xref: /linux/fs/kernfs/file.c (revision e6b5be2be4e30037eb551e0ed09dd97bd00d85d3)
1 /*
2  * fs/kernfs/file.c - kernfs file implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/poll.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/fsnotify.h>
18 
19 #include "kernfs-internal.h"
20 
21 /*
22  * There's one kernfs_open_file for each open file and one kernfs_open_node
23  * for each kernfs_node with one or more open files.
24  *
25  * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
26  * protected by kernfs_open_node_lock.
27  *
28  * filp->private_data points to seq_file whose ->private points to
29  * kernfs_open_file.  kernfs_open_files are chained at
30  * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31  */
32 static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 static DEFINE_MUTEX(kernfs_open_file_mutex);
34 
35 struct kernfs_open_node {
36 	atomic_t		refcnt;
37 	atomic_t		event;
38 	wait_queue_head_t	poll;
39 	struct list_head	files; /* goes through kernfs_open_file.list */
40 };
41 
42 /*
43  * kernfs_notify() may be called from any context and bounces notifications
44  * through a work item.  To minimize space overhead in kernfs_node, the
45  * pending queue is implemented as a singly linked list of kernfs_nodes.
46  * The list is terminated with the self pointer so that whether a
47  * kernfs_node is on the list or not can be determined by testing the next
48  * pointer for NULL.
49  */
50 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
51 
52 static DEFINE_SPINLOCK(kernfs_notify_lock);
53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54 
55 static struct kernfs_open_file *kernfs_of(struct file *file)
56 {
57 	return ((struct seq_file *)file->private_data)->private;
58 }
59 
60 /*
61  * Determine the kernfs_ops for the given kernfs_node.  This function must
62  * be called while holding an active reference.
63  */
64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65 {
66 	if (kn->flags & KERNFS_LOCKDEP)
67 		lockdep_assert_held(kn);
68 	return kn->attr.ops;
69 }
70 
71 /*
72  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74  * a seq_file iteration which is fully initialized with an active reference
75  * or an aborted kernfs_seq_start() due to get_active failure.  The
76  * position pointer is the only context for each seq_file iteration and
77  * thus the stop condition should be encoded in it.  As the return value is
78  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79  * choice to indicate get_active failure.
80  *
81  * Unfortunately, this is complicated due to the optional custom seq_file
82  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
83  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84  * custom seq_file operations and thus can't decide whether put_active
85  * should be performed or not only on ERR_PTR(-ENODEV).
86  *
87  * This is worked around by factoring out the custom seq_stop() and
88  * put_active part into kernfs_seq_stop_active(), skipping it from
89  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91  * that kernfs_seq_stop_active() is skipped only after get_active failure.
92  */
93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94 {
95 	struct kernfs_open_file *of = sf->private;
96 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
97 
98 	if (ops->seq_stop)
99 		ops->seq_stop(sf, v);
100 	kernfs_put_active(of->kn);
101 }
102 
103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104 {
105 	struct kernfs_open_file *of = sf->private;
106 	const struct kernfs_ops *ops;
107 
108 	/*
109 	 * @of->mutex nests outside active ref and is primarily to ensure that
110 	 * the ops aren't called concurrently for the same open file.
111 	 */
112 	mutex_lock(&of->mutex);
113 	if (!kernfs_get_active(of->kn))
114 		return ERR_PTR(-ENODEV);
115 
116 	ops = kernfs_ops(of->kn);
117 	if (ops->seq_start) {
118 		void *next = ops->seq_start(sf, ppos);
119 		/* see the comment above kernfs_seq_stop_active() */
120 		if (next == ERR_PTR(-ENODEV))
121 			kernfs_seq_stop_active(sf, next);
122 		return next;
123 	} else {
124 		/*
125 		 * The same behavior and code as single_open().  Returns
126 		 * !NULL if pos is at the beginning; otherwise, NULL.
127 		 */
128 		return NULL + !*ppos;
129 	}
130 }
131 
132 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133 {
134 	struct kernfs_open_file *of = sf->private;
135 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
136 
137 	if (ops->seq_next) {
138 		void *next = ops->seq_next(sf, v, ppos);
139 		/* see the comment above kernfs_seq_stop_active() */
140 		if (next == ERR_PTR(-ENODEV))
141 			kernfs_seq_stop_active(sf, next);
142 		return next;
143 	} else {
144 		/*
145 		 * The same behavior and code as single_open(), always
146 		 * terminate after the initial read.
147 		 */
148 		++*ppos;
149 		return NULL;
150 	}
151 }
152 
153 static void kernfs_seq_stop(struct seq_file *sf, void *v)
154 {
155 	struct kernfs_open_file *of = sf->private;
156 
157 	if (v != ERR_PTR(-ENODEV))
158 		kernfs_seq_stop_active(sf, v);
159 	mutex_unlock(&of->mutex);
160 }
161 
162 static int kernfs_seq_show(struct seq_file *sf, void *v)
163 {
164 	struct kernfs_open_file *of = sf->private;
165 
166 	of->event = atomic_read(&of->kn->attr.open->event);
167 
168 	return of->kn->attr.ops->seq_show(sf, v);
169 }
170 
171 static const struct seq_operations kernfs_seq_ops = {
172 	.start = kernfs_seq_start,
173 	.next = kernfs_seq_next,
174 	.stop = kernfs_seq_stop,
175 	.show = kernfs_seq_show,
176 };
177 
178 /*
179  * As reading a bin file can have side-effects, the exact offset and bytes
180  * specified in read(2) call should be passed to the read callback making
181  * it difficult to use seq_file.  Implement simplistic custom buffering for
182  * bin files.
183  */
184 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
185 				       char __user *user_buf, size_t count,
186 				       loff_t *ppos)
187 {
188 	ssize_t len = min_t(size_t, count, PAGE_SIZE);
189 	const struct kernfs_ops *ops;
190 	char *buf;
191 
192 	buf = of->prealloc_buf;
193 	if (!buf)
194 		buf = kmalloc(len, GFP_KERNEL);
195 	if (!buf)
196 		return -ENOMEM;
197 
198 	/*
199 	 * @of->mutex nests outside active ref and is used both to ensure that
200 	 * the ops aren't called concurrently for the same open file, and
201 	 * to provide exclusive access to ->prealloc_buf (when that exists).
202 	 */
203 	mutex_lock(&of->mutex);
204 	if (!kernfs_get_active(of->kn)) {
205 		len = -ENODEV;
206 		mutex_unlock(&of->mutex);
207 		goto out_free;
208 	}
209 
210 	ops = kernfs_ops(of->kn);
211 	if (ops->read)
212 		len = ops->read(of, buf, len, *ppos);
213 	else
214 		len = -EINVAL;
215 
216 	if (len < 0)
217 		goto out_unlock;
218 
219 	if (copy_to_user(user_buf, buf, len)) {
220 		len = -EFAULT;
221 		goto out_unlock;
222 	}
223 
224 	*ppos += len;
225 
226  out_unlock:
227 	kernfs_put_active(of->kn);
228 	mutex_unlock(&of->mutex);
229  out_free:
230 	if (buf != of->prealloc_buf)
231 		kfree(buf);
232 	return len;
233 }
234 
235 /**
236  * kernfs_fop_read - kernfs vfs read callback
237  * @file: file pointer
238  * @user_buf: data to write
239  * @count: number of bytes
240  * @ppos: starting offset
241  */
242 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
243 			       size_t count, loff_t *ppos)
244 {
245 	struct kernfs_open_file *of = kernfs_of(file);
246 
247 	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
248 		return seq_read(file, user_buf, count, ppos);
249 	else
250 		return kernfs_file_direct_read(of, user_buf, count, ppos);
251 }
252 
253 /**
254  * kernfs_fop_write - kernfs vfs write callback
255  * @file: file pointer
256  * @user_buf: data to write
257  * @count: number of bytes
258  * @ppos: starting offset
259  *
260  * Copy data in from userland and pass it to the matching kernfs write
261  * operation.
262  *
263  * There is no easy way for us to know if userspace is only doing a partial
264  * write, so we don't support them. We expect the entire buffer to come on
265  * the first write.  Hint: if you're writing a value, first read the file,
266  * modify only the the value you're changing, then write entire buffer
267  * back.
268  */
269 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
270 				size_t count, loff_t *ppos)
271 {
272 	struct kernfs_open_file *of = kernfs_of(file);
273 	const struct kernfs_ops *ops;
274 	size_t len;
275 	char *buf;
276 
277 	if (of->atomic_write_len) {
278 		len = count;
279 		if (len > of->atomic_write_len)
280 			return -E2BIG;
281 	} else {
282 		len = min_t(size_t, count, PAGE_SIZE);
283 	}
284 
285 	buf = of->prealloc_buf;
286 	if (!buf)
287 		buf = kmalloc(len + 1, GFP_KERNEL);
288 	if (!buf)
289 		return -ENOMEM;
290 
291 	/*
292 	 * @of->mutex nests outside active ref and is used both to ensure that
293 	 * the ops aren't called concurrently for the same open file, and
294 	 * to provide exclusive access to ->prealloc_buf (when that exists).
295 	 */
296 	mutex_lock(&of->mutex);
297 	if (!kernfs_get_active(of->kn)) {
298 		mutex_unlock(&of->mutex);
299 		len = -ENODEV;
300 		goto out_free;
301 	}
302 
303 	if (copy_from_user(buf, user_buf, len)) {
304 		len = -EFAULT;
305 		goto out_unlock;
306 	}
307 	buf[len] = '\0';	/* guarantee string termination */
308 
309 	ops = kernfs_ops(of->kn);
310 	if (ops->write)
311 		len = ops->write(of, buf, len, *ppos);
312 	else
313 		len = -EINVAL;
314 
315 	if (len > 0)
316 		*ppos += len;
317 
318 out_unlock:
319 	kernfs_put_active(of->kn);
320 	mutex_unlock(&of->mutex);
321 out_free:
322 	if (buf != of->prealloc_buf)
323 		kfree(buf);
324 	return len;
325 }
326 
327 static void kernfs_vma_open(struct vm_area_struct *vma)
328 {
329 	struct file *file = vma->vm_file;
330 	struct kernfs_open_file *of = kernfs_of(file);
331 
332 	if (!of->vm_ops)
333 		return;
334 
335 	if (!kernfs_get_active(of->kn))
336 		return;
337 
338 	if (of->vm_ops->open)
339 		of->vm_ops->open(vma);
340 
341 	kernfs_put_active(of->kn);
342 }
343 
344 static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
345 {
346 	struct file *file = vma->vm_file;
347 	struct kernfs_open_file *of = kernfs_of(file);
348 	int ret;
349 
350 	if (!of->vm_ops)
351 		return VM_FAULT_SIGBUS;
352 
353 	if (!kernfs_get_active(of->kn))
354 		return VM_FAULT_SIGBUS;
355 
356 	ret = VM_FAULT_SIGBUS;
357 	if (of->vm_ops->fault)
358 		ret = of->vm_ops->fault(vma, vmf);
359 
360 	kernfs_put_active(of->kn);
361 	return ret;
362 }
363 
364 static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
365 				   struct vm_fault *vmf)
366 {
367 	struct file *file = vma->vm_file;
368 	struct kernfs_open_file *of = kernfs_of(file);
369 	int ret;
370 
371 	if (!of->vm_ops)
372 		return VM_FAULT_SIGBUS;
373 
374 	if (!kernfs_get_active(of->kn))
375 		return VM_FAULT_SIGBUS;
376 
377 	ret = 0;
378 	if (of->vm_ops->page_mkwrite)
379 		ret = of->vm_ops->page_mkwrite(vma, vmf);
380 	else
381 		file_update_time(file);
382 
383 	kernfs_put_active(of->kn);
384 	return ret;
385 }
386 
387 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
388 			     void *buf, int len, int write)
389 {
390 	struct file *file = vma->vm_file;
391 	struct kernfs_open_file *of = kernfs_of(file);
392 	int ret;
393 
394 	if (!of->vm_ops)
395 		return -EINVAL;
396 
397 	if (!kernfs_get_active(of->kn))
398 		return -EINVAL;
399 
400 	ret = -EINVAL;
401 	if (of->vm_ops->access)
402 		ret = of->vm_ops->access(vma, addr, buf, len, write);
403 
404 	kernfs_put_active(of->kn);
405 	return ret;
406 }
407 
408 #ifdef CONFIG_NUMA
409 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
410 				 struct mempolicy *new)
411 {
412 	struct file *file = vma->vm_file;
413 	struct kernfs_open_file *of = kernfs_of(file);
414 	int ret;
415 
416 	if (!of->vm_ops)
417 		return 0;
418 
419 	if (!kernfs_get_active(of->kn))
420 		return -EINVAL;
421 
422 	ret = 0;
423 	if (of->vm_ops->set_policy)
424 		ret = of->vm_ops->set_policy(vma, new);
425 
426 	kernfs_put_active(of->kn);
427 	return ret;
428 }
429 
430 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
431 					       unsigned long addr)
432 {
433 	struct file *file = vma->vm_file;
434 	struct kernfs_open_file *of = kernfs_of(file);
435 	struct mempolicy *pol;
436 
437 	if (!of->vm_ops)
438 		return vma->vm_policy;
439 
440 	if (!kernfs_get_active(of->kn))
441 		return vma->vm_policy;
442 
443 	pol = vma->vm_policy;
444 	if (of->vm_ops->get_policy)
445 		pol = of->vm_ops->get_policy(vma, addr);
446 
447 	kernfs_put_active(of->kn);
448 	return pol;
449 }
450 
451 static int kernfs_vma_migrate(struct vm_area_struct *vma,
452 			      const nodemask_t *from, const nodemask_t *to,
453 			      unsigned long flags)
454 {
455 	struct file *file = vma->vm_file;
456 	struct kernfs_open_file *of = kernfs_of(file);
457 	int ret;
458 
459 	if (!of->vm_ops)
460 		return 0;
461 
462 	if (!kernfs_get_active(of->kn))
463 		return 0;
464 
465 	ret = 0;
466 	if (of->vm_ops->migrate)
467 		ret = of->vm_ops->migrate(vma, from, to, flags);
468 
469 	kernfs_put_active(of->kn);
470 	return ret;
471 }
472 #endif
473 
474 static const struct vm_operations_struct kernfs_vm_ops = {
475 	.open		= kernfs_vma_open,
476 	.fault		= kernfs_vma_fault,
477 	.page_mkwrite	= kernfs_vma_page_mkwrite,
478 	.access		= kernfs_vma_access,
479 #ifdef CONFIG_NUMA
480 	.set_policy	= kernfs_vma_set_policy,
481 	.get_policy	= kernfs_vma_get_policy,
482 	.migrate	= kernfs_vma_migrate,
483 #endif
484 };
485 
486 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
487 {
488 	struct kernfs_open_file *of = kernfs_of(file);
489 	const struct kernfs_ops *ops;
490 	int rc;
491 
492 	/*
493 	 * mmap path and of->mutex are prone to triggering spurious lockdep
494 	 * warnings and we don't want to add spurious locking dependency
495 	 * between the two.  Check whether mmap is actually implemented
496 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
497 	 * comment in kernfs_file_open() for more details.
498 	 */
499 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
500 		return -ENODEV;
501 
502 	mutex_lock(&of->mutex);
503 
504 	rc = -ENODEV;
505 	if (!kernfs_get_active(of->kn))
506 		goto out_unlock;
507 
508 	ops = kernfs_ops(of->kn);
509 	rc = ops->mmap(of, vma);
510 	if (rc)
511 		goto out_put;
512 
513 	/*
514 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
515 	 * to satisfy versions of X which crash if the mmap fails: that
516 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
517 	 */
518 	if (vma->vm_file != file)
519 		goto out_put;
520 
521 	rc = -EINVAL;
522 	if (of->mmapped && of->vm_ops != vma->vm_ops)
523 		goto out_put;
524 
525 	/*
526 	 * It is not possible to successfully wrap close.
527 	 * So error if someone is trying to use close.
528 	 */
529 	rc = -EINVAL;
530 	if (vma->vm_ops && vma->vm_ops->close)
531 		goto out_put;
532 
533 	rc = 0;
534 	of->mmapped = 1;
535 	of->vm_ops = vma->vm_ops;
536 	vma->vm_ops = &kernfs_vm_ops;
537 out_put:
538 	kernfs_put_active(of->kn);
539 out_unlock:
540 	mutex_unlock(&of->mutex);
541 
542 	return rc;
543 }
544 
545 /**
546  *	kernfs_get_open_node - get or create kernfs_open_node
547  *	@kn: target kernfs_node
548  *	@of: kernfs_open_file for this instance of open
549  *
550  *	If @kn->attr.open exists, increment its reference count; otherwise,
551  *	create one.  @of is chained to the files list.
552  *
553  *	LOCKING:
554  *	Kernel thread context (may sleep).
555  *
556  *	RETURNS:
557  *	0 on success, -errno on failure.
558  */
559 static int kernfs_get_open_node(struct kernfs_node *kn,
560 				struct kernfs_open_file *of)
561 {
562 	struct kernfs_open_node *on, *new_on = NULL;
563 
564  retry:
565 	mutex_lock(&kernfs_open_file_mutex);
566 	spin_lock_irq(&kernfs_open_node_lock);
567 
568 	if (!kn->attr.open && new_on) {
569 		kn->attr.open = new_on;
570 		new_on = NULL;
571 	}
572 
573 	on = kn->attr.open;
574 	if (on) {
575 		atomic_inc(&on->refcnt);
576 		list_add_tail(&of->list, &on->files);
577 	}
578 
579 	spin_unlock_irq(&kernfs_open_node_lock);
580 	mutex_unlock(&kernfs_open_file_mutex);
581 
582 	if (on) {
583 		kfree(new_on);
584 		return 0;
585 	}
586 
587 	/* not there, initialize a new one and retry */
588 	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
589 	if (!new_on)
590 		return -ENOMEM;
591 
592 	atomic_set(&new_on->refcnt, 0);
593 	atomic_set(&new_on->event, 1);
594 	init_waitqueue_head(&new_on->poll);
595 	INIT_LIST_HEAD(&new_on->files);
596 	goto retry;
597 }
598 
599 /**
600  *	kernfs_put_open_node - put kernfs_open_node
601  *	@kn: target kernfs_nodet
602  *	@of: associated kernfs_open_file
603  *
604  *	Put @kn->attr.open and unlink @of from the files list.  If
605  *	reference count reaches zero, disassociate and free it.
606  *
607  *	LOCKING:
608  *	None.
609  */
610 static void kernfs_put_open_node(struct kernfs_node *kn,
611 				 struct kernfs_open_file *of)
612 {
613 	struct kernfs_open_node *on = kn->attr.open;
614 	unsigned long flags;
615 
616 	mutex_lock(&kernfs_open_file_mutex);
617 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
618 
619 	if (of)
620 		list_del(&of->list);
621 
622 	if (atomic_dec_and_test(&on->refcnt))
623 		kn->attr.open = NULL;
624 	else
625 		on = NULL;
626 
627 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
628 	mutex_unlock(&kernfs_open_file_mutex);
629 
630 	kfree(on);
631 }
632 
633 static int kernfs_fop_open(struct inode *inode, struct file *file)
634 {
635 	struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
636 	struct kernfs_root *root = kernfs_root(kn);
637 	const struct kernfs_ops *ops;
638 	struct kernfs_open_file *of;
639 	bool has_read, has_write, has_mmap;
640 	int error = -EACCES;
641 
642 	if (!kernfs_get_active(kn))
643 		return -ENODEV;
644 
645 	ops = kernfs_ops(kn);
646 
647 	has_read = ops->seq_show || ops->read || ops->mmap;
648 	has_write = ops->write || ops->mmap;
649 	has_mmap = ops->mmap;
650 
651 	/* see the flag definition for details */
652 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
653 		if ((file->f_mode & FMODE_WRITE) &&
654 		    (!(inode->i_mode & S_IWUGO) || !has_write))
655 			goto err_out;
656 
657 		if ((file->f_mode & FMODE_READ) &&
658 		    (!(inode->i_mode & S_IRUGO) || !has_read))
659 			goto err_out;
660 	}
661 
662 	/* allocate a kernfs_open_file for the file */
663 	error = -ENOMEM;
664 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
665 	if (!of)
666 		goto err_out;
667 
668 	/*
669 	 * The following is done to give a different lockdep key to
670 	 * @of->mutex for files which implement mmap.  This is a rather
671 	 * crude way to avoid false positive lockdep warning around
672 	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
673 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
674 	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
675 	 * open file has a separate mutex, it's okay as long as those don't
676 	 * happen on the same file.  At this point, we can't easily give
677 	 * each file a separate locking class.  Let's differentiate on
678 	 * whether the file has mmap or not for now.
679 	 *
680 	 * Both paths of the branch look the same.  They're supposed to
681 	 * look that way and give @of->mutex different static lockdep keys.
682 	 */
683 	if (has_mmap)
684 		mutex_init(&of->mutex);
685 	else
686 		mutex_init(&of->mutex);
687 
688 	of->kn = kn;
689 	of->file = file;
690 
691 	/*
692 	 * Write path needs to atomic_write_len outside active reference.
693 	 * Cache it in open_file.  See kernfs_fop_write() for details.
694 	 */
695 	of->atomic_write_len = ops->atomic_write_len;
696 
697 	error = -EINVAL;
698 	/*
699 	 * ->seq_show is incompatible with ->prealloc,
700 	 * as seq_read does its own allocation.
701 	 * ->read must be used instead.
702 	 */
703 	if (ops->prealloc && ops->seq_show)
704 		goto err_free;
705 	if (ops->prealloc) {
706 		int len = of->atomic_write_len ?: PAGE_SIZE;
707 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
708 		error = -ENOMEM;
709 		if (!of->prealloc_buf)
710 			goto err_free;
711 	}
712 
713 	/*
714 	 * Always instantiate seq_file even if read access doesn't use
715 	 * seq_file or is not requested.  This unifies private data access
716 	 * and readable regular files are the vast majority anyway.
717 	 */
718 	if (ops->seq_show)
719 		error = seq_open(file, &kernfs_seq_ops);
720 	else
721 		error = seq_open(file, NULL);
722 	if (error)
723 		goto err_free;
724 
725 	((struct seq_file *)file->private_data)->private = of;
726 
727 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
728 	if (file->f_mode & FMODE_WRITE)
729 		file->f_mode |= FMODE_PWRITE;
730 
731 	/* make sure we have open node struct */
732 	error = kernfs_get_open_node(kn, of);
733 	if (error)
734 		goto err_close;
735 
736 	/* open succeeded, put active references */
737 	kernfs_put_active(kn);
738 	return 0;
739 
740 err_close:
741 	seq_release(inode, file);
742 err_free:
743 	kfree(of->prealloc_buf);
744 	kfree(of);
745 err_out:
746 	kernfs_put_active(kn);
747 	return error;
748 }
749 
750 static int kernfs_fop_release(struct inode *inode, struct file *filp)
751 {
752 	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
753 	struct kernfs_open_file *of = kernfs_of(filp);
754 
755 	kernfs_put_open_node(kn, of);
756 	seq_release(inode, filp);
757 	kfree(of->prealloc_buf);
758 	kfree(of);
759 
760 	return 0;
761 }
762 
763 void kernfs_unmap_bin_file(struct kernfs_node *kn)
764 {
765 	struct kernfs_open_node *on;
766 	struct kernfs_open_file *of;
767 
768 	if (!(kn->flags & KERNFS_HAS_MMAP))
769 		return;
770 
771 	spin_lock_irq(&kernfs_open_node_lock);
772 	on = kn->attr.open;
773 	if (on)
774 		atomic_inc(&on->refcnt);
775 	spin_unlock_irq(&kernfs_open_node_lock);
776 	if (!on)
777 		return;
778 
779 	mutex_lock(&kernfs_open_file_mutex);
780 	list_for_each_entry(of, &on->files, list) {
781 		struct inode *inode = file_inode(of->file);
782 		unmap_mapping_range(inode->i_mapping, 0, 0, 1);
783 	}
784 	mutex_unlock(&kernfs_open_file_mutex);
785 
786 	kernfs_put_open_node(kn, NULL);
787 }
788 
789 /*
790  * Kernfs attribute files are pollable.  The idea is that you read
791  * the content and then you use 'poll' or 'select' to wait for
792  * the content to change.  When the content changes (assuming the
793  * manager for the kobject supports notification), poll will
794  * return POLLERR|POLLPRI, and select will return the fd whether
795  * it is waiting for read, write, or exceptions.
796  * Once poll/select indicates that the value has changed, you
797  * need to close and re-open the file, or seek to 0 and read again.
798  * Reminder: this only works for attributes which actively support
799  * it, and it is not possible to test an attribute from userspace
800  * to see if it supports poll (Neither 'poll' nor 'select' return
801  * an appropriate error code).  When in doubt, set a suitable timeout value.
802  */
803 static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
804 {
805 	struct kernfs_open_file *of = kernfs_of(filp);
806 	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
807 	struct kernfs_open_node *on = kn->attr.open;
808 
809 	/* need parent for the kobj, grab both */
810 	if (!kernfs_get_active(kn))
811 		goto trigger;
812 
813 	poll_wait(filp, &on->poll, wait);
814 
815 	kernfs_put_active(kn);
816 
817 	if (of->event != atomic_read(&on->event))
818 		goto trigger;
819 
820 	return DEFAULT_POLLMASK;
821 
822  trigger:
823 	return DEFAULT_POLLMASK|POLLERR|POLLPRI;
824 }
825 
826 static void kernfs_notify_workfn(struct work_struct *work)
827 {
828 	struct kernfs_node *kn;
829 	struct kernfs_open_node *on;
830 	struct kernfs_super_info *info;
831 repeat:
832 	/* pop one off the notify_list */
833 	spin_lock_irq(&kernfs_notify_lock);
834 	kn = kernfs_notify_list;
835 	if (kn == KERNFS_NOTIFY_EOL) {
836 		spin_unlock_irq(&kernfs_notify_lock);
837 		return;
838 	}
839 	kernfs_notify_list = kn->attr.notify_next;
840 	kn->attr.notify_next = NULL;
841 	spin_unlock_irq(&kernfs_notify_lock);
842 
843 	/* kick poll */
844 	spin_lock_irq(&kernfs_open_node_lock);
845 
846 	on = kn->attr.open;
847 	if (on) {
848 		atomic_inc(&on->event);
849 		wake_up_interruptible(&on->poll);
850 	}
851 
852 	spin_unlock_irq(&kernfs_open_node_lock);
853 
854 	/* kick fsnotify */
855 	mutex_lock(&kernfs_mutex);
856 
857 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
858 		struct inode *inode;
859 		struct dentry *dentry;
860 
861 		inode = ilookup(info->sb, kn->ino);
862 		if (!inode)
863 			continue;
864 
865 		dentry = d_find_any_alias(inode);
866 		if (dentry) {
867 			fsnotify_parent(NULL, dentry, FS_MODIFY);
868 			fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
869 				 NULL, 0);
870 			dput(dentry);
871 		}
872 
873 		iput(inode);
874 	}
875 
876 	mutex_unlock(&kernfs_mutex);
877 	kernfs_put(kn);
878 	goto repeat;
879 }
880 
881 /**
882  * kernfs_notify - notify a kernfs file
883  * @kn: file to notify
884  *
885  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
886  * context.
887  */
888 void kernfs_notify(struct kernfs_node *kn)
889 {
890 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
891 	unsigned long flags;
892 
893 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
894 		return;
895 
896 	spin_lock_irqsave(&kernfs_notify_lock, flags);
897 	if (!kn->attr.notify_next) {
898 		kernfs_get(kn);
899 		kn->attr.notify_next = kernfs_notify_list;
900 		kernfs_notify_list = kn;
901 		schedule_work(&kernfs_notify_work);
902 	}
903 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
904 }
905 EXPORT_SYMBOL_GPL(kernfs_notify);
906 
907 const struct file_operations kernfs_file_fops = {
908 	.read		= kernfs_fop_read,
909 	.write		= kernfs_fop_write,
910 	.llseek		= generic_file_llseek,
911 	.mmap		= kernfs_fop_mmap,
912 	.open		= kernfs_fop_open,
913 	.release	= kernfs_fop_release,
914 	.poll		= kernfs_fop_poll,
915 };
916 
917 /**
918  * __kernfs_create_file - kernfs internal function to create a file
919  * @parent: directory to create the file in
920  * @name: name of the file
921  * @mode: mode of the file
922  * @size: size of the file
923  * @ops: kernfs operations for the file
924  * @priv: private data for the file
925  * @ns: optional namespace tag of the file
926  * @name_is_static: don't copy file name
927  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
928  *
929  * Returns the created node on success, ERR_PTR() value on error.
930  */
931 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
932 					 const char *name,
933 					 umode_t mode, loff_t size,
934 					 const struct kernfs_ops *ops,
935 					 void *priv, const void *ns,
936 					 bool name_is_static,
937 					 struct lock_class_key *key)
938 {
939 	struct kernfs_node *kn;
940 	unsigned flags;
941 	int rc;
942 
943 	flags = KERNFS_FILE;
944 	if (name_is_static)
945 		flags |= KERNFS_STATIC_NAME;
946 
947 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
948 	if (!kn)
949 		return ERR_PTR(-ENOMEM);
950 
951 	kn->attr.ops = ops;
952 	kn->attr.size = size;
953 	kn->ns = ns;
954 	kn->priv = priv;
955 
956 #ifdef CONFIG_DEBUG_LOCK_ALLOC
957 	if (key) {
958 		lockdep_init_map(&kn->dep_map, "s_active", key, 0);
959 		kn->flags |= KERNFS_LOCKDEP;
960 	}
961 #endif
962 
963 	/*
964 	 * kn->attr.ops is accesible only while holding active ref.  We
965 	 * need to know whether some ops are implemented outside active
966 	 * ref.  Cache their existence in flags.
967 	 */
968 	if (ops->seq_show)
969 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
970 	if (ops->mmap)
971 		kn->flags |= KERNFS_HAS_MMAP;
972 
973 	rc = kernfs_add_one(kn);
974 	if (rc) {
975 		kernfs_put(kn);
976 		return ERR_PTR(rc);
977 	}
978 	return kn;
979 }
980