xref: /linux/fs/kernfs/mount.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/mount.c - kernfs mount implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 #include <linux/uuid.h>
20 #include <linux/statfs.h>
21 
22 #include "kernfs-internal.h"
23 
24 struct kmem_cache *kernfs_node_cache __ro_after_init;
25 struct kmem_cache *kernfs_iattrs_cache __ro_after_init;
26 struct kernfs_global_locks *kernfs_locks __ro_after_init;
27 
28 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
29 {
30 	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
31 	struct kernfs_syscall_ops *scops = root->syscall_ops;
32 
33 	if (scops && scops->show_options)
34 		return scops->show_options(sf, root);
35 	return 0;
36 }
37 
38 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
39 {
40 	struct kernfs_node *node = kernfs_dentry_node(dentry);
41 	struct kernfs_root *root = kernfs_root(node);
42 	struct kernfs_syscall_ops *scops = root->syscall_ops;
43 
44 	if (scops && scops->show_path)
45 		return scops->show_path(sf, node, root);
46 
47 	seq_dentry(sf, dentry, " \t\n\\");
48 	return 0;
49 }
50 
51 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
52 {
53 	simple_statfs(dentry, buf);
54 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
55 	return 0;
56 }
57 
58 const struct super_operations kernfs_sops = {
59 	.statfs		= kernfs_statfs,
60 	.drop_inode	= generic_delete_inode,
61 	.evict_inode	= kernfs_evict_inode,
62 
63 	.show_options	= kernfs_sop_show_options,
64 	.show_path	= kernfs_sop_show_path,
65 };
66 
67 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
68 			    struct inode *parent)
69 {
70 	struct kernfs_node *kn = inode->i_private;
71 
72 	if (*max_len < 2) {
73 		*max_len = 2;
74 		return FILEID_INVALID;
75 	}
76 
77 	*max_len = 2;
78 	*(u64 *)fh = kn->id;
79 	return FILEID_KERNFS;
80 }
81 
82 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
83 					    struct fid *fid, int fh_len,
84 					    int fh_type, bool get_parent)
85 {
86 	struct kernfs_super_info *info = kernfs_info(sb);
87 	struct kernfs_node *kn;
88 	struct inode *inode;
89 	u64 id;
90 
91 	if (fh_len < 2)
92 		return NULL;
93 
94 	switch (fh_type) {
95 	case FILEID_KERNFS:
96 		id = *(u64 *)fid;
97 		break;
98 	case FILEID_INO32_GEN:
99 	case FILEID_INO32_GEN_PARENT:
100 		/*
101 		 * blk_log_action() exposes "LOW32,HIGH32" pair without
102 		 * type and userland can call us with generic fid
103 		 * constructed from them.  Combine it back to ID.  See
104 		 * blk_log_action().
105 		 */
106 		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
107 		break;
108 	default:
109 		return NULL;
110 	}
111 
112 	kn = kernfs_find_and_get_node_by_id(info->root, id);
113 	if (!kn)
114 		return ERR_PTR(-ESTALE);
115 
116 	if (get_parent) {
117 		struct kernfs_node *parent;
118 
119 		parent = kernfs_get_parent(kn);
120 		kernfs_put(kn);
121 		kn = parent;
122 		if (!kn)
123 			return ERR_PTR(-ESTALE);
124 	}
125 
126 	inode = kernfs_get_inode(sb, kn);
127 	kernfs_put(kn);
128 	return d_obtain_alias(inode);
129 }
130 
131 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
132 					  struct fid *fid, int fh_len,
133 					  int fh_type)
134 {
135 	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
136 }
137 
138 static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
139 					  struct fid *fid, int fh_len,
140 					  int fh_type)
141 {
142 	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
143 }
144 
145 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
146 {
147 	struct kernfs_node *kn = kernfs_dentry_node(child);
148 
149 	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
150 }
151 
152 static const struct export_operations kernfs_export_ops = {
153 	.encode_fh	= kernfs_encode_fh,
154 	.fh_to_dentry	= kernfs_fh_to_dentry,
155 	.fh_to_parent	= kernfs_fh_to_parent,
156 	.get_parent	= kernfs_get_parent_dentry,
157 };
158 
159 /**
160  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
161  * @sb: the super_block in question
162  *
163  * Return: the kernfs_root associated with @sb.  If @sb is not a kernfs one,
164  * %NULL is returned.
165  */
166 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
167 {
168 	if (sb->s_op == &kernfs_sops)
169 		return kernfs_info(sb)->root;
170 	return NULL;
171 }
172 
173 /*
174  * find the next ancestor in the path down to @child, where @parent was the
175  * ancestor whose descendant we want to find.
176  *
177  * Say the path is /a/b/c/d.  @child is d, @parent is %NULL.  We return the root
178  * node.  If @parent is b, then we return the node for c.
179  * Passing in d as @parent is not ok.
180  */
181 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
182 					      struct kernfs_node *parent)
183 {
184 	if (child == parent) {
185 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
186 		return NULL;
187 	}
188 
189 	while (child->parent != parent) {
190 		if (!child->parent)
191 			return NULL;
192 		child = child->parent;
193 	}
194 
195 	return child;
196 }
197 
198 /**
199  * kernfs_node_dentry - get a dentry for the given kernfs_node
200  * @kn: kernfs_node for which a dentry is needed
201  * @sb: the kernfs super_block
202  *
203  * Return: the dentry pointer
204  */
205 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
206 				  struct super_block *sb)
207 {
208 	struct dentry *dentry;
209 	struct kernfs_node *knparent;
210 
211 	BUG_ON(sb->s_op != &kernfs_sops);
212 
213 	dentry = dget(sb->s_root);
214 
215 	/* Check if this is the root kernfs_node */
216 	if (!kn->parent)
217 		return dentry;
218 
219 	knparent = find_next_ancestor(kn, NULL);
220 	if (WARN_ON(!knparent)) {
221 		dput(dentry);
222 		return ERR_PTR(-EINVAL);
223 	}
224 
225 	do {
226 		struct dentry *dtmp;
227 		struct kernfs_node *kntmp;
228 
229 		if (kn == knparent)
230 			return dentry;
231 		kntmp = find_next_ancestor(kn, knparent);
232 		if (WARN_ON(!kntmp)) {
233 			dput(dentry);
234 			return ERR_PTR(-EINVAL);
235 		}
236 		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
237 					       strlen(kntmp->name));
238 		dput(dentry);
239 		if (IS_ERR(dtmp))
240 			return dtmp;
241 		knparent = kntmp;
242 		dentry = dtmp;
243 	} while (true);
244 }
245 
246 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
247 {
248 	struct kernfs_super_info *info = kernfs_info(sb);
249 	struct kernfs_root *kf_root = kfc->root;
250 	struct inode *inode;
251 	struct dentry *root;
252 
253 	info->sb = sb;
254 	/* Userspace would break if executables or devices appear on sysfs */
255 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
256 	sb->s_blocksize = PAGE_SIZE;
257 	sb->s_blocksize_bits = PAGE_SHIFT;
258 	sb->s_magic = kfc->magic;
259 	sb->s_op = &kernfs_sops;
260 	sb->s_xattr = kernfs_xattr_handlers;
261 	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
262 		sb->s_export_op = &kernfs_export_ops;
263 	sb->s_time_gran = 1;
264 
265 	/* sysfs dentries and inodes don't require IO to create */
266 	sb->s_shrink->seeks = 0;
267 
268 	/* get root inode, initialize and unlock it */
269 	down_read(&kf_root->kernfs_rwsem);
270 	inode = kernfs_get_inode(sb, info->root->kn);
271 	up_read(&kf_root->kernfs_rwsem);
272 	if (!inode) {
273 		pr_debug("kernfs: could not get root inode\n");
274 		return -ENOMEM;
275 	}
276 
277 	/* instantiate and link root dentry */
278 	root = d_make_root(inode);
279 	if (!root) {
280 		pr_debug("%s: could not get root dentry!\n", __func__);
281 		return -ENOMEM;
282 	}
283 	sb->s_root = root;
284 	sb->s_d_op = &kernfs_dops;
285 	return 0;
286 }
287 
288 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
289 {
290 	struct kernfs_super_info *sb_info = kernfs_info(sb);
291 	struct kernfs_super_info *info = fc->s_fs_info;
292 
293 	return sb_info->root == info->root && sb_info->ns == info->ns;
294 }
295 
296 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
297 {
298 	struct kernfs_fs_context *kfc = fc->fs_private;
299 
300 	kfc->ns_tag = NULL;
301 	return set_anon_super_fc(sb, fc);
302 }
303 
304 /**
305  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
306  * @sb: super_block of interest
307  *
308  * Return: the namespace tag associated with kernfs super_block @sb.
309  */
310 const void *kernfs_super_ns(struct super_block *sb)
311 {
312 	struct kernfs_super_info *info = kernfs_info(sb);
313 
314 	return info->ns;
315 }
316 
317 /**
318  * kernfs_get_tree - kernfs filesystem access/retrieval helper
319  * @fc: The filesystem context.
320  *
321  * This is to be called from each kernfs user's fs_context->ops->get_tree()
322  * implementation, which should set the specified ->@fs_type and ->@flags, and
323  * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
324  * respectively.
325  *
326  * Return: %0 on success, -errno on failure.
327  */
328 int kernfs_get_tree(struct fs_context *fc)
329 {
330 	struct kernfs_fs_context *kfc = fc->fs_private;
331 	struct super_block *sb;
332 	struct kernfs_super_info *info;
333 	int error;
334 
335 	info = kzalloc(sizeof(*info), GFP_KERNEL);
336 	if (!info)
337 		return -ENOMEM;
338 
339 	info->root = kfc->root;
340 	info->ns = kfc->ns_tag;
341 	INIT_LIST_HEAD(&info->node);
342 
343 	fc->s_fs_info = info;
344 	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
345 	if (IS_ERR(sb))
346 		return PTR_ERR(sb);
347 
348 	if (!sb->s_root) {
349 		struct kernfs_super_info *info = kernfs_info(sb);
350 		struct kernfs_root *root = kfc->root;
351 
352 		kfc->new_sb_created = true;
353 
354 		error = kernfs_fill_super(sb, kfc);
355 		if (error) {
356 			deactivate_locked_super(sb);
357 			return error;
358 		}
359 		sb->s_flags |= SB_ACTIVE;
360 
361 		uuid_t uuid;
362 		uuid_gen(&uuid);
363 		super_set_uuid(sb, uuid.b, sizeof(uuid));
364 
365 		down_write(&root->kernfs_supers_rwsem);
366 		list_add(&info->node, &info->root->supers);
367 		up_write(&root->kernfs_supers_rwsem);
368 	}
369 
370 	fc->root = dget(sb->s_root);
371 	return 0;
372 }
373 
374 void kernfs_free_fs_context(struct fs_context *fc)
375 {
376 	/* Note that we don't deal with kfc->ns_tag here. */
377 	kfree(fc->s_fs_info);
378 	fc->s_fs_info = NULL;
379 }
380 
381 /**
382  * kernfs_kill_sb - kill_sb for kernfs
383  * @sb: super_block being killed
384  *
385  * This can be used directly for file_system_type->kill_sb().  If a kernfs
386  * user needs extra cleanup, it can implement its own kill_sb() and call
387  * this function at the end.
388  */
389 void kernfs_kill_sb(struct super_block *sb)
390 {
391 	struct kernfs_super_info *info = kernfs_info(sb);
392 	struct kernfs_root *root = info->root;
393 
394 	down_write(&root->kernfs_supers_rwsem);
395 	list_del(&info->node);
396 	up_write(&root->kernfs_supers_rwsem);
397 
398 	/*
399 	 * Remove the superblock from fs_supers/s_instances
400 	 * so we can't find it, before freeing kernfs_super_info.
401 	 */
402 	kill_anon_super(sb);
403 	kfree(info);
404 }
405 
406 static void __init kernfs_mutex_init(void)
407 {
408 	int count;
409 
410 	for (count = 0; count < NR_KERNFS_LOCKS; count++)
411 		mutex_init(&kernfs_locks->open_file_mutex[count]);
412 }
413 
414 static void __init kernfs_lock_init(void)
415 {
416 	kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
417 	WARN_ON(!kernfs_locks);
418 
419 	kernfs_mutex_init();
420 }
421 
422 void __init kernfs_init(void)
423 {
424 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
425 					      sizeof(struct kernfs_node),
426 					      0, SLAB_PANIC, NULL);
427 
428 	/* Creates slab cache for kernfs inode attributes */
429 	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
430 					      sizeof(struct kernfs_iattrs),
431 					      0, SLAB_PANIC, NULL);
432 
433 	kernfs_lock_init();
434 }
435