1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/file.c - kernfs file implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/seq_file.h> 12 #include <linux/slab.h> 13 #include <linux/poll.h> 14 #include <linux/pagemap.h> 15 #include <linux/sched/mm.h> 16 #include <linux/fsnotify.h> 17 #include <linux/uio.h> 18 19 #include "kernfs-internal.h" 20 21 struct kernfs_open_node { 22 struct rcu_head rcu_head; 23 atomic_t event; 24 wait_queue_head_t poll; 25 struct list_head files; /* goes through kernfs_open_file.list */ 26 unsigned int nr_mmapped; 27 unsigned int nr_to_release; 28 }; 29 30 /* 31 * kernfs_notify() may be called from any context and bounces notifications 32 * through a work item. To minimize space overhead in kernfs_node, the 33 * pending queue is implemented as a singly linked list of kernfs_nodes. 34 * The list is terminated with the self pointer so that whether a 35 * kernfs_node is on the list or not can be determined by testing the next 36 * pointer for %NULL. 37 */ 38 #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list) 39 40 static DEFINE_SPINLOCK(kernfs_notify_lock); 41 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL; 42 43 static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn) 44 { 45 int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS); 46 47 return &kernfs_locks->open_file_mutex[idx]; 48 } 49 50 static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn) 51 { 52 struct mutex *lock; 53 54 lock = kernfs_open_file_mutex_ptr(kn); 55 56 mutex_lock(lock); 57 58 return lock; 59 } 60 61 /** 62 * of_on - Get the kernfs_open_node of the specified kernfs_open_file 63 * @of: target kernfs_open_file 64 * 65 * Return: the kernfs_open_node of the kernfs_open_file 66 */ 67 static struct kernfs_open_node *of_on(struct kernfs_open_file *of) 68 { 69 return rcu_dereference_protected(of->kn->attr.open, 70 !list_empty(&of->list)); 71 } 72 73 /* Get active reference to kernfs node for an open file */ 74 static struct kernfs_open_file *kernfs_get_active_of(struct kernfs_open_file *of) 75 { 76 /* Skip if file was already released */ 77 if (unlikely(of->released)) 78 return NULL; 79 80 if (!kernfs_get_active(of->kn)) 81 return NULL; 82 83 return of; 84 } 85 86 static void kernfs_put_active_of(struct kernfs_open_file *of) 87 { 88 return kernfs_put_active(of->kn); 89 } 90 91 /** 92 * kernfs_deref_open_node_locked - Get kernfs_open_node corresponding to @kn 93 * 94 * @kn: target kernfs_node. 95 * 96 * Fetch and return ->attr.open of @kn when caller holds the 97 * kernfs_open_file_mutex_ptr(kn). 98 * 99 * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when 100 * the caller guarantees that this mutex is being held, other updaters can't 101 * change ->attr.open and this means that we can safely deref ->attr.open 102 * outside RCU read-side critical section. 103 * 104 * The caller needs to make sure that kernfs_open_file_mutex is held. 105 * 106 * Return: @kn->attr.open when kernfs_open_file_mutex is held. 107 */ 108 static struct kernfs_open_node * 109 kernfs_deref_open_node_locked(struct kernfs_node *kn) 110 { 111 return rcu_dereference_protected(kn->attr.open, 112 lockdep_is_held(kernfs_open_file_mutex_ptr(kn))); 113 } 114 115 static struct kernfs_open_file *kernfs_of(struct file *file) 116 { 117 return ((struct seq_file *)file->private_data)->private; 118 } 119 120 /* 121 * Determine the kernfs_ops for the given kernfs_node. This function must 122 * be called while holding an active reference. 123 */ 124 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn) 125 { 126 if (kn->flags & KERNFS_LOCKDEP) 127 lockdep_assert_held(kn); 128 return kn->attr.ops; 129 } 130 131 /* 132 * As kernfs_seq_stop() is also called after kernfs_seq_start() or 133 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping 134 * a seq_file iteration which is fully initialized with an active reference 135 * or an aborted kernfs_seq_start() due to get_active failure. The 136 * position pointer is the only context for each seq_file iteration and 137 * thus the stop condition should be encoded in it. As the return value is 138 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable 139 * choice to indicate get_active failure. 140 * 141 * Unfortunately, this is complicated due to the optional custom seq_file 142 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop() 143 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or 144 * custom seq_file operations and thus can't decide whether put_active 145 * should be performed or not only on ERR_PTR(-ENODEV). 146 * 147 * This is worked around by factoring out the custom seq_stop() and 148 * put_active part into kernfs_seq_stop_active(), skipping it from 149 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after 150 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures 151 * that kernfs_seq_stop_active() is skipped only after get_active failure. 152 */ 153 static void kernfs_seq_stop_active(struct seq_file *sf, void *v) 154 { 155 struct kernfs_open_file *of = sf->private; 156 const struct kernfs_ops *ops = kernfs_ops(of->kn); 157 158 if (ops->seq_stop) 159 ops->seq_stop(sf, v); 160 kernfs_put_active_of(of); 161 } 162 163 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos) 164 { 165 struct kernfs_open_file *of = sf->private; 166 const struct kernfs_ops *ops; 167 168 /* 169 * @of->mutex nests outside active ref and is primarily to ensure that 170 * the ops aren't called concurrently for the same open file. 171 */ 172 mutex_lock(&of->mutex); 173 if (!kernfs_get_active_of(of)) 174 return ERR_PTR(-ENODEV); 175 176 ops = kernfs_ops(of->kn); 177 if (ops->seq_start) { 178 void *next = ops->seq_start(sf, ppos); 179 /* see the comment above kernfs_seq_stop_active() */ 180 if (next == ERR_PTR(-ENODEV)) 181 kernfs_seq_stop_active(sf, next); 182 return next; 183 } 184 return single_start(sf, ppos); 185 } 186 187 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos) 188 { 189 struct kernfs_open_file *of = sf->private; 190 const struct kernfs_ops *ops = kernfs_ops(of->kn); 191 192 if (ops->seq_next) { 193 void *next = ops->seq_next(sf, v, ppos); 194 /* see the comment above kernfs_seq_stop_active() */ 195 if (next == ERR_PTR(-ENODEV)) 196 kernfs_seq_stop_active(sf, next); 197 return next; 198 } else { 199 /* 200 * The same behavior and code as single_open(), always 201 * terminate after the initial read. 202 */ 203 ++*ppos; 204 return NULL; 205 } 206 } 207 208 static void kernfs_seq_stop(struct seq_file *sf, void *v) 209 { 210 struct kernfs_open_file *of = sf->private; 211 212 if (v != ERR_PTR(-ENODEV)) 213 kernfs_seq_stop_active(sf, v); 214 mutex_unlock(&of->mutex); 215 } 216 217 static int kernfs_seq_show(struct seq_file *sf, void *v) 218 { 219 struct kernfs_open_file *of = sf->private; 220 221 of->event = atomic_read(&of_on(of)->event); 222 223 return of->kn->attr.ops->seq_show(sf, v); 224 } 225 226 static const struct seq_operations kernfs_seq_ops = { 227 .start = kernfs_seq_start, 228 .next = kernfs_seq_next, 229 .stop = kernfs_seq_stop, 230 .show = kernfs_seq_show, 231 }; 232 233 /* 234 * As reading a bin file can have side-effects, the exact offset and bytes 235 * specified in read(2) call should be passed to the read callback making 236 * it difficult to use seq_file. Implement simplistic custom buffering for 237 * bin files. 238 */ 239 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 240 { 241 struct kernfs_open_file *of = kernfs_of(iocb->ki_filp); 242 ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE); 243 const struct kernfs_ops *ops; 244 char *buf; 245 246 buf = of->prealloc_buf; 247 if (buf) 248 mutex_lock(&of->prealloc_mutex); 249 else 250 buf = kmalloc(len, GFP_KERNEL); 251 if (!buf) 252 return -ENOMEM; 253 254 /* 255 * @of->mutex nests outside active ref and is used both to ensure that 256 * the ops aren't called concurrently for the same open file. 257 */ 258 mutex_lock(&of->mutex); 259 if (!kernfs_get_active_of(of)) { 260 len = -ENODEV; 261 mutex_unlock(&of->mutex); 262 goto out_free; 263 } 264 265 of->event = atomic_read(&of_on(of)->event); 266 267 ops = kernfs_ops(of->kn); 268 if (ops->read) 269 len = ops->read(of, buf, len, iocb->ki_pos); 270 else 271 len = -EINVAL; 272 273 kernfs_put_active_of(of); 274 mutex_unlock(&of->mutex); 275 276 if (len < 0) 277 goto out_free; 278 279 if (copy_to_iter(buf, len, iter) != len) { 280 len = -EFAULT; 281 goto out_free; 282 } 283 284 iocb->ki_pos += len; 285 286 out_free: 287 if (buf == of->prealloc_buf) 288 mutex_unlock(&of->prealloc_mutex); 289 else 290 kfree(buf); 291 return len; 292 } 293 294 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter) 295 { 296 if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW) 297 return seq_read_iter(iocb, iter); 298 return kernfs_file_read_iter(iocb, iter); 299 } 300 301 /* 302 * Copy data in from userland and pass it to the matching kernfs write 303 * operation. 304 * 305 * There is no easy way for us to know if userspace is only doing a partial 306 * write, so we don't support them. We expect the entire buffer to come on 307 * the first write. Hint: if you're writing a value, first read the file, 308 * modify only the value you're changing, then write entire buffer 309 * back. 310 */ 311 static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter) 312 { 313 struct kernfs_open_file *of = kernfs_of(iocb->ki_filp); 314 ssize_t len = iov_iter_count(iter); 315 const struct kernfs_ops *ops; 316 char *buf; 317 318 if (of->atomic_write_len) { 319 if (len > of->atomic_write_len) 320 return -E2BIG; 321 } else { 322 len = min_t(size_t, len, PAGE_SIZE); 323 } 324 325 buf = of->prealloc_buf; 326 if (buf) 327 mutex_lock(&of->prealloc_mutex); 328 else 329 buf = kmalloc(len + 1, GFP_KERNEL); 330 if (!buf) 331 return -ENOMEM; 332 333 if (copy_from_iter(buf, len, iter) != len) { 334 len = -EFAULT; 335 goto out_free; 336 } 337 buf[len] = '\0'; /* guarantee string termination */ 338 339 /* 340 * @of->mutex nests outside active ref and is used both to ensure that 341 * the ops aren't called concurrently for the same open file. 342 */ 343 mutex_lock(&of->mutex); 344 if (!kernfs_get_active_of(of)) { 345 mutex_unlock(&of->mutex); 346 len = -ENODEV; 347 goto out_free; 348 } 349 350 ops = kernfs_ops(of->kn); 351 if (ops->write) 352 len = ops->write(of, buf, len, iocb->ki_pos); 353 else 354 len = -EINVAL; 355 356 kernfs_put_active_of(of); 357 mutex_unlock(&of->mutex); 358 359 if (len > 0) 360 iocb->ki_pos += len; 361 362 out_free: 363 if (buf == of->prealloc_buf) 364 mutex_unlock(&of->prealloc_mutex); 365 else 366 kfree(buf); 367 return len; 368 } 369 370 static void kernfs_vma_open(struct vm_area_struct *vma) 371 { 372 struct file *file = vma->vm_file; 373 struct kernfs_open_file *of = kernfs_of(file); 374 375 if (!of->vm_ops) 376 return; 377 378 if (!kernfs_get_active_of(of)) 379 return; 380 381 if (of->vm_ops->open) 382 of->vm_ops->open(vma); 383 384 kernfs_put_active_of(of); 385 } 386 387 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf) 388 { 389 struct file *file = vmf->vma->vm_file; 390 struct kernfs_open_file *of = kernfs_of(file); 391 vm_fault_t ret; 392 393 if (!of->vm_ops) 394 return VM_FAULT_SIGBUS; 395 396 if (!kernfs_get_active_of(of)) 397 return VM_FAULT_SIGBUS; 398 399 ret = VM_FAULT_SIGBUS; 400 if (of->vm_ops->fault) 401 ret = of->vm_ops->fault(vmf); 402 403 kernfs_put_active_of(of); 404 return ret; 405 } 406 407 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf) 408 { 409 struct file *file = vmf->vma->vm_file; 410 struct kernfs_open_file *of = kernfs_of(file); 411 vm_fault_t ret; 412 413 if (!of->vm_ops) 414 return VM_FAULT_SIGBUS; 415 416 if (!kernfs_get_active_of(of)) 417 return VM_FAULT_SIGBUS; 418 419 ret = 0; 420 if (of->vm_ops->page_mkwrite) 421 ret = of->vm_ops->page_mkwrite(vmf); 422 else 423 file_update_time(file); 424 425 kernfs_put_active_of(of); 426 return ret; 427 } 428 429 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr, 430 void *buf, int len, int write) 431 { 432 struct file *file = vma->vm_file; 433 struct kernfs_open_file *of = kernfs_of(file); 434 int ret; 435 436 if (!of->vm_ops) 437 return -EINVAL; 438 439 if (!kernfs_get_active_of(of)) 440 return -EINVAL; 441 442 ret = -EINVAL; 443 if (of->vm_ops->access) 444 ret = of->vm_ops->access(vma, addr, buf, len, write); 445 446 kernfs_put_active_of(of); 447 return ret; 448 } 449 450 static const struct vm_operations_struct kernfs_vm_ops = { 451 .open = kernfs_vma_open, 452 .fault = kernfs_vma_fault, 453 .page_mkwrite = kernfs_vma_page_mkwrite, 454 .access = kernfs_vma_access, 455 }; 456 457 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma) 458 { 459 struct kernfs_open_file *of = kernfs_of(file); 460 const struct kernfs_ops *ops; 461 int rc; 462 463 /* 464 * mmap path and of->mutex are prone to triggering spurious lockdep 465 * warnings and we don't want to add spurious locking dependency 466 * between the two. Check whether mmap is actually implemented 467 * without grabbing @of->mutex by testing HAS_MMAP flag. See the 468 * comment in kernfs_fop_open() for more details. 469 */ 470 if (!(of->kn->flags & KERNFS_HAS_MMAP)) 471 return -ENODEV; 472 473 mutex_lock(&of->mutex); 474 475 rc = -ENODEV; 476 if (!kernfs_get_active_of(of)) 477 goto out_unlock; 478 479 ops = kernfs_ops(of->kn); 480 rc = ops->mmap(of, vma); 481 if (rc) 482 goto out_put; 483 484 /* 485 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup() 486 * to satisfy versions of X which crash if the mmap fails: that 487 * substitutes a new vm_file, and we don't then want bin_vm_ops. 488 */ 489 if (vma->vm_file != file) 490 goto out_put; 491 492 rc = -EINVAL; 493 if (of->mmapped && of->vm_ops != vma->vm_ops) 494 goto out_put; 495 496 /* 497 * It is not possible to successfully wrap close. 498 * So error if someone is trying to use close. 499 */ 500 if (vma->vm_ops && vma->vm_ops->close) 501 goto out_put; 502 503 rc = 0; 504 if (!of->mmapped) { 505 of->mmapped = true; 506 of_on(of)->nr_mmapped++; 507 of->vm_ops = vma->vm_ops; 508 } 509 vma->vm_ops = &kernfs_vm_ops; 510 out_put: 511 kernfs_put_active_of(of); 512 out_unlock: 513 mutex_unlock(&of->mutex); 514 515 return rc; 516 } 517 518 /** 519 * kernfs_get_open_node - get or create kernfs_open_node 520 * @kn: target kernfs_node 521 * @of: kernfs_open_file for this instance of open 522 * 523 * If @kn->attr.open exists, increment its reference count; otherwise, 524 * create one. @of is chained to the files list. 525 * 526 * Locking: 527 * Kernel thread context (may sleep). 528 * 529 * Return: 530 * %0 on success, -errno on failure. 531 */ 532 static int kernfs_get_open_node(struct kernfs_node *kn, 533 struct kernfs_open_file *of) 534 { 535 struct kernfs_open_node *on; 536 struct mutex *mutex; 537 538 mutex = kernfs_open_file_mutex_lock(kn); 539 on = kernfs_deref_open_node_locked(kn); 540 541 if (!on) { 542 /* not there, initialize a new one */ 543 on = kzalloc(sizeof(*on), GFP_KERNEL); 544 if (!on) { 545 mutex_unlock(mutex); 546 return -ENOMEM; 547 } 548 atomic_set(&on->event, 1); 549 init_waitqueue_head(&on->poll); 550 INIT_LIST_HEAD(&on->files); 551 rcu_assign_pointer(kn->attr.open, on); 552 } 553 554 list_add_tail(&of->list, &on->files); 555 if (kn->flags & KERNFS_HAS_RELEASE) 556 on->nr_to_release++; 557 558 mutex_unlock(mutex); 559 return 0; 560 } 561 562 /** 563 * kernfs_unlink_open_file - Unlink @of from @kn. 564 * 565 * @kn: target kernfs_node 566 * @of: associated kernfs_open_file 567 * @open_failed: ->open() failed, cancel ->release() 568 * 569 * Unlink @of from list of @kn's associated open files. If list of 570 * associated open files becomes empty, disassociate and free 571 * kernfs_open_node. 572 * 573 * LOCKING: 574 * None. 575 */ 576 static void kernfs_unlink_open_file(struct kernfs_node *kn, 577 struct kernfs_open_file *of, 578 bool open_failed) 579 { 580 struct kernfs_open_node *on; 581 struct mutex *mutex; 582 583 mutex = kernfs_open_file_mutex_lock(kn); 584 585 on = kernfs_deref_open_node_locked(kn); 586 if (!on) { 587 mutex_unlock(mutex); 588 return; 589 } 590 591 if (of) { 592 if (kn->flags & KERNFS_HAS_RELEASE) { 593 WARN_ON_ONCE(of->released == open_failed); 594 if (open_failed) 595 on->nr_to_release--; 596 } 597 if (of->mmapped) 598 on->nr_mmapped--; 599 list_del(&of->list); 600 } 601 602 if (list_empty(&on->files)) { 603 rcu_assign_pointer(kn->attr.open, NULL); 604 kfree_rcu(on, rcu_head); 605 } 606 607 mutex_unlock(mutex); 608 } 609 610 static int kernfs_fop_open(struct inode *inode, struct file *file) 611 { 612 struct kernfs_node *kn = inode->i_private; 613 struct kernfs_root *root = kernfs_root(kn); 614 const struct kernfs_ops *ops; 615 struct kernfs_open_file *of; 616 bool has_read, has_write, has_mmap; 617 int error = -EACCES; 618 619 if (!kernfs_get_active(kn)) 620 return -ENODEV; 621 622 ops = kernfs_ops(kn); 623 624 has_read = ops->seq_show || ops->read || ops->mmap; 625 has_write = ops->write || ops->mmap; 626 has_mmap = ops->mmap; 627 628 /* see the flag definition for details */ 629 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) { 630 if ((file->f_mode & FMODE_WRITE) && 631 (!(inode->i_mode & S_IWUGO) || !has_write)) 632 goto err_out; 633 634 if ((file->f_mode & FMODE_READ) && 635 (!(inode->i_mode & S_IRUGO) || !has_read)) 636 goto err_out; 637 } 638 639 /* allocate a kernfs_open_file for the file */ 640 error = -ENOMEM; 641 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL); 642 if (!of) 643 goto err_out; 644 645 /* 646 * The following is done to give a different lockdep key to 647 * @of->mutex for files which implement mmap. This is a rather 648 * crude way to avoid false positive lockdep warning around 649 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and 650 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under 651 * which mm->mmap_lock nests, while holding @of->mutex. As each 652 * open file has a separate mutex, it's okay as long as those don't 653 * happen on the same file. At this point, we can't easily give 654 * each file a separate locking class. Let's differentiate on 655 * whether the file has mmap or not for now. 656 * 657 * For similar reasons, writable and readonly files are given different 658 * lockdep key, because the writable file /sys/power/resume may call vfs 659 * lookup helpers for arbitrary paths and readonly files can be read by 660 * overlayfs from vfs helpers when sysfs is a lower layer of overalyfs. 661 * 662 * All three cases look the same. They're supposed to 663 * look that way and give @of->mutex different static lockdep keys. 664 */ 665 if (has_mmap) 666 mutex_init(&of->mutex); 667 else if (file->f_mode & FMODE_WRITE) 668 mutex_init(&of->mutex); 669 else 670 mutex_init(&of->mutex); 671 672 of->kn = kn; 673 of->file = file; 674 675 /* 676 * Write path needs to atomic_write_len outside active reference. 677 * Cache it in open_file. See kernfs_fop_write_iter() for details. 678 */ 679 of->atomic_write_len = ops->atomic_write_len; 680 681 error = -EINVAL; 682 /* 683 * ->seq_show is incompatible with ->prealloc, 684 * as seq_read does its own allocation. 685 * ->read must be used instead. 686 */ 687 if (ops->prealloc && ops->seq_show) 688 goto err_free; 689 if (ops->prealloc) { 690 int len = of->atomic_write_len ?: PAGE_SIZE; 691 of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL); 692 error = -ENOMEM; 693 if (!of->prealloc_buf) 694 goto err_free; 695 mutex_init(&of->prealloc_mutex); 696 } 697 698 /* 699 * Always instantiate seq_file even if read access doesn't use 700 * seq_file or is not requested. This unifies private data access 701 * and readable regular files are the vast majority anyway. 702 */ 703 if (ops->seq_show) 704 error = seq_open(file, &kernfs_seq_ops); 705 else 706 error = seq_open(file, NULL); 707 if (error) 708 goto err_free; 709 710 of->seq_file = file->private_data; 711 of->seq_file->private = of; 712 713 /* seq_file clears PWRITE unconditionally, restore it if WRITE */ 714 if (file->f_mode & FMODE_WRITE) 715 file->f_mode |= FMODE_PWRITE; 716 717 /* make sure we have open node struct */ 718 error = kernfs_get_open_node(kn, of); 719 if (error) 720 goto err_seq_release; 721 722 if (ops->open) { 723 /* nobody has access to @of yet, skip @of->mutex */ 724 error = ops->open(of); 725 if (error) 726 goto err_put_node; 727 } 728 729 /* open succeeded, put active references */ 730 kernfs_put_active(kn); 731 return 0; 732 733 err_put_node: 734 kernfs_unlink_open_file(kn, of, true); 735 err_seq_release: 736 seq_release(inode, file); 737 err_free: 738 kfree(of->prealloc_buf); 739 kfree(of); 740 err_out: 741 kernfs_put_active(kn); 742 return error; 743 } 744 745 /* used from release/drain to ensure that ->release() is called exactly once */ 746 static void kernfs_release_file(struct kernfs_node *kn, 747 struct kernfs_open_file *of) 748 { 749 /* 750 * @of is guaranteed to have no other file operations in flight and 751 * we just want to synchronize release and drain paths. 752 * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used 753 * here because drain path may be called from places which can 754 * cause circular dependency. 755 */ 756 lockdep_assert_held(kernfs_open_file_mutex_ptr(kn)); 757 758 if (!of->released) { 759 /* 760 * A file is never detached without being released and we 761 * need to be able to release files which are deactivated 762 * and being drained. Don't use kernfs_ops(). 763 */ 764 kn->attr.ops->release(of); 765 of->released = true; 766 of_on(of)->nr_to_release--; 767 } 768 } 769 770 static int kernfs_fop_release(struct inode *inode, struct file *filp) 771 { 772 struct kernfs_node *kn = inode->i_private; 773 struct kernfs_open_file *of = kernfs_of(filp); 774 775 if (kn->flags & KERNFS_HAS_RELEASE) { 776 struct mutex *mutex; 777 778 mutex = kernfs_open_file_mutex_lock(kn); 779 kernfs_release_file(kn, of); 780 mutex_unlock(mutex); 781 } 782 783 kernfs_unlink_open_file(kn, of, false); 784 seq_release(inode, filp); 785 kfree(of->prealloc_buf); 786 kfree(of); 787 788 return 0; 789 } 790 791 bool kernfs_should_drain_open_files(struct kernfs_node *kn) 792 { 793 struct kernfs_open_node *on; 794 bool ret; 795 796 /* 797 * @kn being deactivated guarantees that @kn->attr.open can't change 798 * beneath us making the lockless test below safe. 799 * Callers post kernfs_unbreak_active_protection may be counted in 800 * kn->active by now, do not WARN_ON because of them. 801 */ 802 803 rcu_read_lock(); 804 on = rcu_dereference(kn->attr.open); 805 ret = on && (on->nr_mmapped || on->nr_to_release); 806 rcu_read_unlock(); 807 808 return ret; 809 } 810 811 void kernfs_drain_open_files(struct kernfs_node *kn) 812 { 813 struct kernfs_open_node *on; 814 struct kernfs_open_file *of; 815 struct mutex *mutex; 816 817 mutex = kernfs_open_file_mutex_lock(kn); 818 on = kernfs_deref_open_node_locked(kn); 819 if (!on) { 820 mutex_unlock(mutex); 821 return; 822 } 823 824 list_for_each_entry(of, &on->files, list) { 825 struct inode *inode = file_inode(of->file); 826 827 if (of->mmapped) { 828 unmap_mapping_range(inode->i_mapping, 0, 0, 1); 829 of->mmapped = false; 830 on->nr_mmapped--; 831 } 832 833 if (kn->flags & KERNFS_HAS_RELEASE) 834 kernfs_release_file(kn, of); 835 } 836 837 WARN_ON_ONCE(on->nr_mmapped || on->nr_to_release); 838 mutex_unlock(mutex); 839 } 840 841 /* 842 * Kernfs attribute files are pollable. The idea is that you read 843 * the content and then you use 'poll' or 'select' to wait for 844 * the content to change. When the content changes (assuming the 845 * manager for the kobject supports notification), poll will 846 * return EPOLLERR|EPOLLPRI, and select will return the fd whether 847 * it is waiting for read, write, or exceptions. 848 * Once poll/select indicates that the value has changed, you 849 * need to close and re-open the file, or seek to 0 and read again. 850 * Reminder: this only works for attributes which actively support 851 * it, and it is not possible to test an attribute from userspace 852 * to see if it supports poll (Neither 'poll' nor 'select' return 853 * an appropriate error code). When in doubt, set a suitable timeout value. 854 */ 855 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait) 856 { 857 struct kernfs_open_node *on = of_on(of); 858 859 poll_wait(of->file, &on->poll, wait); 860 861 if (of->event != atomic_read(&on->event)) 862 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI; 863 864 return DEFAULT_POLLMASK; 865 } 866 867 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait) 868 { 869 struct kernfs_open_file *of = kernfs_of(filp); 870 struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry); 871 __poll_t ret; 872 873 if (!kernfs_get_active_of(of)) 874 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI; 875 876 if (kn->attr.ops->poll) 877 ret = kn->attr.ops->poll(of, wait); 878 else 879 ret = kernfs_generic_poll(of, wait); 880 881 kernfs_put_active_of(of); 882 return ret; 883 } 884 885 static loff_t kernfs_fop_llseek(struct file *file, loff_t offset, int whence) 886 { 887 struct kernfs_open_file *of = kernfs_of(file); 888 const struct kernfs_ops *ops; 889 loff_t ret; 890 891 /* 892 * @of->mutex nests outside active ref and is primarily to ensure that 893 * the ops aren't called concurrently for the same open file. 894 */ 895 mutex_lock(&of->mutex); 896 if (!kernfs_get_active_of(of)) { 897 mutex_unlock(&of->mutex); 898 return -ENODEV; 899 } 900 901 ops = kernfs_ops(of->kn); 902 if (ops->llseek) 903 ret = ops->llseek(of, offset, whence); 904 else 905 ret = generic_file_llseek(file, offset, whence); 906 907 kernfs_put_active_of(of); 908 mutex_unlock(&of->mutex); 909 return ret; 910 } 911 912 static void kernfs_notify_workfn(struct work_struct *work) 913 { 914 struct kernfs_node *kn; 915 struct kernfs_super_info *info; 916 struct kernfs_root *root; 917 repeat: 918 /* pop one off the notify_list */ 919 spin_lock_irq(&kernfs_notify_lock); 920 kn = kernfs_notify_list; 921 if (kn == KERNFS_NOTIFY_EOL) { 922 spin_unlock_irq(&kernfs_notify_lock); 923 return; 924 } 925 kernfs_notify_list = kn->attr.notify_next; 926 kn->attr.notify_next = NULL; 927 spin_unlock_irq(&kernfs_notify_lock); 928 929 root = kernfs_root(kn); 930 /* kick fsnotify */ 931 932 down_read(&root->kernfs_supers_rwsem); 933 down_read(&root->kernfs_rwsem); 934 list_for_each_entry(info, &kernfs_root(kn)->supers, node) { 935 struct kernfs_node *parent; 936 struct inode *p_inode = NULL; 937 const char *kn_name; 938 struct inode *inode; 939 struct qstr name; 940 941 /* 942 * We want fsnotify_modify() on @kn but as the 943 * modifications aren't originating from userland don't 944 * have the matching @file available. Look up the inodes 945 * and generate the events manually. 946 */ 947 inode = ilookup(info->sb, kernfs_ino(kn)); 948 if (!inode) 949 continue; 950 951 kn_name = kernfs_rcu_name(kn); 952 name = QSTR(kn_name); 953 parent = kernfs_get_parent(kn); 954 if (parent) { 955 p_inode = ilookup(info->sb, kernfs_ino(parent)); 956 if (p_inode) { 957 fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD, 958 inode, FSNOTIFY_EVENT_INODE, 959 p_inode, &name, inode, 0); 960 iput(p_inode); 961 } 962 963 kernfs_put(parent); 964 } 965 966 if (!p_inode) 967 fsnotify_inode(inode, FS_MODIFY); 968 969 iput(inode); 970 } 971 972 up_read(&root->kernfs_rwsem); 973 up_read(&root->kernfs_supers_rwsem); 974 kernfs_put(kn); 975 goto repeat; 976 } 977 978 /** 979 * kernfs_notify - notify a kernfs file 980 * @kn: file to notify 981 * 982 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any 983 * context. 984 */ 985 void kernfs_notify(struct kernfs_node *kn) 986 { 987 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn); 988 unsigned long flags; 989 struct kernfs_open_node *on; 990 991 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE)) 992 return; 993 994 /* kick poll immediately */ 995 rcu_read_lock(); 996 on = rcu_dereference(kn->attr.open); 997 if (on) { 998 atomic_inc(&on->event); 999 wake_up_interruptible(&on->poll); 1000 } 1001 rcu_read_unlock(); 1002 1003 /* schedule work to kick fsnotify */ 1004 spin_lock_irqsave(&kernfs_notify_lock, flags); 1005 if (!kn->attr.notify_next) { 1006 kernfs_get(kn); 1007 kn->attr.notify_next = kernfs_notify_list; 1008 kernfs_notify_list = kn; 1009 schedule_work(&kernfs_notify_work); 1010 } 1011 spin_unlock_irqrestore(&kernfs_notify_lock, flags); 1012 } 1013 EXPORT_SYMBOL_GPL(kernfs_notify); 1014 1015 const struct file_operations kernfs_file_fops = { 1016 .read_iter = kernfs_fop_read_iter, 1017 .write_iter = kernfs_fop_write_iter, 1018 .llseek = kernfs_fop_llseek, 1019 .mmap = kernfs_fop_mmap, 1020 .open = kernfs_fop_open, 1021 .release = kernfs_fop_release, 1022 .poll = kernfs_fop_poll, 1023 .fsync = noop_fsync, 1024 .splice_read = copy_splice_read, 1025 .splice_write = iter_file_splice_write, 1026 }; 1027 1028 /** 1029 * __kernfs_create_file - kernfs internal function to create a file 1030 * @parent: directory to create the file in 1031 * @name: name of the file 1032 * @mode: mode of the file 1033 * @uid: uid of the file 1034 * @gid: gid of the file 1035 * @size: size of the file 1036 * @ops: kernfs operations for the file 1037 * @priv: private data for the file 1038 * @ns: optional namespace tag of the file 1039 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep 1040 * 1041 * Return: the created node on success, ERR_PTR() value on error. 1042 */ 1043 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, 1044 const char *name, 1045 umode_t mode, kuid_t uid, kgid_t gid, 1046 loff_t size, 1047 const struct kernfs_ops *ops, 1048 void *priv, const void *ns, 1049 struct lock_class_key *key) 1050 { 1051 struct kernfs_node *kn; 1052 unsigned flags; 1053 int rc; 1054 1055 flags = KERNFS_FILE; 1056 1057 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, 1058 uid, gid, flags); 1059 if (!kn) 1060 return ERR_PTR(-ENOMEM); 1061 1062 kn->attr.ops = ops; 1063 kn->attr.size = size; 1064 kn->ns = ns; 1065 kn->priv = priv; 1066 1067 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1068 if (key) { 1069 lockdep_init_map(&kn->dep_map, "kn->active", key, 0); 1070 kn->flags |= KERNFS_LOCKDEP; 1071 } 1072 #endif 1073 1074 /* 1075 * kn->attr.ops is accessible only while holding active ref. We 1076 * need to know whether some ops are implemented outside active 1077 * ref. Cache their existence in flags. 1078 */ 1079 if (ops->seq_show) 1080 kn->flags |= KERNFS_HAS_SEQ_SHOW; 1081 if (ops->mmap) 1082 kn->flags |= KERNFS_HAS_MMAP; 1083 if (ops->release) 1084 kn->flags |= KERNFS_HAS_RELEASE; 1085 1086 rc = kernfs_add_one(kn); 1087 if (rc) { 1088 kernfs_put(kn); 1089 return ERR_PTR(rc); 1090 } 1091 return kn; 1092 } 1093