xref: /linux/fs/kernfs/file.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * fs/kernfs/file.c - kernfs file implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/poll.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/fsnotify.h>
18 
19 #include "kernfs-internal.h"
20 
21 /*
22  * There's one kernfs_open_file for each open file and one kernfs_open_node
23  * for each kernfs_node with one or more open files.
24  *
25  * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
26  * protected by kernfs_open_node_lock.
27  *
28  * filp->private_data points to seq_file whose ->private points to
29  * kernfs_open_file.  kernfs_open_files are chained at
30  * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31  */
32 static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 static DEFINE_MUTEX(kernfs_open_file_mutex);
34 
35 struct kernfs_open_node {
36 	atomic_t		refcnt;
37 	atomic_t		event;
38 	wait_queue_head_t	poll;
39 	struct list_head	files; /* goes through kernfs_open_file.list */
40 };
41 
42 /*
43  * kernfs_notify() may be called from any context and bounces notifications
44  * through a work item.  To minimize space overhead in kernfs_node, the
45  * pending queue is implemented as a singly linked list of kernfs_nodes.
46  * The list is terminated with the self pointer so that whether a
47  * kernfs_node is on the list or not can be determined by testing the next
48  * pointer for NULL.
49  */
50 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
51 
52 static DEFINE_SPINLOCK(kernfs_notify_lock);
53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54 
55 static struct kernfs_open_file *kernfs_of(struct file *file)
56 {
57 	return ((struct seq_file *)file->private_data)->private;
58 }
59 
60 /*
61  * Determine the kernfs_ops for the given kernfs_node.  This function must
62  * be called while holding an active reference.
63  */
64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65 {
66 	if (kn->flags & KERNFS_LOCKDEP)
67 		lockdep_assert_held(kn);
68 	return kn->attr.ops;
69 }
70 
71 /*
72  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74  * a seq_file iteration which is fully initialized with an active reference
75  * or an aborted kernfs_seq_start() due to get_active failure.  The
76  * position pointer is the only context for each seq_file iteration and
77  * thus the stop condition should be encoded in it.  As the return value is
78  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79  * choice to indicate get_active failure.
80  *
81  * Unfortunately, this is complicated due to the optional custom seq_file
82  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
83  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84  * custom seq_file operations and thus can't decide whether put_active
85  * should be performed or not only on ERR_PTR(-ENODEV).
86  *
87  * This is worked around by factoring out the custom seq_stop() and
88  * put_active part into kernfs_seq_stop_active(), skipping it from
89  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91  * that kernfs_seq_stop_active() is skipped only after get_active failure.
92  */
93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94 {
95 	struct kernfs_open_file *of = sf->private;
96 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
97 
98 	if (ops->seq_stop)
99 		ops->seq_stop(sf, v);
100 	kernfs_put_active(of->kn);
101 }
102 
103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104 {
105 	struct kernfs_open_file *of = sf->private;
106 	const struct kernfs_ops *ops;
107 
108 	/*
109 	 * @of->mutex nests outside active ref and is primarily to ensure that
110 	 * the ops aren't called concurrently for the same open file.
111 	 */
112 	mutex_lock(&of->mutex);
113 	if (!kernfs_get_active(of->kn))
114 		return ERR_PTR(-ENODEV);
115 
116 	ops = kernfs_ops(of->kn);
117 	if (ops->seq_start) {
118 		void *next = ops->seq_start(sf, ppos);
119 		/* see the comment above kernfs_seq_stop_active() */
120 		if (next == ERR_PTR(-ENODEV))
121 			kernfs_seq_stop_active(sf, next);
122 		return next;
123 	} else {
124 		/*
125 		 * The same behavior and code as single_open().  Returns
126 		 * !NULL if pos is at the beginning; otherwise, NULL.
127 		 */
128 		return NULL + !*ppos;
129 	}
130 }
131 
132 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133 {
134 	struct kernfs_open_file *of = sf->private;
135 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
136 
137 	if (ops->seq_next) {
138 		void *next = ops->seq_next(sf, v, ppos);
139 		/* see the comment above kernfs_seq_stop_active() */
140 		if (next == ERR_PTR(-ENODEV))
141 			kernfs_seq_stop_active(sf, next);
142 		return next;
143 	} else {
144 		/*
145 		 * The same behavior and code as single_open(), always
146 		 * terminate after the initial read.
147 		 */
148 		++*ppos;
149 		return NULL;
150 	}
151 }
152 
153 static void kernfs_seq_stop(struct seq_file *sf, void *v)
154 {
155 	struct kernfs_open_file *of = sf->private;
156 
157 	if (v != ERR_PTR(-ENODEV))
158 		kernfs_seq_stop_active(sf, v);
159 	mutex_unlock(&of->mutex);
160 }
161 
162 static int kernfs_seq_show(struct seq_file *sf, void *v)
163 {
164 	struct kernfs_open_file *of = sf->private;
165 
166 	of->event = atomic_read(&of->kn->attr.open->event);
167 
168 	return of->kn->attr.ops->seq_show(sf, v);
169 }
170 
171 static const struct seq_operations kernfs_seq_ops = {
172 	.start = kernfs_seq_start,
173 	.next = kernfs_seq_next,
174 	.stop = kernfs_seq_stop,
175 	.show = kernfs_seq_show,
176 };
177 
178 /*
179  * As reading a bin file can have side-effects, the exact offset and bytes
180  * specified in read(2) call should be passed to the read callback making
181  * it difficult to use seq_file.  Implement simplistic custom buffering for
182  * bin files.
183  */
184 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
185 				       char __user *user_buf, size_t count,
186 				       loff_t *ppos)
187 {
188 	ssize_t len = min_t(size_t, count, PAGE_SIZE);
189 	const struct kernfs_ops *ops;
190 	char *buf;
191 
192 	buf = of->prealloc_buf;
193 	if (!buf)
194 		buf = kmalloc(len, GFP_KERNEL);
195 	if (!buf)
196 		return -ENOMEM;
197 
198 	/*
199 	 * @of->mutex nests outside active ref and is used both to ensure that
200 	 * the ops aren't called concurrently for the same open file, and
201 	 * to provide exclusive access to ->prealloc_buf (when that exists).
202 	 */
203 	mutex_lock(&of->mutex);
204 	if (!kernfs_get_active(of->kn)) {
205 		len = -ENODEV;
206 		mutex_unlock(&of->mutex);
207 		goto out_free;
208 	}
209 
210 	of->event = atomic_read(&of->kn->attr.open->event);
211 	ops = kernfs_ops(of->kn);
212 	if (ops->read)
213 		len = ops->read(of, buf, len, *ppos);
214 	else
215 		len = -EINVAL;
216 
217 	if (len < 0)
218 		goto out_unlock;
219 
220 	if (copy_to_user(user_buf, buf, len)) {
221 		len = -EFAULT;
222 		goto out_unlock;
223 	}
224 
225 	*ppos += len;
226 
227  out_unlock:
228 	kernfs_put_active(of->kn);
229 	mutex_unlock(&of->mutex);
230  out_free:
231 	if (buf != of->prealloc_buf)
232 		kfree(buf);
233 	return len;
234 }
235 
236 /**
237  * kernfs_fop_read - kernfs vfs read callback
238  * @file: file pointer
239  * @user_buf: data to write
240  * @count: number of bytes
241  * @ppos: starting offset
242  */
243 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
244 			       size_t count, loff_t *ppos)
245 {
246 	struct kernfs_open_file *of = kernfs_of(file);
247 
248 	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
249 		return seq_read(file, user_buf, count, ppos);
250 	else
251 		return kernfs_file_direct_read(of, user_buf, count, ppos);
252 }
253 
254 /**
255  * kernfs_fop_write - kernfs vfs write callback
256  * @file: file pointer
257  * @user_buf: data to write
258  * @count: number of bytes
259  * @ppos: starting offset
260  *
261  * Copy data in from userland and pass it to the matching kernfs write
262  * operation.
263  *
264  * There is no easy way for us to know if userspace is only doing a partial
265  * write, so we don't support them. We expect the entire buffer to come on
266  * the first write.  Hint: if you're writing a value, first read the file,
267  * modify only the the value you're changing, then write entire buffer
268  * back.
269  */
270 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
271 				size_t count, loff_t *ppos)
272 {
273 	struct kernfs_open_file *of = kernfs_of(file);
274 	const struct kernfs_ops *ops;
275 	size_t len;
276 	char *buf;
277 
278 	if (of->atomic_write_len) {
279 		len = count;
280 		if (len > of->atomic_write_len)
281 			return -E2BIG;
282 	} else {
283 		len = min_t(size_t, count, PAGE_SIZE);
284 	}
285 
286 	buf = of->prealloc_buf;
287 	if (!buf)
288 		buf = kmalloc(len + 1, GFP_KERNEL);
289 	if (!buf)
290 		return -ENOMEM;
291 
292 	/*
293 	 * @of->mutex nests outside active ref and is used both to ensure that
294 	 * the ops aren't called concurrently for the same open file, and
295 	 * to provide exclusive access to ->prealloc_buf (when that exists).
296 	 */
297 	mutex_lock(&of->mutex);
298 	if (!kernfs_get_active(of->kn)) {
299 		mutex_unlock(&of->mutex);
300 		len = -ENODEV;
301 		goto out_free;
302 	}
303 
304 	if (copy_from_user(buf, user_buf, len)) {
305 		len = -EFAULT;
306 		goto out_unlock;
307 	}
308 	buf[len] = '\0';	/* guarantee string termination */
309 
310 	ops = kernfs_ops(of->kn);
311 	if (ops->write)
312 		len = ops->write(of, buf, len, *ppos);
313 	else
314 		len = -EINVAL;
315 
316 	if (len > 0)
317 		*ppos += len;
318 
319 out_unlock:
320 	kernfs_put_active(of->kn);
321 	mutex_unlock(&of->mutex);
322 out_free:
323 	if (buf != of->prealloc_buf)
324 		kfree(buf);
325 	return len;
326 }
327 
328 static void kernfs_vma_open(struct vm_area_struct *vma)
329 {
330 	struct file *file = vma->vm_file;
331 	struct kernfs_open_file *of = kernfs_of(file);
332 
333 	if (!of->vm_ops)
334 		return;
335 
336 	if (!kernfs_get_active(of->kn))
337 		return;
338 
339 	if (of->vm_ops->open)
340 		of->vm_ops->open(vma);
341 
342 	kernfs_put_active(of->kn);
343 }
344 
345 static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
346 {
347 	struct file *file = vma->vm_file;
348 	struct kernfs_open_file *of = kernfs_of(file);
349 	int ret;
350 
351 	if (!of->vm_ops)
352 		return VM_FAULT_SIGBUS;
353 
354 	if (!kernfs_get_active(of->kn))
355 		return VM_FAULT_SIGBUS;
356 
357 	ret = VM_FAULT_SIGBUS;
358 	if (of->vm_ops->fault)
359 		ret = of->vm_ops->fault(vma, vmf);
360 
361 	kernfs_put_active(of->kn);
362 	return ret;
363 }
364 
365 static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
366 				   struct vm_fault *vmf)
367 {
368 	struct file *file = vma->vm_file;
369 	struct kernfs_open_file *of = kernfs_of(file);
370 	int ret;
371 
372 	if (!of->vm_ops)
373 		return VM_FAULT_SIGBUS;
374 
375 	if (!kernfs_get_active(of->kn))
376 		return VM_FAULT_SIGBUS;
377 
378 	ret = 0;
379 	if (of->vm_ops->page_mkwrite)
380 		ret = of->vm_ops->page_mkwrite(vma, vmf);
381 	else
382 		file_update_time(file);
383 
384 	kernfs_put_active(of->kn);
385 	return ret;
386 }
387 
388 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
389 			     void *buf, int len, int write)
390 {
391 	struct file *file = vma->vm_file;
392 	struct kernfs_open_file *of = kernfs_of(file);
393 	int ret;
394 
395 	if (!of->vm_ops)
396 		return -EINVAL;
397 
398 	if (!kernfs_get_active(of->kn))
399 		return -EINVAL;
400 
401 	ret = -EINVAL;
402 	if (of->vm_ops->access)
403 		ret = of->vm_ops->access(vma, addr, buf, len, write);
404 
405 	kernfs_put_active(of->kn);
406 	return ret;
407 }
408 
409 #ifdef CONFIG_NUMA
410 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
411 				 struct mempolicy *new)
412 {
413 	struct file *file = vma->vm_file;
414 	struct kernfs_open_file *of = kernfs_of(file);
415 	int ret;
416 
417 	if (!of->vm_ops)
418 		return 0;
419 
420 	if (!kernfs_get_active(of->kn))
421 		return -EINVAL;
422 
423 	ret = 0;
424 	if (of->vm_ops->set_policy)
425 		ret = of->vm_ops->set_policy(vma, new);
426 
427 	kernfs_put_active(of->kn);
428 	return ret;
429 }
430 
431 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
432 					       unsigned long addr)
433 {
434 	struct file *file = vma->vm_file;
435 	struct kernfs_open_file *of = kernfs_of(file);
436 	struct mempolicy *pol;
437 
438 	if (!of->vm_ops)
439 		return vma->vm_policy;
440 
441 	if (!kernfs_get_active(of->kn))
442 		return vma->vm_policy;
443 
444 	pol = vma->vm_policy;
445 	if (of->vm_ops->get_policy)
446 		pol = of->vm_ops->get_policy(vma, addr);
447 
448 	kernfs_put_active(of->kn);
449 	return pol;
450 }
451 
452 #endif
453 
454 static const struct vm_operations_struct kernfs_vm_ops = {
455 	.open		= kernfs_vma_open,
456 	.fault		= kernfs_vma_fault,
457 	.page_mkwrite	= kernfs_vma_page_mkwrite,
458 	.access		= kernfs_vma_access,
459 #ifdef CONFIG_NUMA
460 	.set_policy	= kernfs_vma_set_policy,
461 	.get_policy	= kernfs_vma_get_policy,
462 #endif
463 };
464 
465 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
466 {
467 	struct kernfs_open_file *of = kernfs_of(file);
468 	const struct kernfs_ops *ops;
469 	int rc;
470 
471 	/*
472 	 * mmap path and of->mutex are prone to triggering spurious lockdep
473 	 * warnings and we don't want to add spurious locking dependency
474 	 * between the two.  Check whether mmap is actually implemented
475 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
476 	 * comment in kernfs_file_open() for more details.
477 	 */
478 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
479 		return -ENODEV;
480 
481 	mutex_lock(&of->mutex);
482 
483 	rc = -ENODEV;
484 	if (!kernfs_get_active(of->kn))
485 		goto out_unlock;
486 
487 	ops = kernfs_ops(of->kn);
488 	rc = ops->mmap(of, vma);
489 	if (rc)
490 		goto out_put;
491 
492 	/*
493 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
494 	 * to satisfy versions of X which crash if the mmap fails: that
495 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
496 	 */
497 	if (vma->vm_file != file)
498 		goto out_put;
499 
500 	rc = -EINVAL;
501 	if (of->mmapped && of->vm_ops != vma->vm_ops)
502 		goto out_put;
503 
504 	/*
505 	 * It is not possible to successfully wrap close.
506 	 * So error if someone is trying to use close.
507 	 */
508 	rc = -EINVAL;
509 	if (vma->vm_ops && vma->vm_ops->close)
510 		goto out_put;
511 
512 	rc = 0;
513 	of->mmapped = 1;
514 	of->vm_ops = vma->vm_ops;
515 	vma->vm_ops = &kernfs_vm_ops;
516 out_put:
517 	kernfs_put_active(of->kn);
518 out_unlock:
519 	mutex_unlock(&of->mutex);
520 
521 	return rc;
522 }
523 
524 /**
525  *	kernfs_get_open_node - get or create kernfs_open_node
526  *	@kn: target kernfs_node
527  *	@of: kernfs_open_file for this instance of open
528  *
529  *	If @kn->attr.open exists, increment its reference count; otherwise,
530  *	create one.  @of is chained to the files list.
531  *
532  *	LOCKING:
533  *	Kernel thread context (may sleep).
534  *
535  *	RETURNS:
536  *	0 on success, -errno on failure.
537  */
538 static int kernfs_get_open_node(struct kernfs_node *kn,
539 				struct kernfs_open_file *of)
540 {
541 	struct kernfs_open_node *on, *new_on = NULL;
542 
543  retry:
544 	mutex_lock(&kernfs_open_file_mutex);
545 	spin_lock_irq(&kernfs_open_node_lock);
546 
547 	if (!kn->attr.open && new_on) {
548 		kn->attr.open = new_on;
549 		new_on = NULL;
550 	}
551 
552 	on = kn->attr.open;
553 	if (on) {
554 		atomic_inc(&on->refcnt);
555 		list_add_tail(&of->list, &on->files);
556 	}
557 
558 	spin_unlock_irq(&kernfs_open_node_lock);
559 	mutex_unlock(&kernfs_open_file_mutex);
560 
561 	if (on) {
562 		kfree(new_on);
563 		return 0;
564 	}
565 
566 	/* not there, initialize a new one and retry */
567 	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
568 	if (!new_on)
569 		return -ENOMEM;
570 
571 	atomic_set(&new_on->refcnt, 0);
572 	atomic_set(&new_on->event, 1);
573 	init_waitqueue_head(&new_on->poll);
574 	INIT_LIST_HEAD(&new_on->files);
575 	goto retry;
576 }
577 
578 /**
579  *	kernfs_put_open_node - put kernfs_open_node
580  *	@kn: target kernfs_nodet
581  *	@of: associated kernfs_open_file
582  *
583  *	Put @kn->attr.open and unlink @of from the files list.  If
584  *	reference count reaches zero, disassociate and free it.
585  *
586  *	LOCKING:
587  *	None.
588  */
589 static void kernfs_put_open_node(struct kernfs_node *kn,
590 				 struct kernfs_open_file *of)
591 {
592 	struct kernfs_open_node *on = kn->attr.open;
593 	unsigned long flags;
594 
595 	mutex_lock(&kernfs_open_file_mutex);
596 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
597 
598 	if (of)
599 		list_del(&of->list);
600 
601 	if (atomic_dec_and_test(&on->refcnt))
602 		kn->attr.open = NULL;
603 	else
604 		on = NULL;
605 
606 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
607 	mutex_unlock(&kernfs_open_file_mutex);
608 
609 	kfree(on);
610 }
611 
612 static int kernfs_fop_open(struct inode *inode, struct file *file)
613 {
614 	struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
615 	struct kernfs_root *root = kernfs_root(kn);
616 	const struct kernfs_ops *ops;
617 	struct kernfs_open_file *of;
618 	bool has_read, has_write, has_mmap;
619 	int error = -EACCES;
620 
621 	if (!kernfs_get_active(kn))
622 		return -ENODEV;
623 
624 	ops = kernfs_ops(kn);
625 
626 	has_read = ops->seq_show || ops->read || ops->mmap;
627 	has_write = ops->write || ops->mmap;
628 	has_mmap = ops->mmap;
629 
630 	/* see the flag definition for details */
631 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
632 		if ((file->f_mode & FMODE_WRITE) &&
633 		    (!(inode->i_mode & S_IWUGO) || !has_write))
634 			goto err_out;
635 
636 		if ((file->f_mode & FMODE_READ) &&
637 		    (!(inode->i_mode & S_IRUGO) || !has_read))
638 			goto err_out;
639 	}
640 
641 	/* allocate a kernfs_open_file for the file */
642 	error = -ENOMEM;
643 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
644 	if (!of)
645 		goto err_out;
646 
647 	/*
648 	 * The following is done to give a different lockdep key to
649 	 * @of->mutex for files which implement mmap.  This is a rather
650 	 * crude way to avoid false positive lockdep warning around
651 	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
652 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
653 	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
654 	 * open file has a separate mutex, it's okay as long as those don't
655 	 * happen on the same file.  At this point, we can't easily give
656 	 * each file a separate locking class.  Let's differentiate on
657 	 * whether the file has mmap or not for now.
658 	 *
659 	 * Both paths of the branch look the same.  They're supposed to
660 	 * look that way and give @of->mutex different static lockdep keys.
661 	 */
662 	if (has_mmap)
663 		mutex_init(&of->mutex);
664 	else
665 		mutex_init(&of->mutex);
666 
667 	of->kn = kn;
668 	of->file = file;
669 
670 	/*
671 	 * Write path needs to atomic_write_len outside active reference.
672 	 * Cache it in open_file.  See kernfs_fop_write() for details.
673 	 */
674 	of->atomic_write_len = ops->atomic_write_len;
675 
676 	error = -EINVAL;
677 	/*
678 	 * ->seq_show is incompatible with ->prealloc,
679 	 * as seq_read does its own allocation.
680 	 * ->read must be used instead.
681 	 */
682 	if (ops->prealloc && ops->seq_show)
683 		goto err_free;
684 	if (ops->prealloc) {
685 		int len = of->atomic_write_len ?: PAGE_SIZE;
686 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
687 		error = -ENOMEM;
688 		if (!of->prealloc_buf)
689 			goto err_free;
690 	}
691 
692 	/*
693 	 * Always instantiate seq_file even if read access doesn't use
694 	 * seq_file or is not requested.  This unifies private data access
695 	 * and readable regular files are the vast majority anyway.
696 	 */
697 	if (ops->seq_show)
698 		error = seq_open(file, &kernfs_seq_ops);
699 	else
700 		error = seq_open(file, NULL);
701 	if (error)
702 		goto err_free;
703 
704 	((struct seq_file *)file->private_data)->private = of;
705 
706 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
707 	if (file->f_mode & FMODE_WRITE)
708 		file->f_mode |= FMODE_PWRITE;
709 
710 	/* make sure we have open node struct */
711 	error = kernfs_get_open_node(kn, of);
712 	if (error)
713 		goto err_close;
714 
715 	/* open succeeded, put active references */
716 	kernfs_put_active(kn);
717 	return 0;
718 
719 err_close:
720 	seq_release(inode, file);
721 err_free:
722 	kfree(of->prealloc_buf);
723 	kfree(of);
724 err_out:
725 	kernfs_put_active(kn);
726 	return error;
727 }
728 
729 static int kernfs_fop_release(struct inode *inode, struct file *filp)
730 {
731 	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
732 	struct kernfs_open_file *of = kernfs_of(filp);
733 
734 	kernfs_put_open_node(kn, of);
735 	seq_release(inode, filp);
736 	kfree(of->prealloc_buf);
737 	kfree(of);
738 
739 	return 0;
740 }
741 
742 void kernfs_unmap_bin_file(struct kernfs_node *kn)
743 {
744 	struct kernfs_open_node *on;
745 	struct kernfs_open_file *of;
746 
747 	if (!(kn->flags & KERNFS_HAS_MMAP))
748 		return;
749 
750 	spin_lock_irq(&kernfs_open_node_lock);
751 	on = kn->attr.open;
752 	if (on)
753 		atomic_inc(&on->refcnt);
754 	spin_unlock_irq(&kernfs_open_node_lock);
755 	if (!on)
756 		return;
757 
758 	mutex_lock(&kernfs_open_file_mutex);
759 	list_for_each_entry(of, &on->files, list) {
760 		struct inode *inode = file_inode(of->file);
761 		unmap_mapping_range(inode->i_mapping, 0, 0, 1);
762 	}
763 	mutex_unlock(&kernfs_open_file_mutex);
764 
765 	kernfs_put_open_node(kn, NULL);
766 }
767 
768 /*
769  * Kernfs attribute files are pollable.  The idea is that you read
770  * the content and then you use 'poll' or 'select' to wait for
771  * the content to change.  When the content changes (assuming the
772  * manager for the kobject supports notification), poll will
773  * return POLLERR|POLLPRI, and select will return the fd whether
774  * it is waiting for read, write, or exceptions.
775  * Once poll/select indicates that the value has changed, you
776  * need to close and re-open the file, or seek to 0 and read again.
777  * Reminder: this only works for attributes which actively support
778  * it, and it is not possible to test an attribute from userspace
779  * to see if it supports poll (Neither 'poll' nor 'select' return
780  * an appropriate error code).  When in doubt, set a suitable timeout value.
781  */
782 static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
783 {
784 	struct kernfs_open_file *of = kernfs_of(filp);
785 	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
786 	struct kernfs_open_node *on = kn->attr.open;
787 
788 	if (!kernfs_get_active(kn))
789 		goto trigger;
790 
791 	poll_wait(filp, &on->poll, wait);
792 
793 	kernfs_put_active(kn);
794 
795 	if (of->event != atomic_read(&on->event))
796 		goto trigger;
797 
798 	return DEFAULT_POLLMASK;
799 
800  trigger:
801 	return DEFAULT_POLLMASK|POLLERR|POLLPRI;
802 }
803 
804 static void kernfs_notify_workfn(struct work_struct *work)
805 {
806 	struct kernfs_node *kn;
807 	struct kernfs_open_node *on;
808 	struct kernfs_super_info *info;
809 repeat:
810 	/* pop one off the notify_list */
811 	spin_lock_irq(&kernfs_notify_lock);
812 	kn = kernfs_notify_list;
813 	if (kn == KERNFS_NOTIFY_EOL) {
814 		spin_unlock_irq(&kernfs_notify_lock);
815 		return;
816 	}
817 	kernfs_notify_list = kn->attr.notify_next;
818 	kn->attr.notify_next = NULL;
819 	spin_unlock_irq(&kernfs_notify_lock);
820 
821 	/* kick poll */
822 	spin_lock_irq(&kernfs_open_node_lock);
823 
824 	on = kn->attr.open;
825 	if (on) {
826 		atomic_inc(&on->event);
827 		wake_up_interruptible(&on->poll);
828 	}
829 
830 	spin_unlock_irq(&kernfs_open_node_lock);
831 
832 	/* kick fsnotify */
833 	mutex_lock(&kernfs_mutex);
834 
835 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
836 		struct inode *inode;
837 		struct dentry *dentry;
838 
839 		inode = ilookup(info->sb, kn->ino);
840 		if (!inode)
841 			continue;
842 
843 		dentry = d_find_any_alias(inode);
844 		if (dentry) {
845 			fsnotify_parent(NULL, dentry, FS_MODIFY);
846 			fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
847 				 NULL, 0);
848 			dput(dentry);
849 		}
850 
851 		iput(inode);
852 	}
853 
854 	mutex_unlock(&kernfs_mutex);
855 	kernfs_put(kn);
856 	goto repeat;
857 }
858 
859 /**
860  * kernfs_notify - notify a kernfs file
861  * @kn: file to notify
862  *
863  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
864  * context.
865  */
866 void kernfs_notify(struct kernfs_node *kn)
867 {
868 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
869 	unsigned long flags;
870 
871 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
872 		return;
873 
874 	spin_lock_irqsave(&kernfs_notify_lock, flags);
875 	if (!kn->attr.notify_next) {
876 		kernfs_get(kn);
877 		kn->attr.notify_next = kernfs_notify_list;
878 		kernfs_notify_list = kn;
879 		schedule_work(&kernfs_notify_work);
880 	}
881 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
882 }
883 EXPORT_SYMBOL_GPL(kernfs_notify);
884 
885 const struct file_operations kernfs_file_fops = {
886 	.read		= kernfs_fop_read,
887 	.write		= kernfs_fop_write,
888 	.llseek		= generic_file_llseek,
889 	.mmap		= kernfs_fop_mmap,
890 	.open		= kernfs_fop_open,
891 	.release	= kernfs_fop_release,
892 	.poll		= kernfs_fop_poll,
893 };
894 
895 /**
896  * __kernfs_create_file - kernfs internal function to create a file
897  * @parent: directory to create the file in
898  * @name: name of the file
899  * @mode: mode of the file
900  * @size: size of the file
901  * @ops: kernfs operations for the file
902  * @priv: private data for the file
903  * @ns: optional namespace tag of the file
904  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
905  *
906  * Returns the created node on success, ERR_PTR() value on error.
907  */
908 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
909 					 const char *name,
910 					 umode_t mode, loff_t size,
911 					 const struct kernfs_ops *ops,
912 					 void *priv, const void *ns,
913 					 struct lock_class_key *key)
914 {
915 	struct kernfs_node *kn;
916 	unsigned flags;
917 	int rc;
918 
919 	flags = KERNFS_FILE;
920 
921 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
922 	if (!kn)
923 		return ERR_PTR(-ENOMEM);
924 
925 	kn->attr.ops = ops;
926 	kn->attr.size = size;
927 	kn->ns = ns;
928 	kn->priv = priv;
929 
930 #ifdef CONFIG_DEBUG_LOCK_ALLOC
931 	if (key) {
932 		lockdep_init_map(&kn->dep_map, "s_active", key, 0);
933 		kn->flags |= KERNFS_LOCKDEP;
934 	}
935 #endif
936 
937 	/*
938 	 * kn->attr.ops is accesible only while holding active ref.  We
939 	 * need to know whether some ops are implemented outside active
940 	 * ref.  Cache their existence in flags.
941 	 */
942 	if (ops->seq_show)
943 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
944 	if (ops->mmap)
945 		kn->flags |= KERNFS_HAS_MMAP;
946 
947 	rc = kernfs_add_one(kn);
948 	if (rc) {
949 		kernfs_put(kn);
950 		return ERR_PTR(rc);
951 	}
952 	return kn;
953 }
954