xref: /linux/fs/kernfs/file.c (revision 630ae80ea1dd253609cb50cff87f3248f901aca3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/file.c - kernfs file implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/seq_file.h>
12 #include <linux/slab.h>
13 #include <linux/poll.h>
14 #include <linux/pagemap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/fsnotify.h>
17 #include <linux/uio.h>
18 
19 #include "kernfs-internal.h"
20 
21 struct kernfs_open_node {
22 	struct rcu_head		rcu_head;
23 	atomic_t		event;
24 	wait_queue_head_t	poll;
25 	struct list_head	files; /* goes through kernfs_open_file.list */
26 	unsigned int		nr_mmapped;
27 	unsigned int		nr_to_release;
28 };
29 
30 /*
31  * kernfs_notify() may be called from any context and bounces notifications
32  * through a work item.  To minimize space overhead in kernfs_node, the
33  * pending queue is implemented as a singly linked list of kernfs_nodes.
34  * The list is terminated with the self pointer so that whether a
35  * kernfs_node is on the list or not can be determined by testing the next
36  * pointer for NULL.
37  */
38 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
39 
40 static DEFINE_SPINLOCK(kernfs_notify_lock);
41 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
42 
43 static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn)
44 {
45 	int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS);
46 
47 	return &kernfs_locks->open_file_mutex[idx];
48 }
49 
50 static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn)
51 {
52 	struct mutex *lock;
53 
54 	lock = kernfs_open_file_mutex_ptr(kn);
55 
56 	mutex_lock(lock);
57 
58 	return lock;
59 }
60 
61 /**
62  * of_on - Return the kernfs_open_node of the specified kernfs_open_file
63  * @of: taret kernfs_open_file
64  */
65 static struct kernfs_open_node *of_on(struct kernfs_open_file *of)
66 {
67 	return rcu_dereference_protected(of->kn->attr.open,
68 					 !list_empty(&of->list));
69 }
70 
71 /**
72  * kernfs_deref_open_node_locked - Get kernfs_open_node corresponding to @kn
73  *
74  * @kn: target kernfs_node.
75  *
76  * Fetch and return ->attr.open of @kn when caller holds the
77  * kernfs_open_file_mutex_ptr(kn).
78  *
79  * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when
80  * the caller guarantees that this mutex is being held, other updaters can't
81  * change ->attr.open and this means that we can safely deref ->attr.open
82  * outside RCU read-side critical section.
83  *
84  * The caller needs to make sure that kernfs_open_file_mutex is held.
85  */
86 static struct kernfs_open_node *
87 kernfs_deref_open_node_locked(struct kernfs_node *kn)
88 {
89 	return rcu_dereference_protected(kn->attr.open,
90 				lockdep_is_held(kernfs_open_file_mutex_ptr(kn)));
91 }
92 
93 static struct kernfs_open_file *kernfs_of(struct file *file)
94 {
95 	return ((struct seq_file *)file->private_data)->private;
96 }
97 
98 /*
99  * Determine the kernfs_ops for the given kernfs_node.  This function must
100  * be called while holding an active reference.
101  */
102 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
103 {
104 	if (kn->flags & KERNFS_LOCKDEP)
105 		lockdep_assert_held(kn);
106 	return kn->attr.ops;
107 }
108 
109 /*
110  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
111  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
112  * a seq_file iteration which is fully initialized with an active reference
113  * or an aborted kernfs_seq_start() due to get_active failure.  The
114  * position pointer is the only context for each seq_file iteration and
115  * thus the stop condition should be encoded in it.  As the return value is
116  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
117  * choice to indicate get_active failure.
118  *
119  * Unfortunately, this is complicated due to the optional custom seq_file
120  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
121  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
122  * custom seq_file operations and thus can't decide whether put_active
123  * should be performed or not only on ERR_PTR(-ENODEV).
124  *
125  * This is worked around by factoring out the custom seq_stop() and
126  * put_active part into kernfs_seq_stop_active(), skipping it from
127  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
128  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
129  * that kernfs_seq_stop_active() is skipped only after get_active failure.
130  */
131 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
132 {
133 	struct kernfs_open_file *of = sf->private;
134 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
135 
136 	if (ops->seq_stop)
137 		ops->seq_stop(sf, v);
138 	kernfs_put_active(of->kn);
139 }
140 
141 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
142 {
143 	struct kernfs_open_file *of = sf->private;
144 	const struct kernfs_ops *ops;
145 
146 	/*
147 	 * @of->mutex nests outside active ref and is primarily to ensure that
148 	 * the ops aren't called concurrently for the same open file.
149 	 */
150 	mutex_lock(&of->mutex);
151 	if (!kernfs_get_active(of->kn))
152 		return ERR_PTR(-ENODEV);
153 
154 	ops = kernfs_ops(of->kn);
155 	if (ops->seq_start) {
156 		void *next = ops->seq_start(sf, ppos);
157 		/* see the comment above kernfs_seq_stop_active() */
158 		if (next == ERR_PTR(-ENODEV))
159 			kernfs_seq_stop_active(sf, next);
160 		return next;
161 	}
162 	return single_start(sf, ppos);
163 }
164 
165 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
166 {
167 	struct kernfs_open_file *of = sf->private;
168 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
169 
170 	if (ops->seq_next) {
171 		void *next = ops->seq_next(sf, v, ppos);
172 		/* see the comment above kernfs_seq_stop_active() */
173 		if (next == ERR_PTR(-ENODEV))
174 			kernfs_seq_stop_active(sf, next);
175 		return next;
176 	} else {
177 		/*
178 		 * The same behavior and code as single_open(), always
179 		 * terminate after the initial read.
180 		 */
181 		++*ppos;
182 		return NULL;
183 	}
184 }
185 
186 static void kernfs_seq_stop(struct seq_file *sf, void *v)
187 {
188 	struct kernfs_open_file *of = sf->private;
189 
190 	if (v != ERR_PTR(-ENODEV))
191 		kernfs_seq_stop_active(sf, v);
192 	mutex_unlock(&of->mutex);
193 }
194 
195 static int kernfs_seq_show(struct seq_file *sf, void *v)
196 {
197 	struct kernfs_open_file *of = sf->private;
198 
199 	of->event = atomic_read(&of_on(of)->event);
200 
201 	return of->kn->attr.ops->seq_show(sf, v);
202 }
203 
204 static const struct seq_operations kernfs_seq_ops = {
205 	.start = kernfs_seq_start,
206 	.next = kernfs_seq_next,
207 	.stop = kernfs_seq_stop,
208 	.show = kernfs_seq_show,
209 };
210 
211 /*
212  * As reading a bin file can have side-effects, the exact offset and bytes
213  * specified in read(2) call should be passed to the read callback making
214  * it difficult to use seq_file.  Implement simplistic custom buffering for
215  * bin files.
216  */
217 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
218 {
219 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
220 	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
221 	const struct kernfs_ops *ops;
222 	char *buf;
223 
224 	buf = of->prealloc_buf;
225 	if (buf)
226 		mutex_lock(&of->prealloc_mutex);
227 	else
228 		buf = kmalloc(len, GFP_KERNEL);
229 	if (!buf)
230 		return -ENOMEM;
231 
232 	/*
233 	 * @of->mutex nests outside active ref and is used both to ensure that
234 	 * the ops aren't called concurrently for the same open file.
235 	 */
236 	mutex_lock(&of->mutex);
237 	if (!kernfs_get_active(of->kn)) {
238 		len = -ENODEV;
239 		mutex_unlock(&of->mutex);
240 		goto out_free;
241 	}
242 
243 	of->event = atomic_read(&of_on(of)->event);
244 
245 	ops = kernfs_ops(of->kn);
246 	if (ops->read)
247 		len = ops->read(of, buf, len, iocb->ki_pos);
248 	else
249 		len = -EINVAL;
250 
251 	kernfs_put_active(of->kn);
252 	mutex_unlock(&of->mutex);
253 
254 	if (len < 0)
255 		goto out_free;
256 
257 	if (copy_to_iter(buf, len, iter) != len) {
258 		len = -EFAULT;
259 		goto out_free;
260 	}
261 
262 	iocb->ki_pos += len;
263 
264  out_free:
265 	if (buf == of->prealloc_buf)
266 		mutex_unlock(&of->prealloc_mutex);
267 	else
268 		kfree(buf);
269 	return len;
270 }
271 
272 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
273 {
274 	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
275 		return seq_read_iter(iocb, iter);
276 	return kernfs_file_read_iter(iocb, iter);
277 }
278 
279 /*
280  * Copy data in from userland and pass it to the matching kernfs write
281  * operation.
282  *
283  * There is no easy way for us to know if userspace is only doing a partial
284  * write, so we don't support them. We expect the entire buffer to come on
285  * the first write.  Hint: if you're writing a value, first read the file,
286  * modify only the value you're changing, then write entire buffer
287  * back.
288  */
289 static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
290 {
291 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
292 	ssize_t len = iov_iter_count(iter);
293 	const struct kernfs_ops *ops;
294 	char *buf;
295 
296 	if (of->atomic_write_len) {
297 		if (len > of->atomic_write_len)
298 			return -E2BIG;
299 	} else {
300 		len = min_t(size_t, len, PAGE_SIZE);
301 	}
302 
303 	buf = of->prealloc_buf;
304 	if (buf)
305 		mutex_lock(&of->prealloc_mutex);
306 	else
307 		buf = kmalloc(len + 1, GFP_KERNEL);
308 	if (!buf)
309 		return -ENOMEM;
310 
311 	if (copy_from_iter(buf, len, iter) != len) {
312 		len = -EFAULT;
313 		goto out_free;
314 	}
315 	buf[len] = '\0';	/* guarantee string termination */
316 
317 	/*
318 	 * @of->mutex nests outside active ref and is used both to ensure that
319 	 * the ops aren't called concurrently for the same open file.
320 	 */
321 	mutex_lock(&of->mutex);
322 	if (!kernfs_get_active(of->kn)) {
323 		mutex_unlock(&of->mutex);
324 		len = -ENODEV;
325 		goto out_free;
326 	}
327 
328 	ops = kernfs_ops(of->kn);
329 	if (ops->write)
330 		len = ops->write(of, buf, len, iocb->ki_pos);
331 	else
332 		len = -EINVAL;
333 
334 	kernfs_put_active(of->kn);
335 	mutex_unlock(&of->mutex);
336 
337 	if (len > 0)
338 		iocb->ki_pos += len;
339 
340 out_free:
341 	if (buf == of->prealloc_buf)
342 		mutex_unlock(&of->prealloc_mutex);
343 	else
344 		kfree(buf);
345 	return len;
346 }
347 
348 static void kernfs_vma_open(struct vm_area_struct *vma)
349 {
350 	struct file *file = vma->vm_file;
351 	struct kernfs_open_file *of = kernfs_of(file);
352 
353 	if (!of->vm_ops)
354 		return;
355 
356 	if (!kernfs_get_active(of->kn))
357 		return;
358 
359 	if (of->vm_ops->open)
360 		of->vm_ops->open(vma);
361 
362 	kernfs_put_active(of->kn);
363 }
364 
365 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
366 {
367 	struct file *file = vmf->vma->vm_file;
368 	struct kernfs_open_file *of = kernfs_of(file);
369 	vm_fault_t ret;
370 
371 	if (!of->vm_ops)
372 		return VM_FAULT_SIGBUS;
373 
374 	if (!kernfs_get_active(of->kn))
375 		return VM_FAULT_SIGBUS;
376 
377 	ret = VM_FAULT_SIGBUS;
378 	if (of->vm_ops->fault)
379 		ret = of->vm_ops->fault(vmf);
380 
381 	kernfs_put_active(of->kn);
382 	return ret;
383 }
384 
385 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
386 {
387 	struct file *file = vmf->vma->vm_file;
388 	struct kernfs_open_file *of = kernfs_of(file);
389 	vm_fault_t ret;
390 
391 	if (!of->vm_ops)
392 		return VM_FAULT_SIGBUS;
393 
394 	if (!kernfs_get_active(of->kn))
395 		return VM_FAULT_SIGBUS;
396 
397 	ret = 0;
398 	if (of->vm_ops->page_mkwrite)
399 		ret = of->vm_ops->page_mkwrite(vmf);
400 	else
401 		file_update_time(file);
402 
403 	kernfs_put_active(of->kn);
404 	return ret;
405 }
406 
407 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
408 			     void *buf, int len, int write)
409 {
410 	struct file *file = vma->vm_file;
411 	struct kernfs_open_file *of = kernfs_of(file);
412 	int ret;
413 
414 	if (!of->vm_ops)
415 		return -EINVAL;
416 
417 	if (!kernfs_get_active(of->kn))
418 		return -EINVAL;
419 
420 	ret = -EINVAL;
421 	if (of->vm_ops->access)
422 		ret = of->vm_ops->access(vma, addr, buf, len, write);
423 
424 	kernfs_put_active(of->kn);
425 	return ret;
426 }
427 
428 #ifdef CONFIG_NUMA
429 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
430 				 struct mempolicy *new)
431 {
432 	struct file *file = vma->vm_file;
433 	struct kernfs_open_file *of = kernfs_of(file);
434 	int ret;
435 
436 	if (!of->vm_ops)
437 		return 0;
438 
439 	if (!kernfs_get_active(of->kn))
440 		return -EINVAL;
441 
442 	ret = 0;
443 	if (of->vm_ops->set_policy)
444 		ret = of->vm_ops->set_policy(vma, new);
445 
446 	kernfs_put_active(of->kn);
447 	return ret;
448 }
449 
450 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
451 					       unsigned long addr)
452 {
453 	struct file *file = vma->vm_file;
454 	struct kernfs_open_file *of = kernfs_of(file);
455 	struct mempolicy *pol;
456 
457 	if (!of->vm_ops)
458 		return vma->vm_policy;
459 
460 	if (!kernfs_get_active(of->kn))
461 		return vma->vm_policy;
462 
463 	pol = vma->vm_policy;
464 	if (of->vm_ops->get_policy)
465 		pol = of->vm_ops->get_policy(vma, addr);
466 
467 	kernfs_put_active(of->kn);
468 	return pol;
469 }
470 
471 #endif
472 
473 static const struct vm_operations_struct kernfs_vm_ops = {
474 	.open		= kernfs_vma_open,
475 	.fault		= kernfs_vma_fault,
476 	.page_mkwrite	= kernfs_vma_page_mkwrite,
477 	.access		= kernfs_vma_access,
478 #ifdef CONFIG_NUMA
479 	.set_policy	= kernfs_vma_set_policy,
480 	.get_policy	= kernfs_vma_get_policy,
481 #endif
482 };
483 
484 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
485 {
486 	struct kernfs_open_file *of = kernfs_of(file);
487 	const struct kernfs_ops *ops;
488 	int rc;
489 
490 	/*
491 	 * mmap path and of->mutex are prone to triggering spurious lockdep
492 	 * warnings and we don't want to add spurious locking dependency
493 	 * between the two.  Check whether mmap is actually implemented
494 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
495 	 * comment in kernfs_file_open() for more details.
496 	 */
497 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
498 		return -ENODEV;
499 
500 	mutex_lock(&of->mutex);
501 
502 	rc = -ENODEV;
503 	if (!kernfs_get_active(of->kn))
504 		goto out_unlock;
505 
506 	ops = kernfs_ops(of->kn);
507 	rc = ops->mmap(of, vma);
508 	if (rc)
509 		goto out_put;
510 
511 	/*
512 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
513 	 * to satisfy versions of X which crash if the mmap fails: that
514 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
515 	 */
516 	if (vma->vm_file != file)
517 		goto out_put;
518 
519 	rc = -EINVAL;
520 	if (of->mmapped && of->vm_ops != vma->vm_ops)
521 		goto out_put;
522 
523 	/*
524 	 * It is not possible to successfully wrap close.
525 	 * So error if someone is trying to use close.
526 	 */
527 	if (vma->vm_ops && vma->vm_ops->close)
528 		goto out_put;
529 
530 	rc = 0;
531 	of->mmapped = true;
532 	of_on(of)->nr_mmapped++;
533 	of->vm_ops = vma->vm_ops;
534 	vma->vm_ops = &kernfs_vm_ops;
535 out_put:
536 	kernfs_put_active(of->kn);
537 out_unlock:
538 	mutex_unlock(&of->mutex);
539 
540 	return rc;
541 }
542 
543 /**
544  *	kernfs_get_open_node - get or create kernfs_open_node
545  *	@kn: target kernfs_node
546  *	@of: kernfs_open_file for this instance of open
547  *
548  *	If @kn->attr.open exists, increment its reference count; otherwise,
549  *	create one.  @of is chained to the files list.
550  *
551  *	LOCKING:
552  *	Kernel thread context (may sleep).
553  *
554  *	RETURNS:
555  *	0 on success, -errno on failure.
556  */
557 static int kernfs_get_open_node(struct kernfs_node *kn,
558 				struct kernfs_open_file *of)
559 {
560 	struct kernfs_open_node *on;
561 	struct mutex *mutex;
562 
563 	mutex = kernfs_open_file_mutex_lock(kn);
564 	on = kernfs_deref_open_node_locked(kn);
565 
566 	if (!on) {
567 		/* not there, initialize a new one */
568 		on = kzalloc(sizeof(*on), GFP_KERNEL);
569 		if (!on) {
570 			mutex_unlock(mutex);
571 			return -ENOMEM;
572 		}
573 		atomic_set(&on->event, 1);
574 		init_waitqueue_head(&on->poll);
575 		INIT_LIST_HEAD(&on->files);
576 		rcu_assign_pointer(kn->attr.open, on);
577 	}
578 
579 	list_add_tail(&of->list, &on->files);
580 	if (kn->flags & KERNFS_HAS_RELEASE)
581 		on->nr_to_release++;
582 
583 	mutex_unlock(mutex);
584 	return 0;
585 }
586 
587 /**
588  *	kernfs_unlink_open_file - Unlink @of from @kn.
589  *
590  *	@kn: target kernfs_node
591  *	@of: associated kernfs_open_file
592  *	@open_failed: ->open() failed, cancel ->release()
593  *
594  *	Unlink @of from list of @kn's associated open files. If list of
595  *	associated open files becomes empty, disassociate and free
596  *	kernfs_open_node.
597  *
598  *	LOCKING:
599  *	None.
600  */
601 static void kernfs_unlink_open_file(struct kernfs_node *kn,
602 				    struct kernfs_open_file *of,
603 				    bool open_failed)
604 {
605 	struct kernfs_open_node *on;
606 	struct mutex *mutex;
607 
608 	mutex = kernfs_open_file_mutex_lock(kn);
609 
610 	on = kernfs_deref_open_node_locked(kn);
611 	if (!on) {
612 		mutex_unlock(mutex);
613 		return;
614 	}
615 
616 	if (of) {
617 		if (kn->flags & KERNFS_HAS_RELEASE) {
618 			WARN_ON_ONCE(of->released == open_failed);
619 			if (open_failed)
620 				on->nr_to_release--;
621 		}
622 		if (of->mmapped)
623 			on->nr_mmapped--;
624 		list_del(&of->list);
625 	}
626 
627 	if (list_empty(&on->files)) {
628 		rcu_assign_pointer(kn->attr.open, NULL);
629 		kfree_rcu(on, rcu_head);
630 	}
631 
632 	mutex_unlock(mutex);
633 }
634 
635 static int kernfs_fop_open(struct inode *inode, struct file *file)
636 {
637 	struct kernfs_node *kn = inode->i_private;
638 	struct kernfs_root *root = kernfs_root(kn);
639 	const struct kernfs_ops *ops;
640 	struct kernfs_open_file *of;
641 	bool has_read, has_write, has_mmap;
642 	int error = -EACCES;
643 
644 	if (!kernfs_get_active(kn))
645 		return -ENODEV;
646 
647 	ops = kernfs_ops(kn);
648 
649 	has_read = ops->seq_show || ops->read || ops->mmap;
650 	has_write = ops->write || ops->mmap;
651 	has_mmap = ops->mmap;
652 
653 	/* see the flag definition for details */
654 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
655 		if ((file->f_mode & FMODE_WRITE) &&
656 		    (!(inode->i_mode & S_IWUGO) || !has_write))
657 			goto err_out;
658 
659 		if ((file->f_mode & FMODE_READ) &&
660 		    (!(inode->i_mode & S_IRUGO) || !has_read))
661 			goto err_out;
662 	}
663 
664 	/* allocate a kernfs_open_file for the file */
665 	error = -ENOMEM;
666 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
667 	if (!of)
668 		goto err_out;
669 
670 	/*
671 	 * The following is done to give a different lockdep key to
672 	 * @of->mutex for files which implement mmap.  This is a rather
673 	 * crude way to avoid false positive lockdep warning around
674 	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
675 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
676 	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
677 	 * open file has a separate mutex, it's okay as long as those don't
678 	 * happen on the same file.  At this point, we can't easily give
679 	 * each file a separate locking class.  Let's differentiate on
680 	 * whether the file has mmap or not for now.
681 	 *
682 	 * Both paths of the branch look the same.  They're supposed to
683 	 * look that way and give @of->mutex different static lockdep keys.
684 	 */
685 	if (has_mmap)
686 		mutex_init(&of->mutex);
687 	else
688 		mutex_init(&of->mutex);
689 
690 	of->kn = kn;
691 	of->file = file;
692 
693 	/*
694 	 * Write path needs to atomic_write_len outside active reference.
695 	 * Cache it in open_file.  See kernfs_fop_write_iter() for details.
696 	 */
697 	of->atomic_write_len = ops->atomic_write_len;
698 
699 	error = -EINVAL;
700 	/*
701 	 * ->seq_show is incompatible with ->prealloc,
702 	 * as seq_read does its own allocation.
703 	 * ->read must be used instead.
704 	 */
705 	if (ops->prealloc && ops->seq_show)
706 		goto err_free;
707 	if (ops->prealloc) {
708 		int len = of->atomic_write_len ?: PAGE_SIZE;
709 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
710 		error = -ENOMEM;
711 		if (!of->prealloc_buf)
712 			goto err_free;
713 		mutex_init(&of->prealloc_mutex);
714 	}
715 
716 	/*
717 	 * Always instantiate seq_file even if read access doesn't use
718 	 * seq_file or is not requested.  This unifies private data access
719 	 * and readable regular files are the vast majority anyway.
720 	 */
721 	if (ops->seq_show)
722 		error = seq_open(file, &kernfs_seq_ops);
723 	else
724 		error = seq_open(file, NULL);
725 	if (error)
726 		goto err_free;
727 
728 	of->seq_file = file->private_data;
729 	of->seq_file->private = of;
730 
731 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
732 	if (file->f_mode & FMODE_WRITE)
733 		file->f_mode |= FMODE_PWRITE;
734 
735 	/* make sure we have open node struct */
736 	error = kernfs_get_open_node(kn, of);
737 	if (error)
738 		goto err_seq_release;
739 
740 	if (ops->open) {
741 		/* nobody has access to @of yet, skip @of->mutex */
742 		error = ops->open(of);
743 		if (error)
744 			goto err_put_node;
745 	}
746 
747 	/* open succeeded, put active references */
748 	kernfs_put_active(kn);
749 	return 0;
750 
751 err_put_node:
752 	kernfs_unlink_open_file(kn, of, true);
753 err_seq_release:
754 	seq_release(inode, file);
755 err_free:
756 	kfree(of->prealloc_buf);
757 	kfree(of);
758 err_out:
759 	kernfs_put_active(kn);
760 	return error;
761 }
762 
763 /* used from release/drain to ensure that ->release() is called exactly once */
764 static void kernfs_release_file(struct kernfs_node *kn,
765 				struct kernfs_open_file *of)
766 {
767 	/*
768 	 * @of is guaranteed to have no other file operations in flight and
769 	 * we just want to synchronize release and drain paths.
770 	 * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used
771 	 * here because drain path may be called from places which can
772 	 * cause circular dependency.
773 	 */
774 	lockdep_assert_held(kernfs_open_file_mutex_ptr(kn));
775 
776 	if (!of->released) {
777 		/*
778 		 * A file is never detached without being released and we
779 		 * need to be able to release files which are deactivated
780 		 * and being drained.  Don't use kernfs_ops().
781 		 */
782 		kn->attr.ops->release(of);
783 		of->released = true;
784 		of_on(of)->nr_to_release--;
785 	}
786 }
787 
788 static int kernfs_fop_release(struct inode *inode, struct file *filp)
789 {
790 	struct kernfs_node *kn = inode->i_private;
791 	struct kernfs_open_file *of = kernfs_of(filp);
792 
793 	if (kn->flags & KERNFS_HAS_RELEASE) {
794 		struct mutex *mutex;
795 
796 		mutex = kernfs_open_file_mutex_lock(kn);
797 		kernfs_release_file(kn, of);
798 		mutex_unlock(mutex);
799 	}
800 
801 	kernfs_unlink_open_file(kn, of, false);
802 	seq_release(inode, filp);
803 	kfree(of->prealloc_buf);
804 	kfree(of);
805 
806 	return 0;
807 }
808 
809 bool kernfs_should_drain_open_files(struct kernfs_node *kn)
810 {
811 	struct kernfs_open_node *on;
812 	bool ret;
813 
814 	/*
815 	 * @kn being deactivated guarantees that @kn->attr.open can't change
816 	 * beneath us making the lockless test below safe.
817 	 */
818 	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
819 
820 	rcu_read_lock();
821 	on = rcu_dereference(kn->attr.open);
822 	ret = on && (on->nr_mmapped || on->nr_to_release);
823 	rcu_read_unlock();
824 
825 	return ret;
826 }
827 
828 void kernfs_drain_open_files(struct kernfs_node *kn)
829 {
830 	struct kernfs_open_node *on;
831 	struct kernfs_open_file *of;
832 	struct mutex *mutex;
833 
834 	mutex = kernfs_open_file_mutex_lock(kn);
835 	on = kernfs_deref_open_node_locked(kn);
836 	if (!on) {
837 		mutex_unlock(mutex);
838 		return;
839 	}
840 
841 	list_for_each_entry(of, &on->files, list) {
842 		struct inode *inode = file_inode(of->file);
843 
844 		if (of->mmapped) {
845 			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
846 			of->mmapped = false;
847 			on->nr_mmapped--;
848 		}
849 
850 		if (kn->flags & KERNFS_HAS_RELEASE)
851 			kernfs_release_file(kn, of);
852 	}
853 
854 	WARN_ON_ONCE(on->nr_mmapped || on->nr_to_release);
855 	mutex_unlock(mutex);
856 }
857 
858 /*
859  * Kernfs attribute files are pollable.  The idea is that you read
860  * the content and then you use 'poll' or 'select' to wait for
861  * the content to change.  When the content changes (assuming the
862  * manager for the kobject supports notification), poll will
863  * return EPOLLERR|EPOLLPRI, and select will return the fd whether
864  * it is waiting for read, write, or exceptions.
865  * Once poll/select indicates that the value has changed, you
866  * need to close and re-open the file, or seek to 0 and read again.
867  * Reminder: this only works for attributes which actively support
868  * it, and it is not possible to test an attribute from userspace
869  * to see if it supports poll (Neither 'poll' nor 'select' return
870  * an appropriate error code).  When in doubt, set a suitable timeout value.
871  */
872 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
873 {
874 	struct kernfs_open_node *on = of_on(of);
875 
876 	poll_wait(of->file, &on->poll, wait);
877 
878 	if (of->event != atomic_read(&on->event))
879 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
880 
881 	return DEFAULT_POLLMASK;
882 }
883 
884 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
885 {
886 	struct kernfs_open_file *of = kernfs_of(filp);
887 	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
888 	__poll_t ret;
889 
890 	if (!kernfs_get_active(kn))
891 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
892 
893 	if (kn->attr.ops->poll)
894 		ret = kn->attr.ops->poll(of, wait);
895 	else
896 		ret = kernfs_generic_poll(of, wait);
897 
898 	kernfs_put_active(kn);
899 	return ret;
900 }
901 
902 static void kernfs_notify_workfn(struct work_struct *work)
903 {
904 	struct kernfs_node *kn;
905 	struct kernfs_super_info *info;
906 	struct kernfs_root *root;
907 repeat:
908 	/* pop one off the notify_list */
909 	spin_lock_irq(&kernfs_notify_lock);
910 	kn = kernfs_notify_list;
911 	if (kn == KERNFS_NOTIFY_EOL) {
912 		spin_unlock_irq(&kernfs_notify_lock);
913 		return;
914 	}
915 	kernfs_notify_list = kn->attr.notify_next;
916 	kn->attr.notify_next = NULL;
917 	spin_unlock_irq(&kernfs_notify_lock);
918 
919 	root = kernfs_root(kn);
920 	/* kick fsnotify */
921 	down_write(&root->kernfs_rwsem);
922 
923 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
924 		struct kernfs_node *parent;
925 		struct inode *p_inode = NULL;
926 		struct inode *inode;
927 		struct qstr name;
928 
929 		/*
930 		 * We want fsnotify_modify() on @kn but as the
931 		 * modifications aren't originating from userland don't
932 		 * have the matching @file available.  Look up the inodes
933 		 * and generate the events manually.
934 		 */
935 		inode = ilookup(info->sb, kernfs_ino(kn));
936 		if (!inode)
937 			continue;
938 
939 		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
940 		parent = kernfs_get_parent(kn);
941 		if (parent) {
942 			p_inode = ilookup(info->sb, kernfs_ino(parent));
943 			if (p_inode) {
944 				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
945 					 inode, FSNOTIFY_EVENT_INODE,
946 					 p_inode, &name, inode, 0);
947 				iput(p_inode);
948 			}
949 
950 			kernfs_put(parent);
951 		}
952 
953 		if (!p_inode)
954 			fsnotify_inode(inode, FS_MODIFY);
955 
956 		iput(inode);
957 	}
958 
959 	up_write(&root->kernfs_rwsem);
960 	kernfs_put(kn);
961 	goto repeat;
962 }
963 
964 /**
965  * kernfs_notify - notify a kernfs file
966  * @kn: file to notify
967  *
968  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
969  * context.
970  */
971 void kernfs_notify(struct kernfs_node *kn)
972 {
973 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
974 	unsigned long flags;
975 	struct kernfs_open_node *on;
976 
977 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
978 		return;
979 
980 	/* kick poll immediately */
981 	rcu_read_lock();
982 	on = rcu_dereference(kn->attr.open);
983 	if (on) {
984 		atomic_inc(&on->event);
985 		wake_up_interruptible(&on->poll);
986 	}
987 	rcu_read_unlock();
988 
989 	/* schedule work to kick fsnotify */
990 	spin_lock_irqsave(&kernfs_notify_lock, flags);
991 	if (!kn->attr.notify_next) {
992 		kernfs_get(kn);
993 		kn->attr.notify_next = kernfs_notify_list;
994 		kernfs_notify_list = kn;
995 		schedule_work(&kernfs_notify_work);
996 	}
997 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
998 }
999 EXPORT_SYMBOL_GPL(kernfs_notify);
1000 
1001 const struct file_operations kernfs_file_fops = {
1002 	.read_iter	= kernfs_fop_read_iter,
1003 	.write_iter	= kernfs_fop_write_iter,
1004 	.llseek		= generic_file_llseek,
1005 	.mmap		= kernfs_fop_mmap,
1006 	.open		= kernfs_fop_open,
1007 	.release	= kernfs_fop_release,
1008 	.poll		= kernfs_fop_poll,
1009 	.fsync		= noop_fsync,
1010 	.splice_read	= generic_file_splice_read,
1011 	.splice_write	= iter_file_splice_write,
1012 };
1013 
1014 /**
1015  * __kernfs_create_file - kernfs internal function to create a file
1016  * @parent: directory to create the file in
1017  * @name: name of the file
1018  * @mode: mode of the file
1019  * @uid: uid of the file
1020  * @gid: gid of the file
1021  * @size: size of the file
1022  * @ops: kernfs operations for the file
1023  * @priv: private data for the file
1024  * @ns: optional namespace tag of the file
1025  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
1026  *
1027  * Returns the created node on success, ERR_PTR() value on error.
1028  */
1029 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
1030 					 const char *name,
1031 					 umode_t mode, kuid_t uid, kgid_t gid,
1032 					 loff_t size,
1033 					 const struct kernfs_ops *ops,
1034 					 void *priv, const void *ns,
1035 					 struct lock_class_key *key)
1036 {
1037 	struct kernfs_node *kn;
1038 	unsigned flags;
1039 	int rc;
1040 
1041 	flags = KERNFS_FILE;
1042 
1043 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1044 			     uid, gid, flags);
1045 	if (!kn)
1046 		return ERR_PTR(-ENOMEM);
1047 
1048 	kn->attr.ops = ops;
1049 	kn->attr.size = size;
1050 	kn->ns = ns;
1051 	kn->priv = priv;
1052 
1053 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1054 	if (key) {
1055 		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1056 		kn->flags |= KERNFS_LOCKDEP;
1057 	}
1058 #endif
1059 
1060 	/*
1061 	 * kn->attr.ops is accessible only while holding active ref.  We
1062 	 * need to know whether some ops are implemented outside active
1063 	 * ref.  Cache their existence in flags.
1064 	 */
1065 	if (ops->seq_show)
1066 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1067 	if (ops->mmap)
1068 		kn->flags |= KERNFS_HAS_MMAP;
1069 	if (ops->release)
1070 		kn->flags |= KERNFS_HAS_RELEASE;
1071 
1072 	rc = kernfs_add_one(kn);
1073 	if (rc) {
1074 		kernfs_put(kn);
1075 		return ERR_PTR(rc);
1076 	}
1077 	return kn;
1078 }
1079