xref: /linux/fs/kernfs/file.c (revision b7e32ae6664285e156e9f0cd821e63e19798baf7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/file.c - kernfs file implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/seq_file.h>
12 #include <linux/slab.h>
13 #include <linux/poll.h>
14 #include <linux/pagemap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/fsnotify.h>
17 #include <linux/uio.h>
18 
19 #include "kernfs-internal.h"
20 
21 struct kernfs_open_node {
22 	struct rcu_head		rcu_head;
23 	atomic_t		event;
24 	wait_queue_head_t	poll;
25 	struct list_head	files; /* goes through kernfs_open_file.list */
26 	unsigned int		nr_mmapped;
27 	unsigned int		nr_to_release;
28 };
29 
30 /*
31  * kernfs_notify() may be called from any context and bounces notifications
32  * through a work item.  To minimize space overhead in kernfs_node, the
33  * pending queue is implemented as a singly linked list of kernfs_nodes.
34  * The list is terminated with the self pointer so that whether a
35  * kernfs_node is on the list or not can be determined by testing the next
36  * pointer for %NULL.
37  */
38 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
39 
40 static DEFINE_SPINLOCK(kernfs_notify_lock);
41 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
42 
43 static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn)
44 {
45 	int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS);
46 
47 	return &kernfs_locks->open_file_mutex[idx];
48 }
49 
50 static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn)
51 {
52 	struct mutex *lock;
53 
54 	lock = kernfs_open_file_mutex_ptr(kn);
55 
56 	mutex_lock(lock);
57 
58 	return lock;
59 }
60 
61 /**
62  * of_on - Get the kernfs_open_node of the specified kernfs_open_file
63  * @of: target kernfs_open_file
64  *
65  * Return: the kernfs_open_node of the kernfs_open_file
66  */
67 static struct kernfs_open_node *of_on(struct kernfs_open_file *of)
68 {
69 	return rcu_dereference_protected(of->kn->attr.open,
70 					 !list_empty(&of->list));
71 }
72 
73 /* Get active reference to kernfs node for an open file */
74 static struct kernfs_open_file *kernfs_get_active_of(struct kernfs_open_file *of)
75 {
76 	/* Skip if file was already released */
77 	if (unlikely(of->released))
78 		return NULL;
79 
80 	if (!kernfs_get_active(of->kn))
81 		return NULL;
82 
83 	return of;
84 }
85 
86 static void kernfs_put_active_of(struct kernfs_open_file *of)
87 {
88 	return kernfs_put_active(of->kn);
89 }
90 
91 /**
92  * kernfs_deref_open_node_locked - Get kernfs_open_node corresponding to @kn
93  *
94  * @kn: target kernfs_node.
95  *
96  * Fetch and return ->attr.open of @kn when caller holds the
97  * kernfs_open_file_mutex_ptr(kn).
98  *
99  * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when
100  * the caller guarantees that this mutex is being held, other updaters can't
101  * change ->attr.open and this means that we can safely deref ->attr.open
102  * outside RCU read-side critical section.
103  *
104  * The caller needs to make sure that kernfs_open_file_mutex is held.
105  *
106  * Return: @kn->attr.open when kernfs_open_file_mutex is held.
107  */
108 static struct kernfs_open_node *
109 kernfs_deref_open_node_locked(struct kernfs_node *kn)
110 {
111 	return rcu_dereference_protected(kn->attr.open,
112 				lockdep_is_held(kernfs_open_file_mutex_ptr(kn)));
113 }
114 
115 static struct kernfs_open_file *kernfs_of(struct file *file)
116 {
117 	return ((struct seq_file *)file->private_data)->private;
118 }
119 
120 /*
121  * Determine the kernfs_ops for the given kernfs_node.  This function must
122  * be called while holding an active reference.
123  */
124 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
125 {
126 	if (kn->flags & KERNFS_LOCKDEP)
127 		lockdep_assert_held(kn);
128 	return kn->attr.ops;
129 }
130 
131 /*
132  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
133  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
134  * a seq_file iteration which is fully initialized with an active reference
135  * or an aborted kernfs_seq_start() due to get_active failure.  The
136  * position pointer is the only context for each seq_file iteration and
137  * thus the stop condition should be encoded in it.  As the return value is
138  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
139  * choice to indicate get_active failure.
140  *
141  * Unfortunately, this is complicated due to the optional custom seq_file
142  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
143  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
144  * custom seq_file operations and thus can't decide whether put_active
145  * should be performed or not only on ERR_PTR(-ENODEV).
146  *
147  * This is worked around by factoring out the custom seq_stop() and
148  * put_active part into kernfs_seq_stop_active(), skipping it from
149  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
150  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
151  * that kernfs_seq_stop_active() is skipped only after get_active failure.
152  */
153 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
154 {
155 	struct kernfs_open_file *of = sf->private;
156 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
157 
158 	if (ops->seq_stop)
159 		ops->seq_stop(sf, v);
160 	kernfs_put_active_of(of);
161 }
162 
163 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
164 {
165 	struct kernfs_open_file *of = sf->private;
166 	const struct kernfs_ops *ops;
167 
168 	/*
169 	 * @of->mutex nests outside active ref and is primarily to ensure that
170 	 * the ops aren't called concurrently for the same open file.
171 	 */
172 	mutex_lock(&of->mutex);
173 	if (!kernfs_get_active_of(of))
174 		return ERR_PTR(-ENODEV);
175 
176 	ops = kernfs_ops(of->kn);
177 	if (ops->seq_start) {
178 		void *next = ops->seq_start(sf, ppos);
179 		/* see the comment above kernfs_seq_stop_active() */
180 		if (next == ERR_PTR(-ENODEV))
181 			kernfs_seq_stop_active(sf, next);
182 		return next;
183 	}
184 	return single_start(sf, ppos);
185 }
186 
187 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
188 {
189 	struct kernfs_open_file *of = sf->private;
190 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
191 
192 	if (ops->seq_next) {
193 		void *next = ops->seq_next(sf, v, ppos);
194 		/* see the comment above kernfs_seq_stop_active() */
195 		if (next == ERR_PTR(-ENODEV))
196 			kernfs_seq_stop_active(sf, next);
197 		return next;
198 	} else {
199 		/*
200 		 * The same behavior and code as single_open(), always
201 		 * terminate after the initial read.
202 		 */
203 		++*ppos;
204 		return NULL;
205 	}
206 }
207 
208 static void kernfs_seq_stop(struct seq_file *sf, void *v)
209 {
210 	struct kernfs_open_file *of = sf->private;
211 
212 	if (v != ERR_PTR(-ENODEV))
213 		kernfs_seq_stop_active(sf, v);
214 	mutex_unlock(&of->mutex);
215 }
216 
217 static int kernfs_seq_show(struct seq_file *sf, void *v)
218 {
219 	struct kernfs_open_file *of = sf->private;
220 
221 	of->event = atomic_read(&of_on(of)->event);
222 
223 	return of->kn->attr.ops->seq_show(sf, v);
224 }
225 
226 static const struct seq_operations kernfs_seq_ops = {
227 	.start = kernfs_seq_start,
228 	.next = kernfs_seq_next,
229 	.stop = kernfs_seq_stop,
230 	.show = kernfs_seq_show,
231 };
232 
233 /*
234  * As reading a bin file can have side-effects, the exact offset and bytes
235  * specified in read(2) call should be passed to the read callback making
236  * it difficult to use seq_file.  Implement simplistic custom buffering for
237  * bin files.
238  */
239 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
240 {
241 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
242 	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
243 	const struct kernfs_ops *ops;
244 	char *buf;
245 
246 	buf = of->prealloc_buf;
247 	if (buf)
248 		mutex_lock(&of->prealloc_mutex);
249 	else
250 		buf = kmalloc(len, GFP_KERNEL);
251 	if (!buf)
252 		return -ENOMEM;
253 
254 	/*
255 	 * @of->mutex nests outside active ref and is used both to ensure that
256 	 * the ops aren't called concurrently for the same open file.
257 	 */
258 	mutex_lock(&of->mutex);
259 	if (!kernfs_get_active_of(of)) {
260 		len = -ENODEV;
261 		mutex_unlock(&of->mutex);
262 		goto out_free;
263 	}
264 
265 	of->event = atomic_read(&of_on(of)->event);
266 
267 	ops = kernfs_ops(of->kn);
268 	if (ops->read)
269 		len = ops->read(of, buf, len, iocb->ki_pos);
270 	else
271 		len = -EINVAL;
272 
273 	kernfs_put_active_of(of);
274 	mutex_unlock(&of->mutex);
275 
276 	if (len < 0)
277 		goto out_free;
278 
279 	if (copy_to_iter(buf, len, iter) != len) {
280 		len = -EFAULT;
281 		goto out_free;
282 	}
283 
284 	iocb->ki_pos += len;
285 
286  out_free:
287 	if (buf == of->prealloc_buf)
288 		mutex_unlock(&of->prealloc_mutex);
289 	else
290 		kfree(buf);
291 	return len;
292 }
293 
294 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
295 {
296 	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
297 		return seq_read_iter(iocb, iter);
298 	return kernfs_file_read_iter(iocb, iter);
299 }
300 
301 /*
302  * Copy data in from userland and pass it to the matching kernfs write
303  * operation.
304  *
305  * There is no easy way for us to know if userspace is only doing a partial
306  * write, so we don't support them. We expect the entire buffer to come on
307  * the first write.  Hint: if you're writing a value, first read the file,
308  * modify only the value you're changing, then write entire buffer
309  * back.
310  */
311 static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
312 {
313 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
314 	ssize_t len = iov_iter_count(iter);
315 	const struct kernfs_ops *ops;
316 	char *buf;
317 
318 	if (of->atomic_write_len) {
319 		if (len > of->atomic_write_len)
320 			return -E2BIG;
321 	} else {
322 		len = min_t(size_t, len, PAGE_SIZE);
323 	}
324 
325 	buf = of->prealloc_buf;
326 	if (buf)
327 		mutex_lock(&of->prealloc_mutex);
328 	else
329 		buf = kmalloc(len + 1, GFP_KERNEL);
330 	if (!buf)
331 		return -ENOMEM;
332 
333 	if (copy_from_iter(buf, len, iter) != len) {
334 		len = -EFAULT;
335 		goto out_free;
336 	}
337 	buf[len] = '\0';	/* guarantee string termination */
338 
339 	/*
340 	 * @of->mutex nests outside active ref and is used both to ensure that
341 	 * the ops aren't called concurrently for the same open file.
342 	 */
343 	mutex_lock(&of->mutex);
344 	if (!kernfs_get_active_of(of)) {
345 		mutex_unlock(&of->mutex);
346 		len = -ENODEV;
347 		goto out_free;
348 	}
349 
350 	ops = kernfs_ops(of->kn);
351 	if (ops->write)
352 		len = ops->write(of, buf, len, iocb->ki_pos);
353 	else
354 		len = -EINVAL;
355 
356 	kernfs_put_active_of(of);
357 	mutex_unlock(&of->mutex);
358 
359 	if (len > 0)
360 		iocb->ki_pos += len;
361 
362 out_free:
363 	if (buf == of->prealloc_buf)
364 		mutex_unlock(&of->prealloc_mutex);
365 	else
366 		kfree(buf);
367 	return len;
368 }
369 
370 static void kernfs_vma_open(struct vm_area_struct *vma)
371 {
372 	struct file *file = vma->vm_file;
373 	struct kernfs_open_file *of = kernfs_of(file);
374 
375 	if (!of->vm_ops)
376 		return;
377 
378 	if (!kernfs_get_active_of(of))
379 		return;
380 
381 	if (of->vm_ops->open)
382 		of->vm_ops->open(vma);
383 
384 	kernfs_put_active_of(of);
385 }
386 
387 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
388 {
389 	struct file *file = vmf->vma->vm_file;
390 	struct kernfs_open_file *of = kernfs_of(file);
391 	vm_fault_t ret;
392 
393 	if (!of->vm_ops)
394 		return VM_FAULT_SIGBUS;
395 
396 	if (!kernfs_get_active_of(of))
397 		return VM_FAULT_SIGBUS;
398 
399 	ret = VM_FAULT_SIGBUS;
400 	if (of->vm_ops->fault)
401 		ret = of->vm_ops->fault(vmf);
402 
403 	kernfs_put_active_of(of);
404 	return ret;
405 }
406 
407 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
408 {
409 	struct file *file = vmf->vma->vm_file;
410 	struct kernfs_open_file *of = kernfs_of(file);
411 	vm_fault_t ret;
412 
413 	if (!of->vm_ops)
414 		return VM_FAULT_SIGBUS;
415 
416 	if (!kernfs_get_active_of(of))
417 		return VM_FAULT_SIGBUS;
418 
419 	ret = 0;
420 	if (of->vm_ops->page_mkwrite)
421 		ret = of->vm_ops->page_mkwrite(vmf);
422 	else
423 		file_update_time(file);
424 
425 	kernfs_put_active_of(of);
426 	return ret;
427 }
428 
429 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
430 			     void *buf, int len, int write)
431 {
432 	struct file *file = vma->vm_file;
433 	struct kernfs_open_file *of = kernfs_of(file);
434 	int ret;
435 
436 	if (!of->vm_ops)
437 		return -EINVAL;
438 
439 	if (!kernfs_get_active_of(of))
440 		return -EINVAL;
441 
442 	ret = -EINVAL;
443 	if (of->vm_ops->access)
444 		ret = of->vm_ops->access(vma, addr, buf, len, write);
445 
446 	kernfs_put_active_of(of);
447 	return ret;
448 }
449 
450 static const struct vm_operations_struct kernfs_vm_ops = {
451 	.open		= kernfs_vma_open,
452 	.fault		= kernfs_vma_fault,
453 	.page_mkwrite	= kernfs_vma_page_mkwrite,
454 	.access		= kernfs_vma_access,
455 };
456 
457 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
458 {
459 	struct kernfs_open_file *of = kernfs_of(file);
460 	const struct kernfs_ops *ops;
461 	int rc;
462 
463 	/*
464 	 * mmap path and of->mutex are prone to triggering spurious lockdep
465 	 * warnings and we don't want to add spurious locking dependency
466 	 * between the two.  Check whether mmap is actually implemented
467 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
468 	 * comment in kernfs_fop_open() for more details.
469 	 */
470 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
471 		return -ENODEV;
472 
473 	mutex_lock(&of->mutex);
474 
475 	rc = -ENODEV;
476 	if (!kernfs_get_active_of(of))
477 		goto out_unlock;
478 
479 	ops = kernfs_ops(of->kn);
480 	rc = ops->mmap(of, vma);
481 	if (rc)
482 		goto out_put;
483 
484 	/*
485 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
486 	 * to satisfy versions of X which crash if the mmap fails: that
487 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
488 	 */
489 	if (vma->vm_file != file)
490 		goto out_put;
491 
492 	rc = -EINVAL;
493 	if (of->mmapped && of->vm_ops != vma->vm_ops)
494 		goto out_put;
495 
496 	/*
497 	 * It is not possible to successfully wrap close.
498 	 * So error if someone is trying to use close.
499 	 */
500 	if (vma->vm_ops && vma->vm_ops->close)
501 		goto out_put;
502 
503 	rc = 0;
504 	if (!of->mmapped) {
505 		of->mmapped = true;
506 		of_on(of)->nr_mmapped++;
507 		of->vm_ops = vma->vm_ops;
508 	}
509 	vma->vm_ops = &kernfs_vm_ops;
510 out_put:
511 	kernfs_put_active_of(of);
512 out_unlock:
513 	mutex_unlock(&of->mutex);
514 
515 	return rc;
516 }
517 
518 /**
519  *	kernfs_get_open_node - get or create kernfs_open_node
520  *	@kn: target kernfs_node
521  *	@of: kernfs_open_file for this instance of open
522  *
523  *	If @kn->attr.open exists, increment its reference count; otherwise,
524  *	create one.  @of is chained to the files list.
525  *
526  *	Locking:
527  *	Kernel thread context (may sleep).
528  *
529  *	Return:
530  *	%0 on success, -errno on failure.
531  */
532 static int kernfs_get_open_node(struct kernfs_node *kn,
533 				struct kernfs_open_file *of)
534 {
535 	struct kernfs_open_node *on;
536 	struct mutex *mutex;
537 
538 	mutex = kernfs_open_file_mutex_lock(kn);
539 	on = kernfs_deref_open_node_locked(kn);
540 
541 	if (!on) {
542 		/* not there, initialize a new one */
543 		on = kzalloc(sizeof(*on), GFP_KERNEL);
544 		if (!on) {
545 			mutex_unlock(mutex);
546 			return -ENOMEM;
547 		}
548 		atomic_set(&on->event, 1);
549 		init_waitqueue_head(&on->poll);
550 		INIT_LIST_HEAD(&on->files);
551 		rcu_assign_pointer(kn->attr.open, on);
552 	}
553 
554 	list_add_tail(&of->list, &on->files);
555 	if (kn->flags & KERNFS_HAS_RELEASE)
556 		on->nr_to_release++;
557 
558 	mutex_unlock(mutex);
559 	return 0;
560 }
561 
562 /**
563  *	kernfs_unlink_open_file - Unlink @of from @kn.
564  *
565  *	@kn: target kernfs_node
566  *	@of: associated kernfs_open_file
567  *	@open_failed: ->open() failed, cancel ->release()
568  *
569  *	Unlink @of from list of @kn's associated open files. If list of
570  *	associated open files becomes empty, disassociate and free
571  *	kernfs_open_node.
572  *
573  *	LOCKING:
574  *	None.
575  */
576 static void kernfs_unlink_open_file(struct kernfs_node *kn,
577 				    struct kernfs_open_file *of,
578 				    bool open_failed)
579 {
580 	struct kernfs_open_node *on;
581 	struct mutex *mutex;
582 
583 	mutex = kernfs_open_file_mutex_lock(kn);
584 
585 	on = kernfs_deref_open_node_locked(kn);
586 	if (!on) {
587 		mutex_unlock(mutex);
588 		return;
589 	}
590 
591 	if (of) {
592 		if (kn->flags & KERNFS_HAS_RELEASE) {
593 			WARN_ON_ONCE(of->released == open_failed);
594 			if (open_failed)
595 				on->nr_to_release--;
596 		}
597 		if (of->mmapped)
598 			on->nr_mmapped--;
599 		list_del(&of->list);
600 	}
601 
602 	if (list_empty(&on->files)) {
603 		rcu_assign_pointer(kn->attr.open, NULL);
604 		kfree_rcu(on, rcu_head);
605 	}
606 
607 	mutex_unlock(mutex);
608 }
609 
610 static int kernfs_fop_open(struct inode *inode, struct file *file)
611 {
612 	struct kernfs_node *kn = inode->i_private;
613 	struct kernfs_root *root = kernfs_root(kn);
614 	const struct kernfs_ops *ops;
615 	struct kernfs_open_file *of;
616 	bool has_read, has_write, has_mmap;
617 	int error = -EACCES;
618 
619 	if (!kernfs_get_active(kn))
620 		return -ENODEV;
621 
622 	ops = kernfs_ops(kn);
623 
624 	has_read = ops->seq_show || ops->read || ops->mmap;
625 	has_write = ops->write || ops->mmap;
626 	has_mmap = ops->mmap;
627 
628 	/* see the flag definition for details */
629 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
630 		if ((file->f_mode & FMODE_WRITE) &&
631 		    (!(inode->i_mode & S_IWUGO) || !has_write))
632 			goto err_out;
633 
634 		if ((file->f_mode & FMODE_READ) &&
635 		    (!(inode->i_mode & S_IRUGO) || !has_read))
636 			goto err_out;
637 	}
638 
639 	/* allocate a kernfs_open_file for the file */
640 	error = -ENOMEM;
641 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
642 	if (!of)
643 		goto err_out;
644 
645 	/*
646 	 * The following is done to give a different lockdep key to
647 	 * @of->mutex for files which implement mmap.  This is a rather
648 	 * crude way to avoid false positive lockdep warning around
649 	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
650 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
651 	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
652 	 * open file has a separate mutex, it's okay as long as those don't
653 	 * happen on the same file.  At this point, we can't easily give
654 	 * each file a separate locking class.  Let's differentiate on
655 	 * whether the file has mmap or not for now.
656 	 *
657 	 * For similar reasons, writable and readonly files are given different
658 	 * lockdep key, because the writable file /sys/power/resume may call vfs
659 	 * lookup helpers for arbitrary paths and readonly files can be read by
660 	 * overlayfs from vfs helpers when sysfs is a lower layer of overalyfs.
661 	 *
662 	 * All three cases look the same.  They're supposed to
663 	 * look that way and give @of->mutex different static lockdep keys.
664 	 */
665 	if (has_mmap)
666 		mutex_init(&of->mutex);
667 	else if (file->f_mode & FMODE_WRITE)
668 		mutex_init(&of->mutex);
669 	else
670 		mutex_init(&of->mutex);
671 
672 	of->kn = kn;
673 	of->file = file;
674 
675 	/*
676 	 * Write path needs to atomic_write_len outside active reference.
677 	 * Cache it in open_file.  See kernfs_fop_write_iter() for details.
678 	 */
679 	of->atomic_write_len = ops->atomic_write_len;
680 
681 	error = -EINVAL;
682 	/*
683 	 * ->seq_show is incompatible with ->prealloc,
684 	 * as seq_read does its own allocation.
685 	 * ->read must be used instead.
686 	 */
687 	if (ops->prealloc && ops->seq_show)
688 		goto err_free;
689 	if (ops->prealloc) {
690 		int len = of->atomic_write_len ?: PAGE_SIZE;
691 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
692 		error = -ENOMEM;
693 		if (!of->prealloc_buf)
694 			goto err_free;
695 		mutex_init(&of->prealloc_mutex);
696 	}
697 
698 	/*
699 	 * Always instantiate seq_file even if read access doesn't use
700 	 * seq_file or is not requested.  This unifies private data access
701 	 * and readable regular files are the vast majority anyway.
702 	 */
703 	if (ops->seq_show)
704 		error = seq_open(file, &kernfs_seq_ops);
705 	else
706 		error = seq_open(file, NULL);
707 	if (error)
708 		goto err_free;
709 
710 	of->seq_file = file->private_data;
711 	of->seq_file->private = of;
712 
713 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
714 	if (file->f_mode & FMODE_WRITE)
715 		file->f_mode |= FMODE_PWRITE;
716 
717 	/* make sure we have open node struct */
718 	error = kernfs_get_open_node(kn, of);
719 	if (error)
720 		goto err_seq_release;
721 
722 	if (ops->open) {
723 		/* nobody has access to @of yet, skip @of->mutex */
724 		error = ops->open(of);
725 		if (error)
726 			goto err_put_node;
727 	}
728 
729 	/* open succeeded, put active references */
730 	kernfs_put_active(kn);
731 	return 0;
732 
733 err_put_node:
734 	kernfs_unlink_open_file(kn, of, true);
735 err_seq_release:
736 	seq_release(inode, file);
737 err_free:
738 	kfree(of->prealloc_buf);
739 	kfree(of);
740 err_out:
741 	kernfs_put_active(kn);
742 	return error;
743 }
744 
745 /* used from release/drain to ensure that ->release() is called exactly once */
746 static void kernfs_release_file(struct kernfs_node *kn,
747 				struct kernfs_open_file *of)
748 {
749 	/*
750 	 * @of is guaranteed to have no other file operations in flight and
751 	 * we just want to synchronize release and drain paths.
752 	 * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used
753 	 * here because drain path may be called from places which can
754 	 * cause circular dependency.
755 	 */
756 	lockdep_assert_held(kernfs_open_file_mutex_ptr(kn));
757 
758 	if (!of->released) {
759 		/*
760 		 * A file is never detached without being released and we
761 		 * need to be able to release files which are deactivated
762 		 * and being drained.  Don't use kernfs_ops().
763 		 */
764 		kn->attr.ops->release(of);
765 		of->released = true;
766 		of_on(of)->nr_to_release--;
767 	}
768 }
769 
770 static int kernfs_fop_release(struct inode *inode, struct file *filp)
771 {
772 	struct kernfs_node *kn = inode->i_private;
773 	struct kernfs_open_file *of = kernfs_of(filp);
774 
775 	if (kn->flags & KERNFS_HAS_RELEASE) {
776 		struct mutex *mutex;
777 
778 		mutex = kernfs_open_file_mutex_lock(kn);
779 		kernfs_release_file(kn, of);
780 		mutex_unlock(mutex);
781 	}
782 
783 	kernfs_unlink_open_file(kn, of, false);
784 	seq_release(inode, filp);
785 	kfree(of->prealloc_buf);
786 	kfree(of);
787 
788 	return 0;
789 }
790 
791 bool kernfs_should_drain_open_files(struct kernfs_node *kn)
792 {
793 	struct kernfs_open_node *on;
794 	bool ret;
795 
796 	/*
797 	 * @kn being deactivated guarantees that @kn->attr.open can't change
798 	 * beneath us making the lockless test below safe.
799 	 * Callers post kernfs_unbreak_active_protection may be counted in
800 	 * kn->active by now, do not WARN_ON because of them.
801 	 */
802 
803 	rcu_read_lock();
804 	on = rcu_dereference(kn->attr.open);
805 	ret = on && (on->nr_mmapped || on->nr_to_release);
806 	rcu_read_unlock();
807 
808 	return ret;
809 }
810 
811 void kernfs_drain_open_files(struct kernfs_node *kn)
812 {
813 	struct kernfs_open_node *on;
814 	struct kernfs_open_file *of;
815 	struct mutex *mutex;
816 
817 	mutex = kernfs_open_file_mutex_lock(kn);
818 	on = kernfs_deref_open_node_locked(kn);
819 	if (!on) {
820 		mutex_unlock(mutex);
821 		return;
822 	}
823 
824 	list_for_each_entry(of, &on->files, list) {
825 		struct inode *inode = file_inode(of->file);
826 
827 		if (of->mmapped) {
828 			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
829 			of->mmapped = false;
830 			on->nr_mmapped--;
831 		}
832 
833 		if (kn->flags & KERNFS_HAS_RELEASE)
834 			kernfs_release_file(kn, of);
835 	}
836 
837 	WARN_ON_ONCE(on->nr_mmapped || on->nr_to_release);
838 	mutex_unlock(mutex);
839 }
840 
841 /*
842  * Kernfs attribute files are pollable.  The idea is that you read
843  * the content and then you use 'poll' or 'select' to wait for
844  * the content to change.  When the content changes (assuming the
845  * manager for the kobject supports notification), poll will
846  * return EPOLLERR|EPOLLPRI, and select will return the fd whether
847  * it is waiting for read, write, or exceptions.
848  * Once poll/select indicates that the value has changed, you
849  * need to close and re-open the file, or seek to 0 and read again.
850  * Reminder: this only works for attributes which actively support
851  * it, and it is not possible to test an attribute from userspace
852  * to see if it supports poll (Neither 'poll' nor 'select' return
853  * an appropriate error code).  When in doubt, set a suitable timeout value.
854  */
855 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
856 {
857 	struct kernfs_open_node *on = of_on(of);
858 
859 	poll_wait(of->file, &on->poll, wait);
860 
861 	if (of->event != atomic_read(&on->event))
862 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
863 
864 	return DEFAULT_POLLMASK;
865 }
866 
867 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
868 {
869 	struct kernfs_open_file *of = kernfs_of(filp);
870 	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
871 	__poll_t ret;
872 
873 	if (!kernfs_get_active_of(of))
874 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
875 
876 	if (kn->attr.ops->poll)
877 		ret = kn->attr.ops->poll(of, wait);
878 	else
879 		ret = kernfs_generic_poll(of, wait);
880 
881 	kernfs_put_active_of(of);
882 	return ret;
883 }
884 
885 static loff_t kernfs_fop_llseek(struct file *file, loff_t offset, int whence)
886 {
887 	struct kernfs_open_file *of = kernfs_of(file);
888 	const struct kernfs_ops *ops;
889 	loff_t ret;
890 
891 	/*
892 	 * @of->mutex nests outside active ref and is primarily to ensure that
893 	 * the ops aren't called concurrently for the same open file.
894 	 */
895 	mutex_lock(&of->mutex);
896 	if (!kernfs_get_active_of(of)) {
897 		mutex_unlock(&of->mutex);
898 		return -ENODEV;
899 	}
900 
901 	ops = kernfs_ops(of->kn);
902 	if (ops->llseek)
903 		ret = ops->llseek(of, offset, whence);
904 	else
905 		ret = generic_file_llseek(file, offset, whence);
906 
907 	kernfs_put_active_of(of);
908 	mutex_unlock(&of->mutex);
909 	return ret;
910 }
911 
912 static void kernfs_notify_workfn(struct work_struct *work)
913 {
914 	struct kernfs_node *kn;
915 	struct kernfs_super_info *info;
916 	struct kernfs_root *root;
917 repeat:
918 	/* pop one off the notify_list */
919 	spin_lock_irq(&kernfs_notify_lock);
920 	kn = kernfs_notify_list;
921 	if (kn == KERNFS_NOTIFY_EOL) {
922 		spin_unlock_irq(&kernfs_notify_lock);
923 		return;
924 	}
925 	kernfs_notify_list = kn->attr.notify_next;
926 	kn->attr.notify_next = NULL;
927 	spin_unlock_irq(&kernfs_notify_lock);
928 
929 	root = kernfs_root(kn);
930 	/* kick fsnotify */
931 
932 	down_read(&root->kernfs_supers_rwsem);
933 	down_read(&root->kernfs_rwsem);
934 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
935 		struct kernfs_node *parent;
936 		struct inode *p_inode = NULL;
937 		const char *kn_name;
938 		struct inode *inode;
939 		struct qstr name;
940 
941 		/*
942 		 * We want fsnotify_modify() on @kn but as the
943 		 * modifications aren't originating from userland don't
944 		 * have the matching @file available.  Look up the inodes
945 		 * and generate the events manually.
946 		 */
947 		inode = ilookup(info->sb, kernfs_ino(kn));
948 		if (!inode)
949 			continue;
950 
951 		kn_name = kernfs_rcu_name(kn);
952 		name = QSTR(kn_name);
953 		parent = kernfs_get_parent(kn);
954 		if (parent) {
955 			p_inode = ilookup(info->sb, kernfs_ino(parent));
956 			if (p_inode) {
957 				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
958 					 inode, FSNOTIFY_EVENT_INODE,
959 					 p_inode, &name, inode, 0);
960 				iput(p_inode);
961 			}
962 
963 			kernfs_put(parent);
964 		}
965 
966 		if (!p_inode)
967 			fsnotify_inode(inode, FS_MODIFY);
968 
969 		iput(inode);
970 	}
971 
972 	up_read(&root->kernfs_rwsem);
973 	up_read(&root->kernfs_supers_rwsem);
974 	kernfs_put(kn);
975 	goto repeat;
976 }
977 
978 /**
979  * kernfs_notify - notify a kernfs file
980  * @kn: file to notify
981  *
982  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
983  * context.
984  */
985 void kernfs_notify(struct kernfs_node *kn)
986 {
987 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
988 	unsigned long flags;
989 	struct kernfs_open_node *on;
990 
991 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
992 		return;
993 
994 	/* kick poll immediately */
995 	rcu_read_lock();
996 	on = rcu_dereference(kn->attr.open);
997 	if (on) {
998 		atomic_inc(&on->event);
999 		wake_up_interruptible(&on->poll);
1000 	}
1001 	rcu_read_unlock();
1002 
1003 	/* schedule work to kick fsnotify */
1004 	spin_lock_irqsave(&kernfs_notify_lock, flags);
1005 	if (!kn->attr.notify_next) {
1006 		kernfs_get(kn);
1007 		kn->attr.notify_next = kernfs_notify_list;
1008 		kernfs_notify_list = kn;
1009 		schedule_work(&kernfs_notify_work);
1010 	}
1011 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
1012 }
1013 EXPORT_SYMBOL_GPL(kernfs_notify);
1014 
1015 const struct file_operations kernfs_file_fops = {
1016 	.read_iter	= kernfs_fop_read_iter,
1017 	.write_iter	= kernfs_fop_write_iter,
1018 	.llseek		= kernfs_fop_llseek,
1019 	.mmap		= kernfs_fop_mmap,
1020 	.open		= kernfs_fop_open,
1021 	.release	= kernfs_fop_release,
1022 	.poll		= kernfs_fop_poll,
1023 	.fsync		= noop_fsync,
1024 	.splice_read	= copy_splice_read,
1025 	.splice_write	= iter_file_splice_write,
1026 };
1027 
1028 /**
1029  * __kernfs_create_file - kernfs internal function to create a file
1030  * @parent: directory to create the file in
1031  * @name: name of the file
1032  * @mode: mode of the file
1033  * @uid: uid of the file
1034  * @gid: gid of the file
1035  * @size: size of the file
1036  * @ops: kernfs operations for the file
1037  * @priv: private data for the file
1038  * @ns: optional namespace tag of the file
1039  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
1040  *
1041  * Return: the created node on success, ERR_PTR() value on error.
1042  */
1043 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
1044 					 const char *name,
1045 					 umode_t mode, kuid_t uid, kgid_t gid,
1046 					 loff_t size,
1047 					 const struct kernfs_ops *ops,
1048 					 void *priv, const void *ns,
1049 					 struct lock_class_key *key)
1050 {
1051 	struct kernfs_node *kn;
1052 	unsigned flags;
1053 	int rc;
1054 
1055 	flags = KERNFS_FILE;
1056 
1057 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1058 			     uid, gid, flags);
1059 	if (!kn)
1060 		return ERR_PTR(-ENOMEM);
1061 
1062 	kn->attr.ops = ops;
1063 	kn->attr.size = size;
1064 	kn->ns = ns;
1065 	kn->priv = priv;
1066 
1067 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1068 	if (key) {
1069 		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1070 		kn->flags |= KERNFS_LOCKDEP;
1071 	}
1072 #endif
1073 
1074 	/*
1075 	 * kn->attr.ops is accessible only while holding active ref.  We
1076 	 * need to know whether some ops are implemented outside active
1077 	 * ref.  Cache their existence in flags.
1078 	 */
1079 	if (ops->seq_show)
1080 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1081 	if (ops->mmap)
1082 		kn->flags |= KERNFS_HAS_MMAP;
1083 	if (ops->release)
1084 		kn->flags |= KERNFS_HAS_RELEASE;
1085 
1086 	rc = kernfs_add_one(kn);
1087 	if (rc) {
1088 		kernfs_put(kn);
1089 		return ERR_PTR(rc);
1090 	}
1091 	return kn;
1092 }
1093