xref: /linux/fs/kernfs/mount.c (revision 52ffe0ff02fc053a025c381d5808e9ecd3206dfe)
1 /*
2  * fs/kernfs/mount.c - kernfs mount implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mount.h>
13 #include <linux/init.h>
14 #include <linux/magic.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/seq_file.h>
19 
20 #include "kernfs-internal.h"
21 
22 struct kmem_cache *kernfs_node_cache;
23 
24 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
25 {
26 	struct kernfs_root *root = kernfs_info(sb)->root;
27 	struct kernfs_syscall_ops *scops = root->syscall_ops;
28 
29 	if (scops && scops->remount_fs)
30 		return scops->remount_fs(root, flags, data);
31 	return 0;
32 }
33 
34 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
35 {
36 	struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
37 	struct kernfs_syscall_ops *scops = root->syscall_ops;
38 
39 	if (scops && scops->show_options)
40 		return scops->show_options(sf, root);
41 	return 0;
42 }
43 
44 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
45 {
46 	struct kernfs_node *node = dentry->d_fsdata;
47 	struct kernfs_root *root = kernfs_root(node);
48 	struct kernfs_syscall_ops *scops = root->syscall_ops;
49 
50 	if (scops && scops->show_path)
51 		return scops->show_path(sf, node, root);
52 
53 	seq_dentry(sf, dentry, " \t\n\\");
54 	return 0;
55 }
56 
57 const struct super_operations kernfs_sops = {
58 	.statfs		= simple_statfs,
59 	.drop_inode	= generic_delete_inode,
60 	.evict_inode	= kernfs_evict_inode,
61 
62 	.remount_fs	= kernfs_sop_remount_fs,
63 	.show_options	= kernfs_sop_show_options,
64 	.show_path	= kernfs_sop_show_path,
65 };
66 
67 /**
68  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
69  * @sb: the super_block in question
70  *
71  * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
72  * %NULL is returned.
73  */
74 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
75 {
76 	if (sb->s_op == &kernfs_sops)
77 		return kernfs_info(sb)->root;
78 	return NULL;
79 }
80 
81 /*
82  * find the next ancestor in the path down to @child, where @parent was the
83  * ancestor whose descendant we want to find.
84  *
85  * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
86  * node.  If @parent is b, then we return the node for c.
87  * Passing in d as @parent is not ok.
88  */
89 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
90 					      struct kernfs_node *parent)
91 {
92 	if (child == parent) {
93 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
94 		return NULL;
95 	}
96 
97 	while (child->parent != parent) {
98 		if (!child->parent)
99 			return NULL;
100 		child = child->parent;
101 	}
102 
103 	return child;
104 }
105 
106 /**
107  * kernfs_node_dentry - get a dentry for the given kernfs_node
108  * @kn: kernfs_node for which a dentry is needed
109  * @sb: the kernfs super_block
110  */
111 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
112 				  struct super_block *sb)
113 {
114 	struct dentry *dentry;
115 	struct kernfs_node *knparent = NULL;
116 
117 	BUG_ON(sb->s_op != &kernfs_sops);
118 
119 	dentry = dget(sb->s_root);
120 
121 	/* Check if this is the root kernfs_node */
122 	if (!kn->parent)
123 		return dentry;
124 
125 	knparent = find_next_ancestor(kn, NULL);
126 	if (WARN_ON(!knparent))
127 		return ERR_PTR(-EINVAL);
128 
129 	do {
130 		struct dentry *dtmp;
131 		struct kernfs_node *kntmp;
132 
133 		if (kn == knparent)
134 			return dentry;
135 		kntmp = find_next_ancestor(kn, knparent);
136 		if (WARN_ON(!kntmp))
137 			return ERR_PTR(-EINVAL);
138 		mutex_lock(&d_inode(dentry)->i_mutex);
139 		dtmp = lookup_one_len(kntmp->name, dentry, strlen(kntmp->name));
140 		mutex_unlock(&d_inode(dentry)->i_mutex);
141 		dput(dentry);
142 		if (IS_ERR(dtmp))
143 			return dtmp;
144 		knparent = kntmp;
145 		dentry = dtmp;
146 	} while (true);
147 }
148 
149 static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
150 {
151 	struct kernfs_super_info *info = kernfs_info(sb);
152 	struct inode *inode;
153 	struct dentry *root;
154 
155 	info->sb = sb;
156 	sb->s_blocksize = PAGE_SIZE;
157 	sb->s_blocksize_bits = PAGE_SHIFT;
158 	sb->s_magic = magic;
159 	sb->s_op = &kernfs_sops;
160 	sb->s_time_gran = 1;
161 
162 	/* get root inode, initialize and unlock it */
163 	mutex_lock(&kernfs_mutex);
164 	inode = kernfs_get_inode(sb, info->root->kn);
165 	mutex_unlock(&kernfs_mutex);
166 	if (!inode) {
167 		pr_debug("kernfs: could not get root inode\n");
168 		return -ENOMEM;
169 	}
170 
171 	/* instantiate and link root dentry */
172 	root = d_make_root(inode);
173 	if (!root) {
174 		pr_debug("%s: could not get root dentry!\n", __func__);
175 		return -ENOMEM;
176 	}
177 	kernfs_get(info->root->kn);
178 	root->d_fsdata = info->root->kn;
179 	sb->s_root = root;
180 	sb->s_d_op = &kernfs_dops;
181 	return 0;
182 }
183 
184 static int kernfs_test_super(struct super_block *sb, void *data)
185 {
186 	struct kernfs_super_info *sb_info = kernfs_info(sb);
187 	struct kernfs_super_info *info = data;
188 
189 	return sb_info->root == info->root && sb_info->ns == info->ns;
190 }
191 
192 static int kernfs_set_super(struct super_block *sb, void *data)
193 {
194 	int error;
195 	error = set_anon_super(sb, data);
196 	if (!error)
197 		sb->s_fs_info = data;
198 	return error;
199 }
200 
201 /**
202  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
203  * @sb: super_block of interest
204  *
205  * Return the namespace tag associated with kernfs super_block @sb.
206  */
207 const void *kernfs_super_ns(struct super_block *sb)
208 {
209 	struct kernfs_super_info *info = kernfs_info(sb);
210 
211 	return info->ns;
212 }
213 
214 /**
215  * kernfs_mount_ns - kernfs mount helper
216  * @fs_type: file_system_type of the fs being mounted
217  * @flags: mount flags specified for the mount
218  * @root: kernfs_root of the hierarchy being mounted
219  * @magic: file system specific magic number
220  * @new_sb_created: tell the caller if we allocated a new superblock
221  * @ns: optional namespace tag of the mount
222  *
223  * This is to be called from each kernfs user's file_system_type->mount()
224  * implementation, which should pass through the specified @fs_type and
225  * @flags, and specify the hierarchy and namespace tag to mount via @root
226  * and @ns, respectively.
227  *
228  * The return value can be passed to the vfs layer verbatim.
229  */
230 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
231 				struct kernfs_root *root, unsigned long magic,
232 				bool *new_sb_created, const void *ns)
233 {
234 	struct super_block *sb;
235 	struct kernfs_super_info *info;
236 	int error;
237 
238 	info = kzalloc(sizeof(*info), GFP_KERNEL);
239 	if (!info)
240 		return ERR_PTR(-ENOMEM);
241 
242 	info->root = root;
243 	info->ns = ns;
244 
245 	sb = sget(fs_type, kernfs_test_super, kernfs_set_super, flags, info);
246 	if (IS_ERR(sb) || sb->s_fs_info != info)
247 		kfree(info);
248 	if (IS_ERR(sb))
249 		return ERR_CAST(sb);
250 
251 	if (new_sb_created)
252 		*new_sb_created = !sb->s_root;
253 
254 	if (!sb->s_root) {
255 		struct kernfs_super_info *info = kernfs_info(sb);
256 
257 		error = kernfs_fill_super(sb, magic);
258 		if (error) {
259 			deactivate_locked_super(sb);
260 			return ERR_PTR(error);
261 		}
262 		sb->s_flags |= MS_ACTIVE;
263 
264 		mutex_lock(&kernfs_mutex);
265 		list_add(&info->node, &root->supers);
266 		mutex_unlock(&kernfs_mutex);
267 	}
268 
269 	return dget(sb->s_root);
270 }
271 
272 /**
273  * kernfs_kill_sb - kill_sb for kernfs
274  * @sb: super_block being killed
275  *
276  * This can be used directly for file_system_type->kill_sb().  If a kernfs
277  * user needs extra cleanup, it can implement its own kill_sb() and call
278  * this function at the end.
279  */
280 void kernfs_kill_sb(struct super_block *sb)
281 {
282 	struct kernfs_super_info *info = kernfs_info(sb);
283 	struct kernfs_node *root_kn = sb->s_root->d_fsdata;
284 
285 	mutex_lock(&kernfs_mutex);
286 	list_del(&info->node);
287 	mutex_unlock(&kernfs_mutex);
288 
289 	/*
290 	 * Remove the superblock from fs_supers/s_instances
291 	 * so we can't find it, before freeing kernfs_super_info.
292 	 */
293 	kill_anon_super(sb);
294 	kfree(info);
295 	kernfs_put(root_kn);
296 }
297 
298 /**
299  * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
300  * @kernfs_root: the kernfs_root in question
301  * @ns: the namespace tag
302  *
303  * Pin the superblock so the superblock won't be destroyed in subsequent
304  * operations.  This can be used to block ->kill_sb() which may be useful
305  * for kernfs users which dynamically manage superblocks.
306  *
307  * Returns NULL if there's no superblock associated to this kernfs_root, or
308  * -EINVAL if the superblock is being freed.
309  */
310 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
311 {
312 	struct kernfs_super_info *info;
313 	struct super_block *sb = NULL;
314 
315 	mutex_lock(&kernfs_mutex);
316 	list_for_each_entry(info, &root->supers, node) {
317 		if (info->ns == ns) {
318 			sb = info->sb;
319 			if (!atomic_inc_not_zero(&info->sb->s_active))
320 				sb = ERR_PTR(-EINVAL);
321 			break;
322 		}
323 	}
324 	mutex_unlock(&kernfs_mutex);
325 	return sb;
326 }
327 
328 void __init kernfs_init(void)
329 {
330 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
331 					      sizeof(struct kernfs_node),
332 					      0, SLAB_PANIC, NULL);
333 }
334