfs dentries and inodes don't require IO to create */
255 	sb->s_shrink.seeks = 0;
256 
257 	/* get root inode, initialize and unlock it */
258 	mutex_lock(&kernfs_mutex);
259 	inode = kernfs_get_inode(sb, info->root->kn);
260 	mutex_unlock(&kernfs_mutex);
261 	if (!inode) {
262 		pr_debug("kernfs: could not get root inode\n");
263 		return -ENOMEM;
264 	}
265 
266 	/* instantiate and link root dentry */
267 	root = d_make_root(inode);
268 	if (!root) {
269 		pr_debug("%s: could not get root dentry!\n", __func__);
270 		return -ENOMEM;
271 	}
272 	sb->s_root = root;
273 	sb->s_d_op = &kernfs_dops;
274 	return 0;
275 }
276 
277 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
278 {
279 	struct kernfs_super_info *sb_info = kernfs_info(sb);
280 	struct kernfs_super_info *info = fc->s_fs_info;
281 
282 	return sb_info->root == info->root && sb_info->ns == info->ns;
283 }
284 
285 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
286 {
287 	struct kernfs_fs_context *kfc = fc->fs_private;
288 
289 	kfc->ns_tag = NULL;
290 	return set_anon_super_fc(sb, fc);
291 }
292 
293 /**
294  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
295  * @sb: super_block of interest
296  *
297  * Return the namespace tag associated with kernfs super_block @sb.
298  */
299 const void *kernfs_super_ns(struct super_block *sb)
300 {
301 	struct kernfs_super_info *info = kernfs_info(sb);
302 
303 	return info->ns;
304 }
305 
306 /**
307  * kernfs_get_tree - kernfs filesystem access/retrieval helper
308  * @fc: The filesystem context.
309  *
310  * This is to be called from each kernfs user's fs_context->ops->get_tree()
311  * implementation, which should set the specified ->@fs_type and ->@flags, and
312  * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
313  * respectively.
314  */
315 int kernfs_get_tree(struct fs_context *fc)
316 {
317 	struct kernfs_fs_context *kfc = fc->fs_private;
318 	struct super_block *sb;
319 	struct kernfs_super_info *info;
320 	int error;
321 
322 	info = kzalloc(sizeof(*info), GFP_KERNEL);
323 	if (!info)
324 		return -ENOMEM;
325 
326 	info->root = kfc->root;
327 	info->ns = kfc->ns_tag;
328 	INIT_LIST_HEAD(&info->node);
329 
330 	fc->s_fs_info = info;
331 	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
332 	if (IS_ERR(sb))
333 		return PTR_ERR(sb);
334 
335 	if (!sb->s_root) {
336 		struct kernfs_super_info *info = kernfs_info(sb);
337 
338 		kfc->new_sb_created = true;
339 
340 		error = kernfs_fill_super(sb, kfc);
341 		if (error) {
342 			deactivate_locked_super(sb);
343 			return error;
344 		}
345 		sb->s_flags |= SB_ACTIVE;
346 
347 		mutex_lock(&kernfs_mutex);
348 		list_add(&info->node, &info->root->supers);
349 		mutex_unlock(&kernfs_mutex);
350 	}
351 
352 	fc->root = dget(sb->s_root);
353 	return 0;
354 }
355 
356 void kernfs_free_fs_context(struct fs_context *fc)
357 {
358 	/* Note that we don't deal with kfc->ns_tag here. */
359 	kfree(fc->s_fs_info);
360 	fc->s_fs_info = NULL;
361 }
362 
363 /**
364  * kernfs_kill_sb - kill_sb for kernfs
365  * @sb: super_block being killed
366  *
367  * This can be used directly for file_system_type->kill_sb().  If a kernfs
368  * user needs extra cleanup, it can implement its own kill_sb() and call
369  * this function at the end.
370  */
371 void kernfs_kill_sb(struct super_block *sb)
372 {
373 	struct kernfs_super_info *info = kernfs_info(sb);
374 
375 	mutex_lock(&kernfs_mutex);
376 	list_del(&info->node);
377 	mutex_unlock(&kernfs_mutex);
378 
379 	/*
380 	 * Remove the superblock from fs_supers/s_instances
381 	 * so we can't find it, before freeing kernfs_super_info.
382 	 */
383 	kill_anon_super(sb);
384 	kfree(info);
385 }
386 
387 void __init kernfs_init(void)
388 {
389 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
390 					      sizeof(struct kernfs_node),
391 					      0, SLAB_PANIC, NULL);
392 
393 	/* Creates slab cache for kernfs inode attributes */
394 	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
395 					      sizeof(struct kernfs_iattrs),
396 					      0, SLAB_PANIC, NULL);
397 }
398