xref: /linux/fs/kernfs/mount.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/mount.c - kernfs mount implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 #include <linux/uuid.h>
20 #include <linux/statfs.h>
21 
22 #include "kernfs-internal.h"
23 
24 struct kmem_cache *kernfs_node_cache __ro_after_init;
25 struct kmem_cache *kernfs_iattrs_cache __ro_after_init;
26 struct kernfs_global_locks *kernfs_locks __ro_after_init;
27 
28 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
29 {
30 	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
31 	struct kernfs_syscall_ops *scops = root->syscall_ops;
32 
33 	if (scops && scops->show_options)
34 		return scops->show_options(sf, root);
35 	return 0;
36 }
37 
38 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
39 {
40 	struct kernfs_node *node = kernfs_dentry_node(dentry);
41 	struct kernfs_root *root = kernfs_root(node);
42 	struct kernfs_syscall_ops *scops = root->syscall_ops;
43 
44 	if (scops && scops->show_path)
45 		return scops->show_path(sf, node, root);
46 
47 	seq_dentry(sf, dentry, " \t\n\\");
48 	return 0;
49 }
50 
51 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
52 {
53 	simple_statfs(dentry, buf);
54 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
55 	return 0;
56 }
57 
58 const struct super_operations kernfs_sops = {
59 	.statfs		= kernfs_statfs,
60 	.drop_inode	= generic_delete_inode,
61 	.evict_inode	= kernfs_evict_inode,
62 
63 	.show_options	= kernfs_sop_show_options,
64 	.show_path	= kernfs_sop_show_path,
65 };
66 
67 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
68 			    struct inode *parent)
69 {
70 	struct kernfs_node *kn = inode->i_private;
71 
72 	if (*max_len < 2) {
73 		*max_len = 2;
74 		return FILEID_INVALID;
75 	}
76 
77 	*max_len = 2;
78 	*(u64 *)fh = kn->id;
79 	return FILEID_KERNFS;
80 }
81 
82 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
83 					    struct fid *fid, int fh_len,
84 					    int fh_type, bool get_parent)
85 {
86 	struct kernfs_super_info *info = kernfs_info(sb);
87 	struct kernfs_node *kn;
88 	struct inode *inode;
89 	u64 id;
90 
91 	if (fh_len < 2)
92 		return NULL;
93 
94 	switch (fh_type) {
95 	case FILEID_KERNFS:
96 		id = *(u64 *)fid;
97 		break;
98 	case FILEID_INO32_GEN:
99 	case FILEID_INO32_GEN_PARENT:
100 		/*
101 		 * blk_log_action() exposes "LOW32,HIGH32" pair without
102 		 * type and userland can call us with generic fid
103 		 * constructed from them.  Combine it back to ID.  See
104 		 * blk_log_action().
105 		 */
106 		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
107 		break;
108 	default:
109 		return NULL;
110 	}
111 
112 	kn = kernfs_find_and_get_node_by_id(info->root, id);
113 	if (!kn)
114 		return ERR_PTR(-ESTALE);
115 
116 	if (get_parent) {
117 		struct kernfs_node *parent;
118 
119 		parent = kernfs_get_parent(kn);
120 		kernfs_put(kn);
121 		kn = parent;
122 		if (!kn)
123 			return ERR_PTR(-ESTALE);
124 	}
125 
126 	inode = kernfs_get_inode(sb, kn);
127 	kernfs_put(kn);
128 	if (!inode)
129 		return ERR_PTR(-ESTALE);
130 
131 	return d_obtain_alias(inode);
132 }
133 
134 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
135 					  struct fid *fid, int fh_len,
136 					  int fh_type)
137 {
138 	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
139 }
140 
141 static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
142 					  struct fid *fid, int fh_len,
143 					  int fh_type)
144 {
145 	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
146 }
147 
148 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
149 {
150 	struct kernfs_node *kn = kernfs_dentry_node(child);
151 
152 	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
153 }
154 
155 static const struct export_operations kernfs_export_ops = {
156 	.encode_fh	= kernfs_encode_fh,
157 	.fh_to_dentry	= kernfs_fh_to_dentry,
158 	.fh_to_parent	= kernfs_fh_to_parent,
159 	.get_parent	= kernfs_get_parent_dentry,
160 };
161 
162 /**
163  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
164  * @sb: the super_block in question
165  *
166  * Return: the kernfs_root associated with @sb.  If @sb is not a kernfs one,
167  * %NULL is returned.
168  */
169 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
170 {
171 	if (sb->s_op == &kernfs_sops)
172 		return kernfs_info(sb)->root;
173 	return NULL;
174 }
175 
176 /*
177  * find the next ancestor in the path down to @child, where @parent was the
178  * ancestor whose descendant we want to find.
179  *
180  * Say the path is /a/b/c/d.  @child is d, @parent is %NULL.  We return the root
181  * node.  If @parent is b, then we return the node for c.
182  * Passing in d as @parent is not ok.
183  */
184 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
185 					      struct kernfs_node *parent)
186 {
187 	if (child == parent) {
188 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
189 		return NULL;
190 	}
191 
192 	while (child->parent != parent) {
193 		if (!child->parent)
194 			return NULL;
195 		child = child->parent;
196 	}
197 
198 	return child;
199 }
200 
201 /**
202  * kernfs_node_dentry - get a dentry for the given kernfs_node
203  * @kn: kernfs_node for which a dentry is needed
204  * @sb: the kernfs super_block
205  *
206  * Return: the dentry pointer
207  */
208 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
209 				  struct super_block *sb)
210 {
211 	struct dentry *dentry;
212 	struct kernfs_node *knparent = NULL;
213 
214 	BUG_ON(sb->s_op != &kernfs_sops);
215 
216 	dentry = dget(sb->s_root);
217 
218 	/* Check if this is the root kernfs_node */
219 	if (!kn->parent)
220 		return dentry;
221 
222 	knparent = find_next_ancestor(kn, NULL);
223 	if (WARN_ON(!knparent)) {
224 		dput(dentry);
225 		return ERR_PTR(-EINVAL);
226 	}
227 
228 	do {
229 		struct dentry *dtmp;
230 		struct kernfs_node *kntmp;
231 
232 		if (kn == knparent)
233 			return dentry;
234 		kntmp = find_next_ancestor(kn, knparent);
235 		if (WARN_ON(!kntmp)) {
236 			dput(dentry);
237 			return ERR_PTR(-EINVAL);
238 		}
239 		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
240 					       strlen(kntmp->name));
241 		dput(dentry);
242 		if (IS_ERR(dtmp))
243 			return dtmp;
244 		knparent = kntmp;
245 		dentry = dtmp;
246 	} while (true);
247 }
248 
249 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
250 {
251 	struct kernfs_super_info *info = kernfs_info(sb);
252 	struct kernfs_root *kf_root = kfc->root;
253 	struct inode *inode;
254 	struct dentry *root;
255 
256 	info->sb = sb;
257 	/* Userspace would break if executables or devices appear on sysfs */
258 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
259 	sb->s_blocksize = PAGE_SIZE;
260 	sb->s_blocksize_bits = PAGE_SHIFT;
261 	sb->s_magic = kfc->magic;
262 	sb->s_op = &kernfs_sops;
263 	sb->s_xattr = kernfs_xattr_handlers;
264 	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
265 		sb->s_export_op = &kernfs_export_ops;
266 	sb->s_time_gran = 1;
267 
268 	/* sysfs dentries and inodes don't require IO to create */
269 	sb->s_shrink->seeks = 0;
270 
271 	/* get root inode, initialize and unlock it */
272 	down_read(&kf_root->kernfs_rwsem);
273 	inode = kernfs_get_inode(sb, info->root->kn);
274 	up_read(&kf_root->kernfs_rwsem);
275 	if (!inode) {
276 		pr_debug("kernfs: could not get root inode\n");
277 		return -ENOMEM;
278 	}
279 
280 	/* instantiate and link root dentry */
281 	root = d_make_root(inode);
282 	if (!root) {
283 		pr_debug("%s: could not get root dentry!\n", __func__);
284 		return -ENOMEM;
285 	}
286 	sb->s_root = root;
287 	sb->s_d_op = &kernfs_dops;
288 	return 0;
289 }
290 
291 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
292 {
293 	struct kernfs_super_info *sb_info = kernfs_info(sb);
294 	struct kernfs_super_info *info = fc->s_fs_info;
295 
296 	return sb_info->root == info->root && sb_info->ns == info->ns;
297 }
298 
299 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
300 {
301 	struct kernfs_fs_context *kfc = fc->fs_private;
302 
303 	kfc->ns_tag = NULL;
304 	return set_anon_super_fc(sb, fc);
305 }
306 
307 /**
308  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
309  * @sb: super_block of interest
310  *
311  * Return: the namespace tag associated with kernfs super_block @sb.
312  */
313 const void *kernfs_super_ns(struct super_block *sb)
314 {
315 	struct kernfs_super_info *info = kernfs_info(sb);
316 
317 	return info->ns;
318 }
319 
320 /**
321  * kernfs_get_tree - kernfs filesystem access/retrieval helper
322  * @fc: The filesystem context.
323  *
324  * This is to be called from each kernfs user's fs_context->ops->get_tree()
325  * implementation, which should set the specified ->@fs_type and ->@flags, and
326  * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
327  * respectively.
328  *
329  * Return: %0 on success, -errno on failure.
330  */
331 int kernfs_get_tree(struct fs_context *fc)
332 {
333 	struct kernfs_fs_context *kfc = fc->fs_private;
334 	struct super_block *sb;
335 	struct kernfs_super_info *info;
336 	int error;
337 
338 	info = kzalloc(sizeof(*info), GFP_KERNEL);
339 	if (!info)
340 		return -ENOMEM;
341 
342 	info->root = kfc->root;
343 	info->ns = kfc->ns_tag;
344 	INIT_LIST_HEAD(&info->node);
345 
346 	fc->s_fs_info = info;
347 	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
348 	if (IS_ERR(sb))
349 		return PTR_ERR(sb);
350 
351 	if (!sb->s_root) {
352 		struct kernfs_super_info *info = kernfs_info(sb);
353 		struct kernfs_root *root = kfc->root;
354 
355 		kfc->new_sb_created = true;
356 
357 		error = kernfs_fill_super(sb, kfc);
358 		if (error) {
359 			deactivate_locked_super(sb);
360 			return error;
361 		}
362 		sb->s_flags |= SB_ACTIVE;
363 
364 		uuid_gen(&sb->s_uuid);
365 
366 		down_write(&root->kernfs_supers_rwsem);
367 		list_add(&info->node, &info->root->supers);
368 		up_write(&root->kernfs_supers_rwsem);
369 	}
370 
371 	fc->root = dget(sb->s_root);
372 	return 0;
373 }
374 
375 void kernfs_free_fs_context(struct fs_context *fc)
376 {
377 	/* Note that we don't deal with kfc->ns_tag here. */
378 	kfree(fc->s_fs_info);
379 	fc->s_fs_info = NULL;
380 }
381 
382 /**
383  * kernfs_kill_sb - kill_sb for kernfs
384  * @sb: super_block being killed
385  *
386  * This can be used directly for file_system_type->kill_sb().  If a kernfs
387  * user needs extra cleanup, it can implement its own kill_sb() and call
388  * this function at the end.
389  */
390 void kernfs_kill_sb(struct super_block *sb)
391 {
392 	struct kernfs_super_info *info = kernfs_info(sb);
393 	struct kernfs_root *root = info->root;
394 
395 	down_write(&root->kernfs_supers_rwsem);
396 	list_del(&info->node);
397 	up_write(&root->kernfs_supers_rwsem);
398 
399 	/*
400 	 * Remove the superblock from fs_supers/s_instances
401 	 * so we can't find it, before freeing kernfs_super_info.
402 	 */
403 	kill_anon_super(sb);
404 	kfree(info);
405 }
406 
407 static void __init kernfs_mutex_init(void)
408 {
409 	int count;
410 
411 	for (count = 0; count < NR_KERNFS_LOCKS; count++)
412 		mutex_init(&kernfs_locks->open_file_mutex[count]);
413 }
414 
415 static void __init kernfs_lock_init(void)
416 {
417 	kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
418 	WARN_ON(!kernfs_locks);
419 
420 	kernfs_mutex_init();
421 }
422 
423 void __init kernfs_init(void)
424 {
425 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
426 					      sizeof(struct kernfs_node),
427 					      0, SLAB_PANIC, NULL);
428 
429 	/* Creates slab cache for kernfs inode attributes */
430 	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
431 					      sizeof(struct kernfs_iattrs),
432 					      0, SLAB_PANIC, NULL);
433 
434 	kernfs_lock_init();
435 }
436