1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/file.c - kernfs file implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/seq_file.h> 12 #include <linux/slab.h> 13 #include <linux/poll.h> 14 #include <linux/pagemap.h> 15 #include <linux/sched/mm.h> 16 #include <linux/fsnotify.h> 17 #include <linux/uio.h> 18 19 #include "kernfs-internal.h" 20 21 struct kernfs_open_node { 22 struct rcu_head rcu_head; 23 atomic_t event; 24 wait_queue_head_t poll; 25 struct list_head files; /* goes through kernfs_open_file.list */ 26 unsigned int nr_mmapped; 27 unsigned int nr_to_release; 28 }; 29 30 /* 31 * kernfs_notify() may be called from any context and bounces notifications 32 * through a work item. To minimize space overhead in kernfs_node, the 33 * pending queue is implemented as a singly linked list of kernfs_nodes. 34 * The list is terminated with the self pointer so that whether a 35 * kernfs_node is on the list or not can be determined by testing the next 36 * pointer for %NULL. 37 */ 38 #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list) 39 40 static DEFINE_SPINLOCK(kernfs_notify_lock); 41 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL; 42 43 static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn) 44 { 45 int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS); 46 47 return &kernfs_locks->open_file_mutex[idx]; 48 } 49 50 static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn) 51 { 52 struct mutex *lock; 53 54 lock = kernfs_open_file_mutex_ptr(kn); 55 56 mutex_lock(lock); 57 58 return lock; 59 } 60 61 /** 62 * of_on - Get the kernfs_open_node of the specified kernfs_open_file 63 * @of: target kernfs_open_file 64 * 65 * Return: the kernfs_open_node of the kernfs_open_file 66 */ 67 static struct kernfs_open_node *of_on(struct kernfs_open_file *of) 68 { 69 return rcu_dereference_protected(of->kn->attr.open, 70 !list_empty(&of->list)); 71 } 72 73 /** 74 * kernfs_deref_open_node_locked - Get kernfs_open_node corresponding to @kn 75 * 76 * @kn: target kernfs_node. 77 * 78 * Fetch and return ->attr.open of @kn when caller holds the 79 * kernfs_open_file_mutex_ptr(kn). 80 * 81 * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when 82 * the caller guarantees that this mutex is being held, other updaters can't 83 * change ->attr.open and this means that we can safely deref ->attr.open 84 * outside RCU read-side critical section. 85 * 86 * The caller needs to make sure that kernfs_open_file_mutex is held. 87 * 88 * Return: @kn->attr.open when kernfs_open_file_mutex is held. 89 */ 90 static struct kernfs_open_node * 91 kernfs_deref_open_node_locked(struct kernfs_node *kn) 92 { 93 return rcu_dereference_protected(kn->attr.open, 94 lockdep_is_held(kernfs_open_file_mutex_ptr(kn))); 95 } 96 97 static struct kernfs_open_file *kernfs_of(struct file *file) 98 { 99 return ((struct seq_file *)file->private_data)->private; 100 } 101 102 /* 103 * Determine the kernfs_ops for the given kernfs_node. This function must 104 * be called while holding an active reference. 105 */ 106 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn) 107 { 108 if (kn->flags & KERNFS_LOCKDEP) 109 lockdep_assert_held(kn); 110 return kn->attr.ops; 111 } 112 113 /* 114 * As kernfs_seq_stop() is also called after kernfs_seq_start() or 115 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping 116 * a seq_file iteration which is fully initialized with an active reference 117 * or an aborted kernfs_seq_start() due to get_active failure. The 118 * position pointer is the only context for each seq_file iteration and 119 * thus the stop condition should be encoded in it. As the return value is 120 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable 121 * choice to indicate get_active failure. 122 * 123 * Unfortunately, this is complicated due to the optional custom seq_file 124 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop() 125 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or 126 * custom seq_file operations and thus can't decide whether put_active 127 * should be performed or not only on ERR_PTR(-ENODEV). 128 * 129 * This is worked around by factoring out the custom seq_stop() and 130 * put_active part into kernfs_seq_stop_active(), skipping it from 131 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after 132 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures 133 * that kernfs_seq_stop_active() is skipped only after get_active failure. 134 */ 135 static void kernfs_seq_stop_active(struct seq_file *sf, void *v) 136 { 137 struct kernfs_open_file *of = sf->private; 138 const struct kernfs_ops *ops = kernfs_ops(of->kn); 139 140 if (ops->seq_stop) 141 ops->seq_stop(sf, v); 142 kernfs_put_active(of->kn); 143 } 144 145 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos) 146 { 147 struct kernfs_open_file *of = sf->private; 148 const struct kernfs_ops *ops; 149 150 /* 151 * @of->mutex nests outside active ref and is primarily to ensure that 152 * the ops aren't called concurrently for the same open file. 153 */ 154 mutex_lock(&of->mutex); 155 if (!kernfs_get_active(of->kn)) 156 return ERR_PTR(-ENODEV); 157 158 ops = kernfs_ops(of->kn); 159 if (ops->seq_start) { 160 void *next = ops->seq_start(sf, ppos); 161 /* see the comment above kernfs_seq_stop_active() */ 162 if (next == ERR_PTR(-ENODEV)) 163 kernfs_seq_stop_active(sf, next); 164 return next; 165 } 166 return single_start(sf, ppos); 167 } 168 169 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos) 170 { 171 struct kernfs_open_file *of = sf->private; 172 const struct kernfs_ops *ops = kernfs_ops(of->kn); 173 174 if (ops->seq_next) { 175 void *next = ops->seq_next(sf, v, ppos); 176 /* see the comment above kernfs_seq_stop_active() */ 177 if (next == ERR_PTR(-ENODEV)) 178 kernfs_seq_stop_active(sf, next); 179 return next; 180 } else { 181 /* 182 * The same behavior and code as single_open(), always 183 * terminate after the initial read. 184 */ 185 ++*ppos; 186 return NULL; 187 } 188 } 189 190 static void kernfs_seq_stop(struct seq_file *sf, void *v) 191 { 192 struct kernfs_open_file *of = sf->private; 193 194 if (v != ERR_PTR(-ENODEV)) 195 kernfs_seq_stop_active(sf, v); 196 mutex_unlock(&of->mutex); 197 } 198 199 static int kernfs_seq_show(struct seq_file *sf, void *v) 200 { 201 struct kernfs_open_file *of = sf->private; 202 203 of->event = atomic_read(&of_on(of)->event); 204 205 return of->kn->attr.ops->seq_show(sf, v); 206 } 207 208 static const struct seq_operations kernfs_seq_ops = { 209 .start = kernfs_seq_start, 210 .next = kernfs_seq_next, 211 .stop = kernfs_seq_stop, 212 .show = kernfs_seq_show, 213 }; 214 215 /* 216 * As reading a bin file can have side-effects, the exact offset and bytes 217 * specified in read(2) call should be passed to the read callback making 218 * it difficult to use seq_file. Implement simplistic custom buffering for 219 * bin files. 220 */ 221 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 222 { 223 struct kernfs_open_file *of = kernfs_of(iocb->ki_filp); 224 ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE); 225 const struct kernfs_ops *ops; 226 char *buf; 227 228 buf = of->prealloc_buf; 229 if (buf) 230 mutex_lock(&of->prealloc_mutex); 231 else 232 buf = kmalloc(len, GFP_KERNEL); 233 if (!buf) 234 return -ENOMEM; 235 236 /* 237 * @of->mutex nests outside active ref and is used both to ensure that 238 * the ops aren't called concurrently for the same open file. 239 */ 240 mutex_lock(&of->mutex); 241 if (!kernfs_get_active(of->kn)) { 242 len = -ENODEV; 243 mutex_unlock(&of->mutex); 244 goto out_free; 245 } 246 247 of->event = atomic_read(&of_on(of)->event); 248 249 ops = kernfs_ops(of->kn); 250 if (ops->read) 251 len = ops->read(of, buf, len, iocb->ki_pos); 252 else 253 len = -EINVAL; 254 255 kernfs_put_active(of->kn); 256 mutex_unlock(&of->mutex); 257 258 if (len < 0) 259 goto out_free; 260 261 if (copy_to_iter(buf, len, iter) != len) { 262 len = -EFAULT; 263 goto out_free; 264 } 265 266 iocb->ki_pos += len; 267 268 out_free: 269 if (buf == of->prealloc_buf) 270 mutex_unlock(&of->prealloc_mutex); 271 else 272 kfree(buf); 273 return len; 274 } 275 276 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter) 277 { 278 if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW) 279 return seq_read_iter(iocb, iter); 280 return kernfs_file_read_iter(iocb, iter); 281 } 282 283 /* 284 * Copy data in from userland and pass it to the matching kernfs write 285 * operation. 286 * 287 * There is no easy way for us to know if userspace is only doing a partial 288 * write, so we don't support them. We expect the entire buffer to come on 289 * the first write. Hint: if you're writing a value, first read the file, 290 * modify only the value you're changing, then write entire buffer 291 * back. 292 */ 293 static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter) 294 { 295 struct kernfs_open_file *of = kernfs_of(iocb->ki_filp); 296 ssize_t len = iov_iter_count(iter); 297 const struct kernfs_ops *ops; 298 char *buf; 299 300 if (of->atomic_write_len) { 301 if (len > of->atomic_write_len) 302 return -E2BIG; 303 } else { 304 len = min_t(size_t, len, PAGE_SIZE); 305 } 306 307 buf = of->prealloc_buf; 308 if (buf) 309 mutex_lock(&of->prealloc_mutex); 310 else 311 buf = kmalloc(len + 1, GFP_KERNEL); 312 if (!buf) 313 return -ENOMEM; 314 315 if (copy_from_iter(buf, len, iter) != len) { 316 len = -EFAULT; 317 goto out_free; 318 } 319 buf[len] = '\0'; /* guarantee string termination */ 320 321 /* 322 * @of->mutex nests outside active ref and is used both to ensure that 323 * the ops aren't called concurrently for the same open file. 324 */ 325 mutex_lock(&of->mutex); 326 if (!kernfs_get_active(of->kn)) { 327 mutex_unlock(&of->mutex); 328 len = -ENODEV; 329 goto out_free; 330 } 331 332 ops = kernfs_ops(of->kn); 333 if (ops->write) 334 len = ops->write(of, buf, len, iocb->ki_pos); 335 else 336 len = -EINVAL; 337 338 kernfs_put_active(of->kn); 339 mutex_unlock(&of->mutex); 340 341 if (len > 0) 342 iocb->ki_pos += len; 343 344 out_free: 345 if (buf == of->prealloc_buf) 346 mutex_unlock(&of->prealloc_mutex); 347 else 348 kfree(buf); 349 return len; 350 } 351 352 static void kernfs_vma_open(struct vm_area_struct *vma) 353 { 354 struct file *file = vma->vm_file; 355 struct kernfs_open_file *of = kernfs_of(file); 356 357 if (!of->vm_ops) 358 return; 359 360 if (!kernfs_get_active(of->kn)) 361 return; 362 363 if (of->vm_ops->open) 364 of->vm_ops->open(vma); 365 366 kernfs_put_active(of->kn); 367 } 368 369 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf) 370 { 371 struct file *file = vmf->vma->vm_file; 372 struct kernfs_open_file *of = kernfs_of(file); 373 vm_fault_t ret; 374 375 if (!of->vm_ops) 376 return VM_FAULT_SIGBUS; 377 378 if (!kernfs_get_active(of->kn)) 379 return VM_FAULT_SIGBUS; 380 381 ret = VM_FAULT_SIGBUS; 382 if (of->vm_ops->fault) 383 ret = of->vm_ops->fault(vmf); 384 385 kernfs_put_active(of->kn); 386 return ret; 387 } 388 389 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf) 390 { 391 struct file *file = vmf->vma->vm_file; 392 struct kernfs_open_file *of = kernfs_of(file); 393 vm_fault_t ret; 394 395 if (!of->vm_ops) 396 return VM_FAULT_SIGBUS; 397 398 if (!kernfs_get_active(of->kn)) 399 return VM_FAULT_SIGBUS; 400 401 ret = 0; 402 if (of->vm_ops->page_mkwrite) 403 ret = of->vm_ops->page_mkwrite(vmf); 404 else 405 file_update_time(file); 406 407 kernfs_put_active(of->kn); 408 return ret; 409 } 410 411 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr, 412 void *buf, int len, int write) 413 { 414 struct file *file = vma->vm_file; 415 struct kernfs_open_file *of = kernfs_of(file); 416 int ret; 417 418 if (!of->vm_ops) 419 return -EINVAL; 420 421 if (!kernfs_get_active(of->kn)) 422 return -EINVAL; 423 424 ret = -EINVAL; 425 if (of->vm_ops->access) 426 ret = of->vm_ops->access(vma, addr, buf, len, write); 427 428 kernfs_put_active(of->kn); 429 return ret; 430 } 431 432 static const struct vm_operations_struct kernfs_vm_ops = { 433 .open = kernfs_vma_open, 434 .fault = kernfs_vma_fault, 435 .page_mkwrite = kernfs_vma_page_mkwrite, 436 .access = kernfs_vma_access, 437 }; 438 439 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma) 440 { 441 struct kernfs_open_file *of = kernfs_of(file); 442 const struct kernfs_ops *ops; 443 int rc; 444 445 /* 446 * mmap path and of->mutex are prone to triggering spurious lockdep 447 * warnings and we don't want to add spurious locking dependency 448 * between the two. Check whether mmap is actually implemented 449 * without grabbing @of->mutex by testing HAS_MMAP flag. See the 450 * comment in kernfs_fop_open() for more details. 451 */ 452 if (!(of->kn->flags & KERNFS_HAS_MMAP)) 453 return -ENODEV; 454 455 mutex_lock(&of->mutex); 456 457 rc = -ENODEV; 458 if (!kernfs_get_active(of->kn)) 459 goto out_unlock; 460 461 ops = kernfs_ops(of->kn); 462 rc = ops->mmap(of, vma); 463 if (rc) 464 goto out_put; 465 466 /* 467 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup() 468 * to satisfy versions of X which crash if the mmap fails: that 469 * substitutes a new vm_file, and we don't then want bin_vm_ops. 470 */ 471 if (vma->vm_file != file) 472 goto out_put; 473 474 rc = -EINVAL; 475 if (of->mmapped && of->vm_ops != vma->vm_ops) 476 goto out_put; 477 478 /* 479 * It is not possible to successfully wrap close. 480 * So error if someone is trying to use close. 481 */ 482 if (vma->vm_ops && vma->vm_ops->close) 483 goto out_put; 484 485 rc = 0; 486 if (!of->mmapped) { 487 of->mmapped = true; 488 of_on(of)->nr_mmapped++; 489 of->vm_ops = vma->vm_ops; 490 } 491 vma->vm_ops = &kernfs_vm_ops; 492 out_put: 493 kernfs_put_active(of->kn); 494 out_unlock: 495 mutex_unlock(&of->mutex); 496 497 return rc; 498 } 499 500 /** 501 * kernfs_get_open_node - get or create kernfs_open_node 502 * @kn: target kernfs_node 503 * @of: kernfs_open_file for this instance of open 504 * 505 * If @kn->attr.open exists, increment its reference count; otherwise, 506 * create one. @of is chained to the files list. 507 * 508 * Locking: 509 * Kernel thread context (may sleep). 510 * 511 * Return: 512 * %0 on success, -errno on failure. 513 */ 514 static int kernfs_get_open_node(struct kernfs_node *kn, 515 struct kernfs_open_file *of) 516 { 517 struct kernfs_open_node *on; 518 struct mutex *mutex; 519 520 mutex = kernfs_open_file_mutex_lock(kn); 521 on = kernfs_deref_open_node_locked(kn); 522 523 if (!on) { 524 /* not there, initialize a new one */ 525 on = kzalloc(sizeof(*on), GFP_KERNEL); 526 if (!on) { 527 mutex_unlock(mutex); 528 return -ENOMEM; 529 } 530 atomic_set(&on->event, 1); 531 init_waitqueue_head(&on->poll); 532 INIT_LIST_HEAD(&on->files); 533 rcu_assign_pointer(kn->attr.open, on); 534 } 535 536 list_add_tail(&of->list, &on->files); 537 if (kn->flags & KERNFS_HAS_RELEASE) 538 on->nr_to_release++; 539 540 mutex_unlock(mutex); 541 return 0; 542 } 543 544 /** 545 * kernfs_unlink_open_file - Unlink @of from @kn. 546 * 547 * @kn: target kernfs_node 548 * @of: associated kernfs_open_file 549 * @open_failed: ->open() failed, cancel ->release() 550 * 551 * Unlink @of from list of @kn's associated open files. If list of 552 * associated open files becomes empty, disassociate and free 553 * kernfs_open_node. 554 * 555 * LOCKING: 556 * None. 557 */ 558 static void kernfs_unlink_open_file(struct kernfs_node *kn, 559 struct kernfs_open_file *of, 560 bool open_failed) 561 { 562 struct kernfs_open_node *on; 563 struct mutex *mutex; 564 565 mutex = kernfs_open_file_mutex_lock(kn); 566 567 on = kernfs_deref_open_node_locked(kn); 568 if (!on) { 569 mutex_unlock(mutex); 570 return; 571 } 572 573 if (of) { 574 if (kn->flags & KERNFS_HAS_RELEASE) { 575 WARN_ON_ONCE(of->released == open_failed); 576 if (open_failed) 577 on->nr_to_release--; 578 } 579 if (of->mmapped) 580 on->nr_mmapped--; 581 list_del(&of->list); 582 } 583 584 if (list_empty(&on->files)) { 585 rcu_assign_pointer(kn->attr.open, NULL); 586 kfree_rcu(on, rcu_head); 587 } 588 589 mutex_unlock(mutex); 590 } 591 592 static int kernfs_fop_open(struct inode *inode, struct file *file) 593 { 594 struct kernfs_node *kn = inode->i_private; 595 struct kernfs_root *root = kernfs_root(kn); 596 const struct kernfs_ops *ops; 597 struct kernfs_open_file *of; 598 bool has_read, has_write, has_mmap; 599 int error = -EACCES; 600 601 if (!kernfs_get_active(kn)) 602 return -ENODEV; 603 604 ops = kernfs_ops(kn); 605 606 has_read = ops->seq_show || ops->read || ops->mmap; 607 has_write = ops->write || ops->mmap; 608 has_mmap = ops->mmap; 609 610 /* see the flag definition for details */ 611 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) { 612 if ((file->f_mode & FMODE_WRITE) && 613 (!(inode->i_mode & S_IWUGO) || !has_write)) 614 goto err_out; 615 616 if ((file->f_mode & FMODE_READ) && 617 (!(inode->i_mode & S_IRUGO) || !has_read)) 618 goto err_out; 619 } 620 621 /* allocate a kernfs_open_file for the file */ 622 error = -ENOMEM; 623 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL); 624 if (!of) 625 goto err_out; 626 627 /* 628 * The following is done to give a different lockdep key to 629 * @of->mutex for files which implement mmap. This is a rather 630 * crude way to avoid false positive lockdep warning around 631 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and 632 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under 633 * which mm->mmap_lock nests, while holding @of->mutex. As each 634 * open file has a separate mutex, it's okay as long as those don't 635 * happen on the same file. At this point, we can't easily give 636 * each file a separate locking class. Let's differentiate on 637 * whether the file has mmap or not for now. 638 * 639 * For similar reasons, writable and readonly files are given different 640 * lockdep key, because the writable file /sys/power/resume may call vfs 641 * lookup helpers for arbitrary paths and readonly files can be read by 642 * overlayfs from vfs helpers when sysfs is a lower layer of overalyfs. 643 * 644 * All three cases look the same. They're supposed to 645 * look that way and give @of->mutex different static lockdep keys. 646 */ 647 if (has_mmap) 648 mutex_init(&of->mutex); 649 else if (file->f_mode & FMODE_WRITE) 650 mutex_init(&of->mutex); 651 else 652 mutex_init(&of->mutex); 653 654 of->kn = kn; 655 of->file = file; 656 657 /* 658 * Write path needs to atomic_write_len outside active reference. 659 * Cache it in open_file. See kernfs_fop_write_iter() for details. 660 */ 661 of->atomic_write_len = ops->atomic_write_len; 662 663 error = -EINVAL; 664 /* 665 * ->seq_show is incompatible with ->prealloc, 666 * as seq_read does its own allocation. 667 * ->read must be used instead. 668 */ 669 if (ops->prealloc && ops->seq_show) 670 goto err_free; 671 if (ops->prealloc) { 672 int len = of->atomic_write_len ?: PAGE_SIZE; 673 of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL); 674 error = -ENOMEM; 675 if (!of->prealloc_buf) 676 goto err_free; 677 mutex_init(&of->prealloc_mutex); 678 } 679 680 /* 681 * Always instantiate seq_file even if read access doesn't use 682 * seq_file or is not requested. This unifies private data access 683 * and readable regular files are the vast majority anyway. 684 */ 685 if (ops->seq_show) 686 error = seq_open(file, &kernfs_seq_ops); 687 else 688 error = seq_open(file, NULL); 689 if (error) 690 goto err_free; 691 692 of->seq_file = file->private_data; 693 of->seq_file->private = of; 694 695 /* seq_file clears PWRITE unconditionally, restore it if WRITE */ 696 if (file->f_mode & FMODE_WRITE) 697 file->f_mode |= FMODE_PWRITE; 698 699 /* make sure we have open node struct */ 700 error = kernfs_get_open_node(kn, of); 701 if (error) 702 goto err_seq_release; 703 704 if (ops->open) { 705 /* nobody has access to @of yet, skip @of->mutex */ 706 error = ops->open(of); 707 if (error) 708 goto err_put_node; 709 } 710 711 /* open succeeded, put active references */ 712 kernfs_put_active(kn); 713 return 0; 714 715 err_put_node: 716 kernfs_unlink_open_file(kn, of, true); 717 err_seq_release: 718 seq_release(inode, file); 719 err_free: 720 kfree(of->prealloc_buf); 721 kfree(of); 722 err_out: 723 kernfs_put_active(kn); 724 return error; 725 } 726 727 /* used from release/drain to ensure that ->release() is called exactly once */ 728 static void kernfs_release_file(struct kernfs_node *kn, 729 struct kernfs_open_file *of) 730 { 731 /* 732 * @of is guaranteed to have no other file operations in flight and 733 * we just want to synchronize release and drain paths. 734 * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used 735 * here because drain path may be called from places which can 736 * cause circular dependency. 737 */ 738 lockdep_assert_held(kernfs_open_file_mutex_ptr(kn)); 739 740 if (!of->released) { 741 /* 742 * A file is never detached without being released and we 743 * need to be able to release files which are deactivated 744 * and being drained. Don't use kernfs_ops(). 745 */ 746 kn->attr.ops->release(of); 747 of->released = true; 748 of_on(of)->nr_to_release--; 749 } 750 } 751 752 static int kernfs_fop_release(struct inode *inode, struct file *filp) 753 { 754 struct kernfs_node *kn = inode->i_private; 755 struct kernfs_open_file *of = kernfs_of(filp); 756 757 if (kn->flags & KERNFS_HAS_RELEASE) { 758 struct mutex *mutex; 759 760 mutex = kernfs_open_file_mutex_lock(kn); 761 kernfs_release_file(kn, of); 762 mutex_unlock(mutex); 763 } 764 765 kernfs_unlink_open_file(kn, of, false); 766 seq_release(inode, filp); 767 kfree(of->prealloc_buf); 768 kfree(of); 769 770 return 0; 771 } 772 773 bool kernfs_should_drain_open_files(struct kernfs_node *kn) 774 { 775 struct kernfs_open_node *on; 776 bool ret; 777 778 /* 779 * @kn being deactivated guarantees that @kn->attr.open can't change 780 * beneath us making the lockless test below safe. 781 */ 782 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 783 784 rcu_read_lock(); 785 on = rcu_dereference(kn->attr.open); 786 ret = on && (on->nr_mmapped || on->nr_to_release); 787 rcu_read_unlock(); 788 789 return ret; 790 } 791 792 void kernfs_drain_open_files(struct kernfs_node *kn) 793 { 794 struct kernfs_open_node *on; 795 struct kernfs_open_file *of; 796 struct mutex *mutex; 797 798 mutex = kernfs_open_file_mutex_lock(kn); 799 on = kernfs_deref_open_node_locked(kn); 800 if (!on) { 801 mutex_unlock(mutex); 802 return; 803 } 804 805 list_for_each_entry(of, &on->files, list) { 806 struct inode *inode = file_inode(of->file); 807 808 if (of->mmapped) { 809 unmap_mapping_range(inode->i_mapping, 0, 0, 1); 810 of->mmapped = false; 811 on->nr_mmapped--; 812 } 813 814 if (kn->flags & KERNFS_HAS_RELEASE) 815 kernfs_release_file(kn, of); 816 } 817 818 WARN_ON_ONCE(on->nr_mmapped || on->nr_to_release); 819 mutex_unlock(mutex); 820 } 821 822 /* 823 * Kernfs attribute files are pollable. The idea is that you read 824 * the content and then you use 'poll' or 'select' to wait for 825 * the content to change. When the content changes (assuming the 826 * manager for the kobject supports notification), poll will 827 * return EPOLLERR|EPOLLPRI, and select will return the fd whether 828 * it is waiting for read, write, or exceptions. 829 * Once poll/select indicates that the value has changed, you 830 * need to close and re-open the file, or seek to 0 and read again. 831 * Reminder: this only works for attributes which actively support 832 * it, and it is not possible to test an attribute from userspace 833 * to see if it supports poll (Neither 'poll' nor 'select' return 834 * an appropriate error code). When in doubt, set a suitable timeout value. 835 */ 836 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait) 837 { 838 struct kernfs_open_node *on = of_on(of); 839 840 poll_wait(of->file, &on->poll, wait); 841 842 if (of->event != atomic_read(&on->event)) 843 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI; 844 845 return DEFAULT_POLLMASK; 846 } 847 848 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait) 849 { 850 struct kernfs_open_file *of = kernfs_of(filp); 851 struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry); 852 __poll_t ret; 853 854 if (!kernfs_get_active(kn)) 855 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI; 856 857 if (kn->attr.ops->poll) 858 ret = kn->attr.ops->poll(of, wait); 859 else 860 ret = kernfs_generic_poll(of, wait); 861 862 kernfs_put_active(kn); 863 return ret; 864 } 865 866 static loff_t kernfs_fop_llseek(struct file *file, loff_t offset, int whence) 867 { 868 struct kernfs_open_file *of = kernfs_of(file); 869 const struct kernfs_ops *ops; 870 loff_t ret; 871 872 /* 873 * @of->mutex nests outside active ref and is primarily to ensure that 874 * the ops aren't called concurrently for the same open file. 875 */ 876 mutex_lock(&of->mutex); 877 if (!kernfs_get_active(of->kn)) { 878 mutex_unlock(&of->mutex); 879 return -ENODEV; 880 } 881 882 ops = kernfs_ops(of->kn); 883 if (ops->llseek) 884 ret = ops->llseek(of, offset, whence); 885 else 886 ret = generic_file_llseek(file, offset, whence); 887 888 kernfs_put_active(of->kn); 889 mutex_unlock(&of->mutex); 890 return ret; 891 } 892 893 static void kernfs_notify_workfn(struct work_struct *work) 894 { 895 struct kernfs_node *kn; 896 struct kernfs_super_info *info; 897 struct kernfs_root *root; 898 repeat: 899 /* pop one off the notify_list */ 900 spin_lock_irq(&kernfs_notify_lock); 901 kn = kernfs_notify_list; 902 if (kn == KERNFS_NOTIFY_EOL) { 903 spin_unlock_irq(&kernfs_notify_lock); 904 return; 905 } 906 kernfs_notify_list = kn->attr.notify_next; 907 kn->attr.notify_next = NULL; 908 spin_unlock_irq(&kernfs_notify_lock); 909 910 root = kernfs_root(kn); 911 /* kick fsnotify */ 912 913 down_read(&root->kernfs_supers_rwsem); 914 list_for_each_entry(info, &kernfs_root(kn)->supers, node) { 915 struct kernfs_node *parent; 916 struct inode *p_inode = NULL; 917 struct inode *inode; 918 struct qstr name; 919 920 /* 921 * We want fsnotify_modify() on @kn but as the 922 * modifications aren't originating from userland don't 923 * have the matching @file available. Look up the inodes 924 * and generate the events manually. 925 */ 926 inode = ilookup(info->sb, kernfs_ino(kn)); 927 if (!inode) 928 continue; 929 930 name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name)); 931 parent = kernfs_get_parent(kn); 932 if (parent) { 933 p_inode = ilookup(info->sb, kernfs_ino(parent)); 934 if (p_inode) { 935 fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD, 936 inode, FSNOTIFY_EVENT_INODE, 937 p_inode, &name, inode, 0); 938 iput(p_inode); 939 } 940 941 kernfs_put(parent); 942 } 943 944 if (!p_inode) 945 fsnotify_inode(inode, FS_MODIFY); 946 947 iput(inode); 948 } 949 950 up_read(&root->kernfs_supers_rwsem); 951 kernfs_put(kn); 952 goto repeat; 953 } 954 955 /** 956 * kernfs_notify - notify a kernfs file 957 * @kn: file to notify 958 * 959 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any 960 * context. 961 */ 962 void kernfs_notify(struct kernfs_node *kn) 963 { 964 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn); 965 unsigned long flags; 966 struct kernfs_open_node *on; 967 968 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE)) 969 return; 970 971 /* kick poll immediately */ 972 rcu_read_lock(); 973 on = rcu_dereference(kn->attr.open); 974 if (on) { 975 atomic_inc(&on->event); 976 wake_up_interruptible(&on->poll); 977 } 978 rcu_read_unlock(); 979 980 /* schedule work to kick fsnotify */ 981 spin_lock_irqsave(&kernfs_notify_lock, flags); 982 if (!kn->attr.notify_next) { 983 kernfs_get(kn); 984 kn->attr.notify_next = kernfs_notify_list; 985 kernfs_notify_list = kn; 986 schedule_work(&kernfs_notify_work); 987 } 988 spin_unlock_irqrestore(&kernfs_notify_lock, flags); 989 } 990 EXPORT_SYMBOL_GPL(kernfs_notify); 991 992 const struct file_operations kernfs_file_fops = { 993 .read_iter = kernfs_fop_read_iter, 994 .write_iter = kernfs_fop_write_iter, 995 .llseek = kernfs_fop_llseek, 996 .mmap = kernfs_fop_mmap, 997 .open = kernfs_fop_open, 998 .release = kernfs_fop_release, 999 .poll = kernfs_fop_poll, 1000 .fsync = noop_fsync, 1001 .splice_read = copy_splice_read, 1002 .splice_write = iter_file_splice_write, 1003 }; 1004 1005 /** 1006 * __kernfs_create_file - kernfs internal function to create a file 1007 * @parent: directory to create the file in 1008 * @name: name of the file 1009 * @mode: mode of the file 1010 * @uid: uid of the file 1011 * @gid: gid of the file 1012 * @size: size of the file 1013 * @ops: kernfs operations for the file 1014 * @priv: private data for the file 1015 * @ns: optional namespace tag of the file 1016 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep 1017 * 1018 * Return: the created node on success, ERR_PTR() value on error. 1019 */ 1020 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, 1021 const char *name, 1022 umode_t mode, kuid_t uid, kgid_t gid, 1023 loff_t size, 1024 const struct kernfs_ops *ops, 1025 void *priv, const void *ns, 1026 struct lock_class_key *key) 1027 { 1028 struct kernfs_node *kn; 1029 unsigned flags; 1030 int rc; 1031 1032 flags = KERNFS_FILE; 1033 1034 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, 1035 uid, gid, flags); 1036 if (!kn) 1037 return ERR_PTR(-ENOMEM); 1038 1039 kn->attr.ops = ops; 1040 kn->attr.size = size; 1041 kn->ns = ns; 1042 kn->priv = priv; 1043 1044 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1045 if (key) { 1046 lockdep_init_map(&kn->dep_map, "kn->active", key, 0); 1047 kn->flags |= KERNFS_LOCKDEP; 1048 } 1049 #endif 1050 1051 /* 1052 * kn->attr.ops is accessible only while holding active ref. We 1053 * need to know whether some ops are implemented outside active 1054 * ref. Cache their existence in flags. 1055 */ 1056 if (ops->seq_show) 1057 kn->flags |= KERNFS_HAS_SEQ_SHOW; 1058 if (ops->mmap) 1059 kn->flags |= KERNFS_HAS_MMAP; 1060 if (ops->release) 1061 kn->flags |= KERNFS_HAS_RELEASE; 1062 1063 rc = kernfs_add_one(kn); 1064 if (rc) { 1065 kernfs_put(kn); 1066 return ERR_PTR(rc); 1067 } 1068 return kn; 1069 } 1070